
Ann Math Artif Intell (2007) 49:39–76
DOI 10.1007/s10472-007-9056-3

Relational concept discovery in structured datasets

M. Huchard · M. Rouane Hacene ·
C. Roume · P. Valtchev

Published online: 15 June 2007
© Springer Science + Business Media B.V. 2007

Abstract Relational datasets, i.e., datasets in which individuals are described both
by their own features and by their relations to other individuals, arise from various
sources such as databases, both relational and object-oriented, knowledge bases, or
software models, e.g., UML class diagrams. When processing such complex datasets,
it is of prime importance for an analysis tool to hold as much as possible to the initial
format so that the semantics is preserved and the interpretation of the final results
eased. Therefore, several attempts have been made to introduce relations into the
formal concept analysis field which otherwise generated a large number of knowl-
edge discovery methods and tools. However, the proposed approaches invariably
look at relations as an intra-concept construct, typically relating two parts of the
concept description, and therefore can only lead to the discovery of coarse-grained
patterns. As an approach towards the discovery of finer-grain relational concepts,
we propose to enhance the classical (object × attribute) data representations with a
new dimension that is made out of inter-object links (e.g., spouse, friend, manager-
of, etc.). Consequently, the discovered concepts are linked by relations which, like
associations in conceptual data models such as the entity-relation diagrams, abstract
from existing links between concept instances. The borders for the application of the
relational mining task are provided by what we call a relational context family, a set
of binary data tables representing individuals of various sorts (e.g., human beings,
companies, vehicles, etc.) related by additional binary relations. As we impose no
restrictions on the relations in the dataset, a major challenge is the processing of
relational loops among data items. We present a method for constructing concepts
on top of circular descriptions which is based on an iterative approximation of
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the final solution. The underlying construction methods are illustrated through
their application to the restructuring of class hierarchies in object-oriented software
engineering, which are described in UML.
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1 Introduction

Formal Concept Analysis (FCA) [14] focuses on the lattice structure induced by a
binary relation between a pair of sets (called objects and attributes, respectively),
known as the Galois lattice [1] or the concept lattice [34] of the relation. Recently,
FCA, Galois lattices and derived structures and techniques have been successfully
applied to the resolution of practical problems from a wide range of scientific
disciplines including data mining [24] and software engineering [28].

While the classical FCA problem statement only considers binary relations, i.e.,
objects being described by Boolean attributes, the many practical datasets include
individuals of richer object descriptions. Thus, a main axis of research on FCA has
aimed at integrating further attribute types, e.g., numerical, categorical, taxonomic,
etc., into the initial framework, either by scaling back to binary attributes (via concep-
tual scaling as in [13]) or by extending the definition of the Galois connection [1] that
underlies the lattice structure. Within this axis, a particular trend has investigated the
processing of objects whose descriptions go beyond the limits of propositional logics
since including relational information [12, 20, 22]. Relational datasets, i.e., datasets
in which individuals are described both by their own features and by their relations
to other individuals, arise from various sources such as databases, both relational and
object-oriented, or software models, e.g., UML class diagrams. When processing such
complex datasets, it is of prime importance for an analysis tool to hold as much as
possible to the initial format so that the semantics is preserved and the interpretation
of the final results eased.

There have been several attempts to introduce relations into the FCA field and
all of them proposed an appropriate redefinition of the Galois connection. However,
these approaches exclusively considered the relations to be intra-individual, i.e., not
to cross the border of the individual descriptions (e.g., spatial relation between the
parts of a whole). Following a similar track, we address the specific problems of
processing individuals that are characterized by their relations to other individuals,
i.e., in a context in which relations are extra-individual.

In this paper, we put the problem in a specific application context which is the
restructuring of class hierarchies in object-oriented software engineering (OOSE),
an area where FCA and Galois lattices have already proved their utility as analysis
tools. In this particular framework, the input data are described as UML class
diagrams which include classes and inter-class associations, while the aim is to
discover potentially useful abstractions of both classes and associations which are
further to be used by a human re-engineer in order to improve the current class
hierarchy.
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As both classes and associations are to be processed and since the incidence
between an association and a set (usually a pair) of classes is a key information,
the task amounts to constructing two lattices with their elements, i.e., the formal
concepts, being characterized by local properties and relations to other formal
concepts (here to concepts from the opposite lattice). The key difficulty with such
a generic statement resides in the two-way dependency that relations induce on the
two lattices.

As a contribution to the problem of relational FCA, we present a method
for constructing related concepts in the most general case, i.e., even with cyclic
dependencies between objects. Its key idea is to compute the final lattices as the least
fixed point of a function that essentially maps a collection of lattices (one per object
sort) into another collection of lattices. At each step, the function, which is defined
as an extension of the classical conceptual scaling, uses the concepts discovered by
the previous steps to refine the object descriptions. The updated object descriptions
give rise to richer lattices and the process of scaling/lattice update goes on, until the
obtained lattices stop adding new features to object descriptions.

In the next section, we recall the basics of FCA and the conceptual scaling ap-
proach to the processing of non binary data. Difficulties with relational information
in object descriptions together with our own approach to the construction of concepts
that summarize inter-object links are discussed in Section 3. Finally, an example of
how our framework applies to UML class diagram analysis is provided in Section 4.
Conclusions are drawn in Section 5.

2 Background

The following problem statement generalizes the classical way of introducing the
data in Galois lattice construction and FCA (see [14]). The novel element is the
presence of relational attributes that link objects from a family of many-valued
contexts.

2.1 Basic settings

The domain focuses on the partially ordered structure,1 known under the names of
Galois lattice [1] or concept lattice [34], which is induced by a binary relation R over a
pair of sets O (objects) and A (attributes). In the sequel, we follow the standard FCA
notation and terminology, except in naming the basic sets: O (is in object) is used
instead of G (for Gegenstand, ‘object’ in German) and A (is in attribute) instead
of M (for Merkmal, ‘feature’ in German). Moreover, Galois and concept lattice are
used indiscriminately, thus reflecting their equivalence as well as their independent
forging in the lattice domain.

Definition 1 (binary (one-valued) context) A formal context is a triple K =
(O, A, J) where O and A are sets (objects and attributes respectively) and J is a
binary relation, i.e., J ⊆ O × A. K is called one-valued (binary) context.

1An excellent introduction to partial orders and lattices may be found in [8].
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In Fig. 1 (left) is shown a one-valued context where objects are denoted by
numbers and attributes by small letters.

Galois connection: The relation J induces two mappings, f and g, that link 2O and
2A both ways:

for X ∈ 2O, f (X) = {y ∈ A | ∀x ∈ X, (x, y) ∈ J}
for Y ∈ 2A, g(Y) = {x ∈ O | ∀y ∈ Y, (x, y) ∈ J}

For example, f (13) = ac.
Galois connections are fundamental constructs in FCA. They are made out of a

pair of partially ordered structures provided with two functions that link them both
ways. The basic property of a Galois connection is as follows:

Definition 2 (Galois connection) Let P and Q two partially ordered sets and α and
β two mappings such that α : P → Q and β : Q → P. The pair (α, β) is said to be a
Galois connection between P and Q if the following condition holds:

∀x ∈ P, y ∈ Q, α(x) ≤Q y ⇔ β(y) ≤P x.

Clearly, the functions f and g jointly establish a Galois connection between 2O

and 2A.
The joint applications of both mappings, i.e., f ◦ g and g ◦ f , define two closure

operators on 2O and 2A, respectively. In the sequel, both f and g will be denoted by ′
and the closure operators by ′′. The families of closed subsets of O and A, denoted Co

K
and Ca

K (or simply Co and Ca), present two remarkable properties: (i) the operators′
represent bijective mappings between these families, and (ii) when provided with
set-theoretical inclusion, both families constitute complete sub-lattices of the respec-
tive powerset lattices, which, in addition are isomorphic.

a b c d
1 X X
2 X X
3 X X
4 X X
5 X
6 X X

134 a c 46 256

#4

#5 #2 #8

d1235 b
#7

123456 {}

#1

abcdefgh{}

#0
#6

ad 13 ac 6

#9

bd

#3

25 bc4

Fig. 1 Left: Binary table K = (O = {1, .., 6}, A = {a, b , c, d}, R). Right: The Hasse diagram of the
lattice derived from K (also the lattice L0

H corresponding to the scaled context Human presented in
the sequel)
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Formal concepts: When considered as a separate entity, a pair of mutually cor-
responding closed sets c = (X, Y) from Co and Ca, respectively, is called a formal
concept in [14] where the set of objects, X, is called extent and the set of attributes,
Y, intent. For example, (13, ac) is a formal concept (closed pair), but (2, bc) is not.

Concept lattice: Furthermore, the set of all concepts, CK (or simply C), when
appropriately ordered, constitute a third lattice, isomorphic to the initial ones.
Indeed, CK can be partially ordered by intent/extent inclusion:

(X1, Y1) ≤K (X2, Y2) ⇔ X1 ⊆ X2(Y2 ⊆ Y1).

Clearly, the order ≤K satisfies the complete lattice properties.
The partial order L = 〈CK,≤K〉 is a complete lattice with joins and meets as

follows:

–
∨k

i=1(Xi, Yi) = ((
⋃k

i=1 Xi)
′′,

⋂k
i=1 Yi),

–
∧k

i=1(Xi, Yi) = (
⋂k

i=1 Xi, (
⋃k

i=1 Yi)
′′).

The lattice LK or simply L is known as the Galois lattice of the binary relation [1] or
the concept lattice of the context K [34]. The lattice L corresponding to the context
shown in Fig. 1, on the left, is given in the same figure, on the right. For example, in
the same Fig. 1, the join and the meet of c#6 = (4, ad) and c#0 = (13, ac) are (134, a)

and (∅, abcd), respectively.

Galois sub-hierarchy: Concept lattices have been introduced in object-oriented
approaches for class hierarchy construction by [15]. In their approach, the authors
propose to use a noteworthy sub-order of the lattice, in order to reduce conceptual as
well as theoretical complexity of the FCA-based framework. Before defining that, we
introduce two auxiliary functions that will be relied on in the sequel. They translate
the fact that for every object (attribute) there is a concept in the lattice that is
extremal for the set of all concepts having that object (attribute). These concepts
are called the object (attribute) concepts.

Definition 3 (Object and attribute concepts) Let K = (O, A, J) a formal context.
Given an object o, the concept ({o}′′, {o}′) is called the object concept of o. Similarly,
given an attribute a, its attribute concept is ({a}′, {a}′′). Two functions are thus defined
mapping objects/attributes to concepts:

– μ : O → CK, μ(o) = ({o}′′, {o}′),
– ν : A → CK, ν(a) = ({a}′, {a}′′).

It is a well-known fact that μ(o) is the smallest concept having o in its extent,
and, dually, ν(a) is the greatest one having a. When taken out of the lattice, both
sets of concepts μ(O) and ν(A) form a specific sub-order that plays the role of a
normal form for the information embedded in the context. Basically, the sub-order,
called the “Galois sub-hierarchy,” is a compressed representation of the lattice which
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encodes in a non-redundant way all the information that is necessary for the recovery
of the complete lattice. The following definition is borrowed from [18]:

Definition 4 (Galois sub-hierarchy) Let K = (O, A, J) a formal context and follow-
ing sets of concepts: CO = {μ(o) | o ∈ O}; CA = {ν(a) | a ∈ A}. The Galois sub-
hierarchy GSH(K) is the sub-order of L made out of the set CO ∪ CA and the
restriction of the lattice order to that set, denoted by <|GSH .

Construction of lattices Lattice construction from contexts has been a challenge
since the very early days of FCA. The problem is a hard one since in the worst-
case, there can be exponentially many concepts. However, in practical cases, only
a small number of concepts do occur, so it makes sense to look for methods that
discover and, if necessary, hierarchically organize them, in an efficient manner.
There is nowadays a large variety of algorithms dedicated to the computation of
either the set of all concepts or the entire lattice, i.e., concepts plus order.2 A major
distinction among these algorithms lays in the way they acquire input data. According
to a classical dichotomy, batch algorithms consider all the data to be completely
known beforehand. In contrast, on-line algorithms allow small changes in the data
to be propagated to the final result, i.e., the concept lattice, without starting from
scratch. Thus, they can be used to simulate batch lattice construction by a sequence
of object/attribute additions to an initially void context (also called incremental
construction).

2.2 Non binary data and scaling

Since their introduction as data analysis tools, the Galois (concept) lattices have
been repeatedly investigated for possible extensions toward more expressive object
descriptions than pure binary attributes.

Some researchers explored the possibility of translating the various kinds of
data back to binary variables, e.g., through conceptual scaling [13, 17]. Others have
considered the definition of the fundamental construct in this domain, i.e., the Galois
connection, over descriptions whose elements have more complex inner structure,
e.g., probabilistic [10] or rough sets [19]. In particular, in FCA [14], non binary (e.g.,
numerical, ordinal, categorical, etc.) attributes are introduced via a many-valued
context.

Definition 5 (Many-valued context) A many-valued context is four-tuple K =
(O, A, V, J) where O and A are sets (objects and attributes respectively), V is a
set of values, and J ⊆ O × A × V is a ternary relation with member tuples (o a v)

being interpreted as “the object o has a value v for the attribute a.”

The following table presents a sample many-valued context, called Human, that
will be used as a running example throughout this section. It is made up of six objects
(1, 2, . . ., 6) representing human beings and two attributes, age and work, modeling
the age and the years of work experience for a person, respectively.

2An algorithmic study is beyond the scope here, hence the reader is referred to [21].
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o1 o2 o3 o4 o5 o6

age 25 28 22 26 33 35
work 4 2 1 8 4 10

In order to deal with many-valued context K = (O, A, V, J), it is first transformed
into an equivalent one-valued, or binary, context Kd called the derived context.
For this purpose, FCA includes a specific set of scaling techniques that echo the
classical discretization and scaling techniques used in statistics and later on in data
mining.

Conceptual scaling [13] provides a complete framework for transforming any
many-valued context into a binary one. The process of the scaling starts with the
determination of the scale for a non binary attribute.

Scales: The scales correspond to separate dimensions of object descriptions. Basi-
cally, they represent hierarchies of useful abstractions on the dimension, called scale
concepts. Initially, each scale Sa corresponding to an attribute a is assigned a scale
context Ka = (Va, Pa, Ja), where Va is the set of values of a, Pa contains important
properties of these values that are formal attributes, denoted by as

j and also called
scale attributes, and Ja ⊆ Va × Pa.

With respect to the nature of the attribute, e.g., unordered versus totally or
partially ordered, various standard scales are distinguished. Although depending
on the nature of the attribute, properties invariably correspond to subsets of the
co-domain of the attribute, cod(a) = Va. In the sequel, we shall denote the extent
of a scale attribute as

j in terms of values as as
j
′. For example, in ordinal scales the

properties are predicates that compare a value to a particular constant from the
domain (e.g., “age ≥ 20”). The scales may be dependent of the domain knowledge,
for example, domain ontologies can be used.

The scale lattice La corresponding to the context Ka provides a complete struc-
turing of the set of all possible values into meaningful subsets. The concepts in La,
called scale concepts, represent these subsets in an intensional manner, i.e., through
conjunctions of properties (e.g., “age ≥ 20 and ≤ 27”). In case of a huge number of
possible values in cod(a), the lattice La may be impossible to obtain in a direct way,
i.e., from Ka. However, the natural inclusion order between the scaling attribute
extents can be used to recover the structure of La. In this case, the formal context
used as a starting point is K f

a = (Pa, Pa,≤ f ), where f is defined by as
j ≤ f as

l iff
as

j
′ ⊆ f as

l
′.

Figure 2 shows possible scale lattices of the many-valued attributes age and work
experience from the context Human, whereby a simple encoding through mutually
exclusive scale attributes (with thresholds of 27 for age and 5 for work experience)
has been used.

It is noteworthy that scale concepts for all scales of a many-valued concept jointly
constitute the description space for the context’s concepts.

Scaling: The scaling of the context K is an immediate step: for each object the value
of the original non-binary attribute a is replaced by a set of binary ones, as

i . An object
o from K gets as

i whenever as
i
′ includes o.a (the value of a for o). The result is a

scaled context Ks which may be seen as the concatenation (apposition as in [14]) of a



46 M. Huchard, et al.

Fig. 2 Scales for age and work
experience All

{}

>27<=27

All

{}

<=5 >5

set of smaller contexts Ks
a, one per attribute. The context in the following table, say

Humand, was obtained by scaling Human with the scales depicted in Fig. 2.

Short o1 o2 o3 o4 o5 o6

age ≤ 27 a X X X
age > 27 b X X X
work ≤ 5 c X X X X
work > 5 d X X

The reader may check that the context Humand is identical to the context in Fig. 1.

From scaling to lattices: The lattice Ls for the scaled context Ks may be constructed
directly from it using any dedicated procedure. Of course, the exact form of Ls

depends on the scales that have been used for the attributes. The lattice of the scaled
context Humand may be seen in the Fig. 1.

An interesting fact about scales is that they can be used for visualization (as in the
Toscana system [33]). Moreover, the lattice Ls may be obtained directly from the set
of lattices Ls

a corresponding to the various attributes of the initial context K using a
slightly modified version of the Assembly algorithm described in [32]. To that end,
an additional step would be necessary which amounts to translating scale concept
extents, (these may be either values or scale attributes) into sets of formal objects
from K. Thus, for each concept cs

a of intent Ya ⊆ Pa, the extent of cs
a in K, say Y I ,

is {o|∀as
i ∈ Y, o.a ∈ as

i
′}. where I is the incidence relation in Ks). If all scale concepts

cs
a = (X, Y) in any scale lattice Ls

a are now replaced by (cs
a)

I = (Y I, Y), then the
lattice Ls is simply the apposition-based product of the modified scale lattices The
reader is referred to [32] for details, however, due to the simplicity of our example,
the links between the scale lattices in Fig. 2 and the lattice in the Fig. 1 are easy to
notice.

The advantage of this second view on how lattices of scaled contexts emerge is
that it explains why any combination of scale attributes from a particular scale Sa

that are met in the intent of a concept c from Ls is necessarily an intent of a scale
concept in Ls

a. This basic fact means that there is always a unique concept from Ls
a

that “describes” the set of values of a met in the objects of c.

Relations in contexts: Yet different attribute types represent links from an indi-
vidual to other individuals. Such links may carry domain-relevant semantics, e.g.,
kinships or spatial relations, or just encode technical information, e.g., hyper-links
in textual databases or on the Web. Inter-individual links represent important
aspects of the data and therefore may help the formation of meaningful abstractions,
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provided that these aspects could be successfully integrated in the analysis process
(see next section). Previous studies on relational data mining have underlined the
difficulties arising with such datasets, mostly due to the fact that objects in the
data have both their own structure, i.e., attributes, and additional relational part
that extends to other objects [11]. More specifically, classical problems faced by a
relational analysis include the processing of one-to-many relations and the resolution
of circular dependencies among object descriptions.

Imagine now that the objects of our previous example are described by an
additional feature that specifies their respective spouses. The table below presents
a possible valuation of the relational attribute spouse that completes the Human
context into Humans.

o1 o2 o3 o4 o5 o6

spouse o2 o1 o4 o3 o6 o5

Taking into account the spouse relation for concept construction undoubtedly
widens the range of potentially interesting generalizations from the raw data. For
example, a target concept to look for might be described as: “27 years old or
younger and being married to individuals with at most 5 years of work experience.”
This description clearly covers the objects o1 and o4 of our example. However, the
processing of relations in FCA has a price. Before presenting our framework for
constructing concepts on formal objects with attributes and relational links, called
relational concept analysis (RCA), we explore the extensive literature on processing
data in richer-than-propositional formats within FCA.

2.3 Relations in formal concept analysis

Different research streams within FCA have attempted to overcome the inherent
limits of pure attribute-value description formalisms that compare to zero-order
or propositional logic languages. For instance, specific lattice construction methods
have been defined for function-free predicate-logic languages (Datalog) [4] and
conceptual graphs [23]. In a very rough manner, the descriptions of formal objects
considered within this trend compare to a set of predicates linking object parts
among them and therefore may be represented as graphs where such parts are
vertices and the (binary) predicates are edges (see the left-hand side of Fig. 3).
Thus, the extraction of formal concept descriptions involves particular forms of graph
isomorphism computation which obviously suffers on well-known limitations in the
general case. Nevertheless, recent work on the subject [20, 22] has pushed further the
frontier of tractable classes of graph-based descriptions.

The existing graph-based and other first-order approaches focus exclusively on
relations that lay strictly within the boundaries of the considered formal objects.
However, in many situations, in particular with datasets from object-oriented or
object-relational databases, the individuals to be analyzed are related to other
individuals (e.g., the relation married-to for a set of human beings) and
inter-individual relations encode important information that may help the formation
of meaningful abstractions [29]. In particular, some formal concepts of high interest
for data mining tasks may be defined with respect to other formal concepts (e.g.,
the spouses of Master Gold credit card beholders). As the aforementioned relational



48 M. Huchard, et al.

A B A

C A B C
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1O 2
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3,4, ...
γ,δ, ...

a,b, ...
α,β,...
1,2, ...

γ

α

1

2

3

4

O1 O2
α

α

β

γ

A B C

1,2

Fig. 3 Left: Classical approach for processing relational data in FCA: relations remain within
concept descriptions. Right: In our approach, relations between individuals are reflected by the
intentional descriptions of the discovered concepts

methods fail to discover relations that cross the concept boundaries, new methods
have to be devised to deal with such data.

To our best knowledge, only few studies have investigated the formal analysis of
datasets where objects are related among them. For example, in the work of Faïd
et al. [12] (which generalizes earlier work of Wille [35]), several types or sorts of
formal objects are considered together with a set of relations among objects from
different sorts. The paper presents an elegant way of extracting implication rules
from objects with complex (relational) structure. However, the presented results
are based on strong hypotheses about the data (only relations are used to describe
objects, relations are oriented but cycles are prohibited, etc.) and therefore their
generalization to more realistic datasets is a challenge of its own. In particular,
situations like the one drawn on the right of Fig. 3 will be impossible to tackle with
the presented techniques. In the next paragraph we present a formal way of stating
the problem of relational FCA.

In the sequel, we present an extension of the many-valued context framework to
include relational information and show how the resulting object descriptions can be
scaled back to binary attributes without a substantial loss of information.

3 Mining formal concepts out of objects with links

A first step to the processing of relational data is the definition of appropriate
representations so that the necessary tools could be added. At a preliminary step
we provide some practical arguments in favor of including relations into the analysis
process and describe an intuitive way of doing that.
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3.1 Integrating relations into concept intents: a step-by-step approach

The goal of the following development is to illustrate rather than to formally define
the way concept relations are abstracted from inter-object links.

First, a basic fact from the object-oriented paradigm says that objects are identified
within a software system, by means of a unique object identifier (OID). This identi-
fier is typically used for link specification, via what is called an object-valued attri-
bute. Thus, a flat set of objects offers tiny possibilities for abstraction: there are no
commonalities among objects that are to be accessed by looking at their respective
OIDs. Consequently, the only universally available comparison function for objects
is the identity predicate. The work of [12] pushes the abstraction capacity of the
identity to its extreme: objects are described by the OIDs of related objects, further
called links, whereas the intersections between sets of OIDs constitute the only
available generalization operators. The strategy clearly fails with a bijective mapping
such as the one made out of the spouse links, but would also perform poorly on
datasets where the sharing of linked objects is a rare phenomenon.

Instead of comparing objects with identity, a classical data mining method would
look for a conceptual hierarchy that clusters the objects into meaningful groups which
would further be addressed in the discovered patterns. The operation of replacing a
concrete value or object by a generic entity, known as “climbing the generalization
hierarchy,” is close in spirit to conceptual scaling in that it allows the described
objects to share features that are not in their initial description, but are inferred by
inductive generalization. This necessarily pops up new and potentially interesting
patterns that were inaccessible before: for instance, the concept #2 in Fig. 1 could not
have been discovered directly from the numerical data.

When applying the same reasoning to object-valued attributes, here the spouse
links, one may observe that when they are left aside in the lattice construction not
a single object couple can be grouped into a concept because of their respective
links being similar. To illustrate that phenomenon, let us examine the objects o2 and
o5 (objects of the context Humand or equivalently objects in Fig. 1 with addition
of the prefix o). Observe that these share the same encoding in the scaled context
of the example, i.e., both are indistinguishable, a fact that actually brought them
into the same object-concept #3. However, this fact is absolutely unaccounted for
in the lattice in Fig. 1 where, for example, the respective spouses do not share an
attribute and thus join only at the extent of the top concept. However, being married
to persons of such a similar profile should be enough to grant them a certain degree of
similarity, at least more than o3 and o6 who not only share no attributes, but also are
married to persons that are further completely incompatible (o4 and o5 have nothing
in common). Conversely, the instance of being linked to objects of so much diverging
characteristics would have permitted to separate o2 and o5, at least at the lowest level
of the lattice.

The above observations point at the limitation of the classical FCA grouping
mechanism that fails to “transmit” similarity/dissimilarity along the inter-object links.
A remedy could come from a hierarchy of meaningful groups that are used to tag the
link objects much like the way scale concepts tag attribute values. Following this
analogy, the object will be tagged by a group if and only if it belongs to that group.
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With groups organized in a hierarchy, the more two objects are similar, the more
“tags” they share, and vice versa. Furthermore, the tags of an object that come from
its concepts are “transferred” to objects that point to the initial one, e.g., the tags of o2

will be transferred to o1 via the spouse link. Spelled differently, an object receives
an encoding made up of all attributes representing the tag concepts of its link(s). For
instance, Fig. 1 shows the lattice of the example dataset which is obtained from the
scaled context and without any consideration of the links. The lattice could be used
as a basic conceptual hierarchy (what is actually is) to support generalization. Thus,
the object o1 would receive the tags for concepts to which o2 belongs, i.e., #4, #2, #7,
and #3.

At the concept level, i.e., when shared features are sought to form intents, this
means that a concept receives a tag attribute whenever all of its member objects
share that attribute. Or, equivalently, they have their link(s) in its extent. Thus, in
the above example, o1 would share the tag for #3 with o6.

Here is the place to observe that there is no standard way of constructing a
generalization hierarchy out of set of objects so that it could be later used for
scaling purposes. However, formal concepts and their lattice are aimed at exactly
providing a set of useful abstractions, so the concept lattice is the best candidate for
a structure to support the scaling. Other interesting structures include various upper
parts of the lattice (iceberg lattices) and the GSH. For our own study, we decided
to focus on the complete lattice to simplify the presentation. However, there is still
a technical difficulty that need to be addressed with constructed lattices serving as
scaling structures. Indeed, in the case of Human, the recursive spouse links force
the same object set to be taken both as the analysis set and the scaling basis. This
propagates to the respective lattice which is to be used both as a conceptual structure
and as a scaling hierarchy. The object scaling track thus seems to lead to a deadlock,
but mutual dependencies actually resolve by a suitable iterative process.

To clarify this claim, let us first recall that our goal was to integrate spouse
links into the features of the objects so that they can be “shared,” at least at some
abstraction level. As an initial step of the procedure, we consider the concepts of the
lattice in Fig. 1 and assign a tag attribute to each, except for the top and the bottom
concepts.3 To make our constructs more explicit, the names of the tag attributes are
made out of a prefix “sp” indicating that the tag comes via the spouse link (as there
may be several such links) and a suffix indicating the index of the tag concept in
the target lattice. For example, the concept #7 of the lattice will be assigned the tag
attribute sp : 7. Based on these new attributes, the description of the dataset objects
is completed, by observing the rule which makes tags move from concept members
to other objects that point to them. Thus, the attribute sp : 7 will further go to the
objects o1, o5, and o6. Conversely, according to our previous remark, the object
o1 will “receive” the new attributes sp : 2, sp : 3 and sp : 7. The entire encoding is
described in the following table.

3Universal and null attributes have no impact on the structure of the lattice.
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Tag 1 2 3 4 5 6

sp : 5 X X X
sp : 2 X X X X
sp : 8 X X
sp : 7 X X X
sp : 6 X
sp : 0 X X
sp : 9 X
sp : 3 X X

The above table, when added to the initial proper features of the objects yields
an extended context. The new context shares with the previous one the entire object
dimension O, as well as the fixed part of the attribute dimension (A0 = a, b , c, d).
Thus, all the concepts from the initial context will remain valid concepts in the
extended one, except for some additional, relation-based attributes that may need
to be inserted in the intent. Therefore, to simplify the tracking of concept between
lattices of various extensions, we shall further identify them with respect to their
extents.

When we go back to concept discovery, after the encoding of objects with a scale
corresponding to the initial lattice, another round of concept construction can be
performed, this time factoring not only on attributes but also on shared tags, i.e.,
concepts to which links belong. The lattice of the new context, shown in Fig. 4 is
bigger than the initial one, with more than a dozen new concepts. To distinguish
both lattices, they will be further denoted as L0

H and L1
H , where superscripts follow

the order of their construction.
It is interesting how the new concepts summarize the links with respect to the

abstractions from the initial lattice. For instance, the new concept #23 encompassing
o1 and o6 has only been created because of the shared tag attributes. Moreover, these
are the attributes that point at all the concepts in L0

H including both the respective
links o2 and o5. It is noteworthy, that whereas the new concepts, concepts whose
extents are absent in L0

H , necessarily include a tag attribute in their intent, they still
may have some attributes from the initial set A. For instance, the concept #26 with
an extent {3, 5} has both c and sp : 8. In addition, tag attributes have allowed for all
the objects to be separated even in the lowest level of the lattice.

The above process could easily go on with a second lattice-based scaling. Indeed,
as the available information about the conceptual structure of the set O has evolved
since the initial step, it is natural to look for an adjustment in the extracted lattice.
Surprisingly enough, the encoding with respect to L1

H does not lead to changes in
the target lattice structure, i.e., to new concept extents. Of course, the second scaling
step introduces a whole range of new tag attributes that actually replace those from
the previous scaling. However, the new attributes fail to generate previously unseen
closed set of objects. To summarize, the resulting third lattice L2

H (not shown here for
space reasons) is isomorphic to L1

H and this halts the iterative construction process.
Another key aspect of relational attributes is the existing redundancy in concept

descriptions where the presence of some attributes simply entails others. This
phenomenon could be observed already in L1

H : the intent of concept #18 includes
the tags sp : 0, sp : 2, sp : 4 and sp : 5. However, the corresponding concepts are



52 M. Huchard, et al.

4

2 5 7 15 20 25

23120

3 17 18

8

19 13 22

11
9

21 6

16 10

1

26

2414

I={sp:4,7}
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E={34}
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E={14}
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E={25}
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I={c,sp:14,15,2,4}
E={12}

I={b,sp:22,25,4,7}
E={56}

I={a,d,sp:0,16,17,19,2,20,26,4,5}
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E={}

I={sp:4}
E={123456}

Fig. 4 The lattice L1
H corresponding to the second step of Multi-Fca() on the RCF R1

H =
({Human}, {spouse}). Concept intents in L1

H include both conventional attributes and the inter-
concept relations induced by spouse. sp = i, j, ... k stands for sp : i,sp : j, ... sp : k

linked by generalization relationship: #0 ≤0 #5 and #0 ≤0 #2 and therefore, whenever
a concept has sp : 0, it will necessarily have sp : 5 and sp : 2 as well. This fact is easily
generalized to the rule saying that if an attribute with a target concept c is present
in the intent of a concept c1, then all the attributes associated to super-concepts of c
will also be present. This follows trivially from the set-based semantics of the formal
concepts: in the technical language of the domain, the former attribute is said to be
“implied” by the latter one. This kind of redundancy may easily lead to an explosion
in the size of concept intents due to the large number of tags that may be shared
by the members of the most specific concepts. Therefore it requires further work
on each concept in order to remove unnecessary tags, i.e., those associated to non-
minimal concepts. In other terms, the concept descriptions need to be reduced to
keep only a minimal set of tag attributes. For instance, the intent of the concept #18
after simplification would become {sp : 0}.

In the case of Human with spouse, the lattice has a nice property: there is only
one non-minimal concept in all those sets and hence only one attribute remains in the
intent after simplification. Thus, the semantics of the inter-concept relation spouse
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remains close to the semantics of relations in the E-R conceptual models, i.e., given
two entities A and B, and a relation r, A − r − B means that:

– Every A element is linked via r to at least one from B (if cardinality constraints
do not state otherwise),

– All links r of an individual a from A are in B.

The lattice that will be presented as a final result of the above relationally-aware
concept analysis is a highly complex structure in which two sorts of relationships
among concepts need to be visualized: the sub-concept-of, or specialization,
relationship and what we call the inter-concept relations abstracting from inter-
object links. In the above example, the relations connect, in a graphical sense, a
source concept to a single destination concept, therefore they could be visualized
as arrows. Figure 5 shows the final lattice where the sub-concept-of relationship
has been skipped to avoid overloading the drawing.

Even if such a UML-like representation of relations seems natural, it is not
always possible to enforce the existence of a minimal concept. In our example, such
existence is the joint consequence of two important choices:

– To work with the entire lattice instead of taking substructures,
– To select a relationship that represents a one-to-one function.

Another important property of inter-concept tags, or relations as we shall call the
reduced version of tag sets, is that relations respect specialization among concepts
since they map a pair of comparable concepts to a pair of identically comparable
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Fig. 5 The lattice L1
H without the lattice order. Concept intents include only initial attributes

whereas the inter-concept relations induced by spouse are drawn as arrows. sp : i, j, ..k in labels
stands for sp : i, sp : j, ... sp : k
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ones. More technically speaking, relations are monotonous in the sense that if c1 ≤ c2,
c1 →r c3 and c2 →r c4, then c3 ≤ c4.

This fact can be proven easily using the semantics of the sub-concept-of link,
the status of c3 and c4 as minimal target concepts in c1 and c2, respectively. Should
one of the above constraints be relaxed, it may happen that several minima occur in
the set of target concepts. We shall clarify these cases further in the text.

In the following, we formalize the above intuitive notions related to scaling on
object dimensions and clarify the underlying computational mechanisms.

3.2 Combining formal contexts with relations

As relations usually link objects of different kinds, e.g., human beings versus owned
vehicles, we introduce a data description framework that is of higher granularity than
a single context [31]. Thus, what will be further referred to as a relational context
family (RCF) is a set of contexts provided with a set of relations. Each relation is
binary and maps the objects of a particular type, i.e., of a specific context, to (sets of)
objects from another type (context).

Definition 6 (Relational context family) A relational context family Rs is a pair
(KR, AR) where KR is a set of s many-valued contexts Ki = (Oi, Ai, Vi, Ji) and AR is
a set of p relational attributes (set-valued functions) α j such that for each j, 1 ≤ j ≤ p
there exist r and q in [1, s] with α j : Or → 2Oq .

The mappings dom : AR → {Oi} (domain) and cod : AR → {Oi} (co-domain) are
defined for a RCF Rs in the following way: for any α j : Or → 2Oq , dom(α j) = Or and
cod(α j) = Oq. Moreover, the set of all relations of a given context within a RCF,
is computed by the function rel : KR → 2AR , with rel(Ki) = {α|dom(α) = Oi}. For
instance, consider a RCF R1

H = ({Human}, {α}), where the relation α : OHuman →
2Human models the spouse links between persons (obviously, α : OHuman → OHuman

holds). In the above example, we set α to the following set of object-value pairs:
{(1, {2}), (2, {1}), (3, {4}), (4, {3}), (5, {6}), (6, {5})}.

It is noteworthy that a RCF offers data representation facilities similar to the
entity–relationship (E–R) model [5] which is one of the most popular conceptual
models nowadays. Indeed, contexts are comparable to entities, with their formal
attributes corresponding to entity attributes, and objects to concrete entities. Rela-
tions in our framework are in turn the equivalent of relationships in the E–R model.
Similarly, a parallel could be drawn with structural models in UML [2], i.e., the
class/object diagrams, but at a level where each class corresponds to a context and
each association to a relation. This is not to be mixed up with the specific modeling
of an UML class diagram as an RCF that we use for refactoring purposes (see
Section 4), in which UML classes and associations are seen at the meta-level of UML
and thus become the formal objects of two distinct contexts.

Given a relational context family Rs, our aim will be to construct s lattices of
formal concepts Li, (0 ≤ i ≤ s), one per context Ki, such that the concepts of a
particular context not only reflect shared attributes, but also similarities in object
relations. To clarify this goal, let us consider a particular relation α that maps Or

into 2Oq for some r and q. Let us also limit α to singleton values, i.e., force it to
be a one-to-one mapping. Intuitively, such α could be interpreted as a particular
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Fig. 6 Example of a
concept linked by the spouse
relation to another concept

w.e. <=5

2,3

age<=27

1,4

spouse

many-valued attribute and imagine a scale Sα , call it relational scale, where abstrac-
tions that summarize the properties of concrete objects from Oq are used as scale
attributes. Recall that we look for a compact characterization of the values of α

in a concept c from the target lattice Ls
r, i.e., an expression that summarizes their

common properties. For convenience reasons, this set will be referred to as the image
of c or the co-domain of α restricted to the extent of c, and it will be denoted,
somewhat loosely, as: α(c) = {o ∈ Oq|∃ō ∈ Or, o = α(ō)}. As with a conventional
scale, α(c) will be described by the combination of scale attributes shared by the
objects in α(c).

Another straightforward solution could be to use the attribute set Aq as encoding
scale attributes. In this case, and with cod(α) being Oq, the scale lattice will be
isomorphic to Ls

q, the lattice of the scaled context Ks
q. In this case, any combination of

attributes that characterizes particular α(c) is, as we mentioned previously, an intent
of a concept in Ls

q. Let cq be such that for any aq in Intent(cq), α(c) ⊆ a′
q. This means

that c can be “described” along the dimension α by the concept cq, denoted c →α cq.
When interpreting such a conceptual description, i.e., intent, this actually means that:

(1) For any object o in the extent of c, the links of o of type α are all members of
the extent of cq (α(c) ⊆ Extent(cq)),

(2) cq is the smallest concept in Ls
q that satisfies the previous property α(c)′′ =

Extent(cq),
(3) All superconcepts of cq satisfy the property (1) by extension inclusion.

For example, let us take our previous concept of “less-than-27-year-old with less-
than-5-year-experienced spouses” and consider it as a scale concept for the relation
spouse in the Humand

s context. As the description covers the objects o1 and o4, it
will be linked by spouse to the concept over Humand

s whose extent is exactly the set
of respective spouses, i.e., o2 and o3, whenever such concept exists. The situation is
depicted in the following Fig. 6.

Hence, the scaling attributes may be replaced in the description of the concept c
from Ls

r by a reference to the concept cq (or, later on, by a symbolic name such as
“potential clients” or “bad loan payers”).

To sum up, in case of one-to-one relational mapping α the links between objects
may be “summarized” by inter-concept relations much in the same way concepts
summarize objects. Such representation is close to the conceptual models E–R and
UML that were mentioned previously. In the sequel we shall examine extensions to
more realistic relation cases, in particular, to one-to-many and/or circular relations.

3.3 Scaling arbitrary relations

Given a relation α, a priori one can use as scale attributes for α any set of properties
As

q, possibly disconnected from Aq, the attributes of the context Kq. Independently
from Ls

q, As
q may induce on its own a non trivial hierarchical structure on Oq (Oq =

dom(α)), i.e., a directed acyclic graph (DAG) of subsets of Oq that are ordered by
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inclusion. Call this graph the scale hierarchy H = (As
q,⊆). For example, we may

decide to use a scale for spouse that separates persons only with respect to their
age, i.e., with As

q = {age}.
Another possibility, used in the application described in Section 4, is to use the

so called Galois sub-hierarchy [9] of the context Ks
q which provides a compact

representation of the entire information encoded by Ks
q. In this case, the construction

of Ls
q may become redundant with respect to the domain structuring encoded in

H (unless some additional constraints require this construction). Provided that this
structuring is sufficient, then the only real scale concepts that will be considered are
the closures of each scale attribute.

If a single scale concept needs to be associated to a concept c from the lattice Ls
r,

this would force the hierarchy H to be a lattice (but not necessarily isomorphic to
Ls

r). In all the remaining cases, H could be a general partial order, which means
there will be concepts c from Ls

r whose descriptions include more than a single
element for the dimension α. Nevertheless, according to a previous remark, there
will always be a minimal set of scale concepts from H which characterize α(c) in a
non-ambiguous way.

A suitable relational scale for α is any lattice Lα in which the set of objects
in concept extents includes Oq (intuitively, the concepts of Lα represent useful
abstractions over Oq). It is noteworthy that the lattice Lα can be the lattice Lq of the
context Kq. Thus, Lα can be obtained by an explicit construction (as Lq) or be given
beforehand, or even by combining a post-processing of Lq via a user interaction.
However, in order to ensure the isomorphism between the partial order provided by
the user and the lattice obtained through scaling (Ls

a), the manual order should be at
least an upper semi-lattice (with bottom possibly missing).

When the relation α is one-to-one, the scaling replaces the unique value α(o) by a
scale concept cq, from the scale hierarchy H which is occasionally isomorphic to the
lattice Ls

q. However, with one-to-many relations, also called many-valued attributes
(e.g., a relation friend-of ), α(o) is a subset of Oq. Thus, scaling requires an effective
encoding scheme on P(Oq), i.e., with encodings for sets as simple values and for sets
of sets as images of concepts c from Ls

r.
If the single-scale-concept constraint holds, then the only possibility is to choose

a conservative scheme that looks for scale concepts which include the entire set α(o)

in their extent. Recall that in this case the scale hierarchy H should be a lattice, so
that for a given o from Or, the collection of all scale concepts including the entire
set α(o) has a minimal element (the meet). For convenience, suppose that H is
isomorphic to Ls

q. In this case, α(o) will be encoded by all the scale concepts cs
q such

that α(o) ⊆ Extent(cs
q). Moreover, any family α(X) = {α(o)|o ∈ X} will be encoded

by the intersection of the sets α(o):
⋂

o∈X

{cs
q|α(o) ⊆ Extent(cs

q)}.

The resulting scale follows the same pattern as the one-to-one scaling over Oq

and therefore guarantees the existence of a unique minimal scale concept that
represents α(X):

Extent(cs
q) =

(
⋂

o∈X

α(o)

)′′
.
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The scheme replicates the way UML represents one-to-many associations where
the target is a single class. In UML, the multiplicity is provided as a separate
descriptor, a principle that can easily be adopted in our framework.

Alternatively, when the structure H is a general partial order, less conservative
encoding schemes may be applied. In them, α values for objects or for sets of objects
need only a non-empty intersection with the extent of a scale concepts. One of the
possibilities, used in the application from Section 4, is as follows:

– α(o) is encoded by {cs
q ∈ H | Extent(cs

q) ∩ α(o) �= ∅},
– α(X) is encoded by

⋂
o∈X{cs

q|α(o) ∩ Extent(cs
q) �= ∅}.

Clearly, the whole scaling procedure amounts to a gradual refinement of object
descriptions. Relational scaling brings new attributes which are nothing more than
new closed object sets in the Moore family on Or (the domain of the relations).
These sets are computed as the images by α−1 of the scale concepts. In the following,
we extend the above single-relation principle to the case of a RCF where a set of
relations connects objects from various types.

3.4 Processing a RCF

Relational scaling may be applied for several different purposes and under various
circumstances. In particular, the set of scale concepts may be the entire concept
lattice of the underlying context or, alternatively, a restricted subset of it, or even
a completely independent hierarchy of object sets. In our development, we focus on
the most general way of defining the problem of lattice construction within a RCF.
Thus, without any a priori knowledge on scaling concepts, all the necessary scales
are assimilated to the concept lattices of the underlying contexts and therefore built
from scratch.

3.4.1 Problem statement

In order to reflect the multiple and inter-related tasks of lattice construction that
are necessary in order to analyze an entire RCF, we suggest a generalization of the
classical lattice construction problem, called Multi-Lattice:

Given : A relational context family Rs = (KR, AR) with s contexts Ki =
(Oi, Ai, Vi, Ji).

Find : A set of s lattices L = {Li}0≤i≤s such that each Li corresponds to a
binary context Kd

i derived from Ki whereby the relational scale used for
an attribute α in rel(Ki) is isomorphic to the lattice L j where cod(α) = O j.
Formally, the target lattice Li is such that for any concept c from L j, the set
α−1(c) = {o ∈ Oi|α(o) ⊆ Extent(c)} is a valid extent in the lattice Li.

It is noteworthy that in the case of general partial orders as target hierarchies, the
above condition must be combined with any additional condition on the structure of
these orders. Technically speaking, for the set of contexts of a RCF, the necessary
relational scaling imposes some constraints on the order in which contexts can be
processed. Indeed, given a relation α : Or → P(Oq), the scale concepts on Kq must
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be discovered before the processing of Kr starts, at least prior to the scaling with
respect to α. Globally, this means that the RCF should be processed in an order that
respects dependencies among contexts induced by relational attributes. To that end,
the RCF might be seen as a graph with contexts as vertices and relations as oriented
edges. Successful order may then be discovered by a topological sort.

3.4.2 Coping with circularity

Obviously, with some circuits in the graph structure, this straightforward strategy
would not work. Intuitively, any strongly connected component of the graph should
be dealt with as a whole since no reasonable order can be established within it. The
underlying difficulties have been illustrated in the Section 3.1, in particular the need
for constructing concepts that are later on used as abstractions on the same object set
in order to find further and more precise concepts.

We stick to our simplified example of a RCF with single context K and single
relation α. A simple solution of the problem seems to be to use the formal attributes
in A as scale attributes for the scale Sα , i.e., to ignore relations at first and feed them
in later. The resulting scale concepts will be first-class concepts from the target lattice
Ls we are looking for since their extents are closed sets of objects from O. However,
translating an extent X via α to its counterpart α−1(X) may well result in a set that is
not closed in the first scaled version of K. This means that the lattice corresponding
to K scaled this time with α is not isomorphic to the initial lattice where α is ignored.
It is easy to see that new concepts will be added by the introduction of α in the scaling
and that they represent a finer version of the structuring of O into abstractions.
Unfortunately, they are not reflected by the scaling itself, since they emerge as the
product of the process. Taking them into account requires a further step of re-scaling
with the new and richer set of scaling attributes, a process that may well go on
indefinitely.

Fortunately, this is not the case. To clarify the termination point, suppose the
target lattice Ls is available. Observe that Ls is both the lattice of the scaled context
Ks (including a part scaled over α) and the scale lattice of the scale Sα on K. In
other words, any further scaling of K with Ls would not change the structure of the
lattice corresponding to the resulting context, i.e., it will remain isomorphic to Ls.
Alternatively, the Moore family on O will not evolve under further scalings. Notice
now that Ls is a fixed point of the (implicit) lattice operator that maps the argument
lattice to its “extension” with the scale Sα where the same argument lattice is the
scale hierarchy and therefore is filtered backward through α−1.

3.4.3 Multiple lattice constructions within a RCF

Following the above reasoning, one can easily design a procedure that constructs
the lattice Ls in a step-wise manner. The method proceeds by successive lattice
constructions and scalings. It starts with an initial lattice associated to K and goes
on until the result evolves no more, i.e., a fixed point is reached. The procedure may
be summarized as follows: at step (0), L0 is constructed from Ks

0 which is scaled
on all attributes but α; at step (i + 1), Li is used as a set of scale attributes for α

to produce Ks
i+1 and further construct Li+1. The procedure stops whenever Ln+1 is

isomorphic to Ln. Obviously, the lattice L∗ reached this way is the smallest fixed
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point of the underlying lattice operator. The following condition is characteristic for
L∗: ∀ c ∈ L∗, α−1(Extent(c)) is a valid extent in L∗.

Algorithm 1 Construction of the set of Galois/concept lattices corresponding to a RCF

The iterative construction principle may be applied to the entire set of lattices
within a RCF. To that end, one may first detect the strongly connected components
of the RCF induced by the relational dependencies. However, for simplicity reasons,
we give below a very general form of our method, called Multi-Fca, that integrates
both the resolution of circularities and non-circular relational scalings into a single
global loop that follows the evolution of the lattice vector associated to the RCF.
Algorithm 1 provides a summary of our method.

To deal with loops, our method applies the previously presented iterative compu-
tation strategy: starting from a rough approximation of the final solution and refining
it at each step. The result is the minimal fixed point of the complex lattice vector
function. A single iteration consists in subsequent visits of all contexts and respective
lattices whereby existing lattices are used as scaling hierarchies in order to refine the
object descriptions in related contexts (primitive Extend-Rel). These are further
used to replace current lattices with more detailed structures (primitive Fca). The
entire iterative process halts when a construction step does not lead to the discovery
of previously unseen formal concepts.

When applied to the example RCF, R1
H , the above method halts in three steps,

as we saw in Section 3.1: the initial step yields the lattice L0
H which is visualized

in Fig. 1, whereas the process ends up with a structure isomorphic to the lattice in
Fig. 4. Further work is necessary to transform the latter into an intelligible concept
hierarchy with simplified concept descriptions and effective inter-concept relations.

To illustrate the power of the relational FCA approach, we zoom in on a pair of
mutually related concepts (see Fig. 7). The mutual definition of both classes in the
figure is to be interpreted as a strong correlation between persons aged 27 or less
and those married to persons that have worked for 5 years or less. The inverse is
also true, i.e., 5 years or less of work, is correlated to living with somebody aged 27
or less. Although the concrete example we have chosen is of little practical value,
the possibility of finding such classes in larger sets might well be crucial. And this
is where our framework, i.e., definition of RCF, problem definition and algorithmic
scheme, outperforms any straightforward relational extensions of classical method.
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Fig. 7 Sample of two concepts
with circular definitions w.e. <=5
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1,4

spouse
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3.4.4 Properties of Multi-Fca

The Multi-Fca method has been proved correct and its convergence has been
formally established. The same holds for its reduced version called Multi-GSH
that yields a set of Galois sub-hierarchies instead of complete lattices. The main
focus in current theoretical investigations is the definition of the target set of lattices
in a declarative way, i.e., independently from the iterative algorithm used to their
construction.

The efficiency is an unavoidable bottleneck of the method. Indeed, maintaining a
set of lattices and performing constructions in a row may prove to be very expensive
when data starts growing. Therefore, the current work on the subject tends to
minimize the overhead due to lattice reconstruction. One improvement point is
to use incremental algorithms that avoid reconstruction from scratch upon every
addition of an attribute. Moreover, further efficiency gains may result from the
replacement of lattice maintenance by a direct assembly of the current lattices and
the scale lattices.

3.5 Tool support for mining of relational concepts

The processing of RCFs and the Multi-Fca algorithm are currently under develop-
ment within the Galicia platform.4 This platform is intended to support the entire
process for FCA, from data acquisition to navigation and pruning of the resulting
lattices and derived structure. Among other functions, Galicia features several
advanced lattice construction techniques, both batch and incremental, computation
of various implication rule bases and 2D and 3D visualization of lattice diagrams.
Complex data types are also provided in the extensible architecture of the platform,
in particular XML-based descriptions of structured documents.

Galicia is developed by an international consortium of research teams, led by the
team at Montreal University. A more detailed description of the platform can be
found in [30].

Notwithstanding the yet incomplete understanding of the behavior of Multi-
Fca method, the related construction techniques have already found interesting
applications in software engineering as it is explained by the next section.

3.6 Open issues with relational concept analysis

The function Multi-Fca() was defined which maps a RCF to a set of relationally
compliant lattices and illustrated it with a real-life example. However, the provided
definition of Multi-Fca() is purely operational, i.e., given through an algorithm. For

4See the website of the project at: http://www.iro.umontreal.ca/∼galicia.

http://www.iro.umontreal.ca/~galicia


Relational concept discovery in structured datasets 61

many reasons, in particular for soundness and completeness proofs, an equivalent
analytical expression of Multi-Fca(), i.e., via a formula over the initial contexts,
might prove more appropriate. Moreover, as we defined the target vector of lattices
as the least fixed point of a complex function, one might want to know how many
such fixed points exist.

The result about the convergence of the Multi-Fca method (see Section 3.4.4)
says nothing about the number of the iterations necessary for the algorithm to
converge to a final solution. This is a separate topic that we are currently investi-
gating. The establishment of the theoretical complexity of the iterative algorithm is a
challenge on its own since a well-founded reasoning about complexity would require
the analytical expression of the function Multi-Fca(). In contrast, a straightforward
calculation would rely on factors like the cost of a single lattice construction, the
number of the iterations (unknown a priori) and the size of the RCF.

Concerning practical performances, the method requires the subsequent compu-
tation of a series of lattice vectors where a single lattice computation is alone a
computationally-intensive task. This fact indicates that the iterative method should
be better mastered before we could apply it to large datasets. However, performance
gains could be realized through various optimizations.

An important source of computational gains is the application of flexible algo-
rithms for lattice construction. In fact, as we mentioned above, between two steps,
a context evolves only by (possibly) extending its attribute set while the object set
remains steady. Therefore, at iteration i + 1, instead of constructing the lattice Li+1

from scratch, one may use the available structure in Li and simply “extend” it with
the additional attributes. Techniques for lattice completion and lattice merge upon
context joins have already been studied (see [32] for a discussion).

4 Application to UML

We illustrate the benefits of the entire relational framework and the scaling of
relations described in the previous sections through an application to class hierarchy
reorganization from UML models. Hierarchy optimization through Galois/concept
lattices and FCA is not new [9, 15, 16, 36], but previous works have ignored
relational information, like the information encoded in attribute/method description
or in associations. Our proposal therefore offers richer possibilities for hierarchy
reconstruction as interesting abstractions, impossible to reach by the known meth-
ods, are discovered. First, UML class diagrams are introduced (Section 4.1) and a
motivating example is proposed (Section 4.2). Then, iterative abstraction of classes
and associations is detailed and applied to the example (Section 4.3). We conclude
the section discussing practical aspects (Section 4.4).

4.1 UML

UML (Unified Modeling Language) [3, 25] is a popular language in the software
engineering community used in the initial modeling and the design steps of a software
life-cycle. It offers the possibility to express very fine knowledge about concepts and
individuals, in particular about inter-individual links and the inter-concept relations
they stem from.
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Fig. 8 An UML static
diagram – house
transactions
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In this paper we focus on conceptual models or class diagrams which are mainly
made up of classes, specialization/generalization relationships and associations. In
this context, classes represent domain categories and are identified by unique names.
They may have attributes and methods which can be in turn described (with
varying precision). Classes are visualized in a diagram as rectangles with distinct
compartments for names, attributes, and, whenever applicable, methods. For exam-
ple, within the UML model of the real estate domain shown in Fig. 8, there are nine
classes, inclusive Landlord, Tenant and House. Moreover, Landlord is described
by a name and an address, while a House has a type. Specialization/generalization
relationships are drawn between classes based on their instance (object) set inclusion,
e.g., arrow going from Chief_Officer to Manager expresses that the chief-officer
set is included into the manager set. As a consequence the features of the class
Manager are inherited by class Chief_Officer, and in some cases refined.

Associations in UML model the relations among objects of the domain categories
that are represented as classes. For example, in Fig. 8, a landlord can buy a house,
while a tenant can lease such a house. Like classes, associations may have attributes
and methods, although usually they do not have any. Binary associations are graph-
ically represented in UML by a line linking two classes. This line supports several
annotations like the association name usually followed by a black triangle indicating
the direction for reading the name: a tenant leases a house (not the reverse). The
symbol or the number written close to a class end (for example 0..1 for the class end
Tenant) indicates a multiplicity: here a house is supposed to be leased by at most
one tenant (the multiplicity is 0..1); a tenant can lease several houses (as indicated
by the multiplicity symbol *). Other annotations will be mentioned in Section 4.3.1.

4.2 Motivating the reconstruction of the example

The example in Fig. 8, which was adapted from [15], shows a set of associations
which pertain to house transactions: tenants lease houses; landlords buy them;
maintenance agencies are responsible for maintaining them (lift revision, façade
and corridors painting, etc.); real estate agencies play the role of go-between in
various commercial transactions like selling, buying and leasing a house.
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All offices are described by a registration number denoted by nSIRET. Classes
Manager, Chief_Officer and Director are used as knowledge of the domain,
as they may help in identifying a generalization of variables co and dir. In this
aspect, the class Child is used as a “counter-example” for the discovery of useful
abstractions in the house transaction domain, since children cannot be involved in
house transactions.

Methods currently used in class hierarchy reconstruction are not devised for as-
sociations, since they were mainly dedicated for object-oriented languages that only
consider variables and methods. When implemented in a programming language,
binary associations are not systematically represented: they may appear through
several attributes and methods in only one end class or in the two end classes, or
the association is itself implemented as a class. Retrieving and understanding associ-
ations after their implementation in the programming language model is recognized
a difficult re-engineering problem as a lot of the semantics is lost. Consequently, we
claim that for an appropriate reconstruction of UML static diagrams, associations
need to be dealt with in a direct manner, i.e., without a translation phase into the
programming language model.

Our approach thus consists of processing two sorts of formal objects, classes and
associations, which compile to two different formal contexts. The respective formal
attributes not only describe their local properties, but also capture the relationships
that hold among objects of opposed contexts. Such a separation, except for being
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Fig. 9 The UML diagram revisited – house transactions
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natural for a FCA method, eases the interpretation task for the designer during the
step-wise construction.

The result of the method we propose is presented in Fig. 9. Classes C′1, C′2, C′3,
C′4, C′11 and associations a′1, a′2, a′3, a′4 have been discovered. Their meaning is
detailed at the bottom of the figure, as well as correspondence with initial classes and
associations. Most of the new “concepts” are of considerable interest, for instance,
the concept of general house transaction, the concept of persons (resp. of the
organizations) involved in a house transaction, etc. At a later step of the design,
such concepts could support new methods or variables, like an insurance policy or
regulations on specific transactions. As with other inductive methods, less relevant
concepts (like C’4 and a’2) can appear. Final reshaping is left to the designer
who decides on whether to remove such irrelevant concepts or keep them. At this
step, analysis tools can be provided, like those that have been proposed in the
context of the Macao project (see Section 4.4) and that help the designer to identify
modifications.

The process which realizes the GSH-based reconstruction of the above example
by systematically applying the iterative method from Section 3.1 is described with
greater details in Section 4.3.

4.3 An iterative approach for class and association abstraction

The application of the previous techniques requires the definition of an appropriate
encoding for all the relevant information that a class diagram embodies. Thus, we first
describe the translation of the UML class diagram reconstruction problem in terms
of a relational context family (Section 4.3.1). Then the iterative process is described
(Section 4.3.2) and applied to the running example (Section 4.3.3).

4.3.1 Many-valued contexts for classes and associations

The field of this study is limited to binary associations although this is not an
actual limitation in the scope of results. From a theoretical point of view, any
association with arity three or more can indeed be modeled with binary associations.
Furthermore practical advice are to mainly use binary associations [27].

A key step in our proposal is determining the right formal binary or many-
valued attributes that will describe classes and associations and lead to interesting

Paragraph

place_order OrderPerson *1

Person Computer

Access

password

1..* *

Document *
1

Person

0..1

*

director

employee

Bank Client

Bank clientNb Client1*

* *

manage

{ordered}

Fig. 10 Examples of UML associations
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generalizations. UML is a good guide for that as it is provided with a detailed
syntax defined by its meta-model [25]. In Fig. 10, main aspects of UML associations
are highlighted. The UML meta-model states that an association is a generalizable
element, which is composed of at least two association ends. An association end is
characterized by:

– A type (the class C involved in this end). Person and Order are the two end
types of the association place_order;

– A visibility (or access control). When nothing is mentioned, the end is public;
– A multiplicity (number, interval, symbol ‘*’).

Stronger links between objects, such as an aggregation or a composition, also
called part-of (a Document is a composition of paragraphs) can be graphically
distinguished, namely through diamond-shaped association ends. Further expressive
means indicate that the links of an object are ordered, e.g., the paragraphs that form
a document. An association end may have variables (qualifiers) which are often
used to reduce the multiplicity: a Bank has several clients, but a bank plus a
client number determine only one client. In the visual notation (as it appears in
Fig. 10), an association end is sometimes provided with a role name which gives more
accurate semantics to objects when they are involved in the link (e.g. role employee
for a person in association manage). When the association is described with its own
variables and methods, a specific class, called the association class, is assigned to it
(Access is an association class that supports the variable passwd). The detailed
description of the above constructs from the textual and visual languages in UML is
far beyond the scope of this brief introduction. Most of them are depicted in Fig. 10,
while the respective syntactic and semantic details may be found in the extensive
literature on UML and OO modeling.

Our method uses the relational context family (KR, AR) where KR = {K1 =
(O1, A1, V1, J1), K2 =(O2, A2, V2, J2)}. K1 is the many-valued context for classes
(O1 is the class set) and K2 is the many-valued context for associations (O2 is
the association set). AR will represent relational attributes linking classes and
associations.

Local class attributes (A1, V1 and J1) The features describing a class within the
model considered here correspond to variables and methods while association ends
constitute the relational attributes. Thus, given a class C, the formal attributes A1

represent class members and the values V1 are typically boolean. Furthermore, J1

represents the “owns-property” relation: (o a v) ∈ J1 if the class o owns the value
v of formal attribute a. Thus, in the House Transaction example formal attributes

Fig. 11 Scale for formal
many-valued attribute resp man:Manager

co:Chief_officer dir:Director

{}
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Fig. 12 Overview of formal
attributes for classes
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UML notation Formal attributes of C

are mostly binary except the variables co:Chief_Officer and dir:Director.
In this case, a small amount of domain knowledge is introduced by the designer thus
leading to the constitution of the many-valued formal attribute resp whose scale is
given in Fig. 11.

Further discussion on heuristic rules used for mining many-valued formal at-
tributes from UML diagrams are provided in [7].

Relational class attributes (rel(K1)) Information on the relationships between
classes and UML associations is represented by three relational attributes in AR:

– origOf : O1 −→ 2O2 , ai ∈ origOf (C) if all objects of C can be origins of the
association ai,

– destOf : O1 −→ 2O2 , ai ∈ destOf (C) if all objects of C can be destinations of the
association ai,

– clOf : O1 −→ 2O2 , ai ∈ clOf (C) if the class C is an association class for ai.

Figure 12 gives a visual overview of these rules. In Fig. 13 are presented local and
relational attributes that describe the classes of the Fig. 8 (names have been shorten).

Local association attributes (A2, V2 and J2) When the classes are not considered,
it appears that an association a needs to be described by the following generic
properties:

– Role name of the origin nro and role name of the destination nrd,
– Multiplicity of the origin mo and of the destination md,
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Fig. 13 Many-valued context K1
1 composed of K1 and rel(K1)
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Fig. 14 Overview of formal attributes for associations

– Navigability from origin to destination navOD, and conversely navDO,
– Access control (protection) on origin po and on destination pd,
– Constraints on origin cto and on destination ctd (constraints such as ordered).

Set inclusion is used for scaling multiplicities.

Relational association attributes (rel(K2)) Information on the relationships
between classes and UML associations is represented by three relational attributes
in AR:

– to : O2 −→ 2O1 , C ∈ to(ai) if the class C is origin of the association ai,
– td : O2 −→ 2O1 , C ∈ td(ai) if the class C is destination of the association ai,
– ca : O2 −→ 2O1 , C ∈ ca(ai) if the class C is an association class for ai.

Scales on relational attributes to, td and ca are deduced from UML Specializa-
tion/generalization relationships, which involves a partial order on classes.5

An overview of formal attributes for associations appears in Fig. 14 while descrip-
tion of associations of the house transaction example is given in Fig. 15 (names have
been shorten). The scaled context is presented in Fig. 16.

4.3.2 The iterative process

This section introduces an instantiation of the Multi-Fca algorithm for a relational
context family (KR, AR) coming from an UML class diagram. Besides Galois sub-
hierarchies rather than complete lattices are constructed. This limits the number of
concepts produced while preserving those needed either for introducing variables,
methods and association ends or for representing initial classes and associations.

5In the running example, this scaling does not apply as no specialization/generalization relationship
appears in the initial diagram.



68 M. Huchard, et al.

Fig. 15 Many-valued
context K1
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This gives the generalization method ICG (for “Iterative Cross Generalization”)
which consists in iterating a pair of generalization methods:

– Computation of the Galois sub-hierarchy associated with a many-valued context
for associations (at step i, denoted by Ki

2)
– Computation of the Galois sub-hierarchy associated with a many-valued context

for classes (at step i, denoted by Ki+1
1 )

The input relations are obtained by associating to every formal object (class or
association) its formal local and relational attributes. Each sub-step enriches the
binary relation of the previous sub-step by new informations, until no new concept is
added during a generalization step. A step of the process is developed below.

Step I. (ICG(i))

a. Computation of GSH(Ki
2)

b. Computation of Ki+1
1 using GSH(Ki

2) for scaling relational attributes
c. Computation of GSH(Ki+1

1 )

d. Computation of Ki+1
2 using GSH(Ki+1

1 ) for scaling relational attributes

4.3.3 The house transaction example (continued)

The iterative process is applied to the house transaction example.

Step ICG(1).a Construction of GSH(K1
2), shown in the top of Fig. 17 together with

an UML interpretation (bottom), introduces two new associations:

– a1 which generalizes all the input associations, which own or specialize mo = ∗,
md = ∗ and House as a destination type (td),

– a2, which generalizes lease et maintain which share the description of a1 as well
as mo = 0..1.
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Fig. 16 The scaled many-valued context K1 s
2
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Fig. 17 The Galois sub-hierarchy GSH(K1 s
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Step ICG(1).b GSH(K1
2) is used as a scale to adjust the context K1

1 . Figure 18 (top)
presents the resulting scaled context K2 s

1 and the associated constructions.

Step ICG(1).c GSH(K2 s
1 ) is shown in Fig. 18 (center), as well as an UML class

diagram. The concept which currently is origin of an association a is the higher
concept which owns origOf = a.

Step ICG(1).d K1
2 is now adjusted by a scaling on to et td. The resulting relation

K2 s
2 appears in Fig. 19 (top).

Step ICG(2).a GSH(K2 s
2 ) is presented in Fig. 19 (bottom). Concepts C1 and

C3 have induced two properties to = C1 and to = C3 which determine two new
associations, a′3 which generalizes (a′5, a′6) and a′4 which generalizes (a′7, a′8).

Step ICG(2).b These two new associations bring new information on classes,
as shown in Fig. 20. K3 s

1 is obtained from K1
1 (without integrating concepts of
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Fig. 18 Scaled many-valued context K2 s
1 (top), GSH(K2 s

1 ) (center), UML class diagram (bottom)

GSH(K2 s
1 )) as some of them could be intermediate artifacts): K1

1 is filled using a
scaling of origOf and destOf based on GSH(K2 s

2 ).

Step ICG(2).c In Fig. 9 is shown the UML diagram coming from the interpretation
of GSH(K3 s

1 ). When GSH(K3 s
1 ) is constructed, a new concept appears (C′11) which

factorizes origOf = a′3, while C′3 is C3 completed for factorizing not only nSI RET
and man : Manager as in the previous construction, but also origOf = a′4.

Step ICG(2).d According to the same previous rules, the new concept C′5 modifies
the description of associations giving K3 s

2 (Fig. 21). GSH(K3 s
2 ) does not really

contain new association concepts (there is no new association closed set) but a′3
intent is completed with to = C′11 to give a3. The process stabilizes since the class
context will not be changed by scaling on GSH(K3 s

2 ).
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4.4 Practical aspects

4.4.1 Implementation issues

The method ICG has been implemented in the framework of the Macao project,6

a joint project between Softeam, developer of the case tool Objecteering, France
Telecom R&D and LIRMM. The project aims at proposing audit and construction
assistance for UML models. It has been supported by the French Research Ministry
within the rntl program. The implementation of ICG and its use by the Macao team
is described in greater details in the project report [7].

Figure 22 illustrates the current implementation strategy. The case tool
Objecteering is used as a UML class diagram editor as well as to give an interface
where the designer can call and fine-tune ICG, choosing formal local and relational
attributes. For example multiplicity and navigability can be omitted in local asso-
ciation attributes to avoid too many generalizations to emerge. When the designer
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6http://www.lirmm.fr/~macao

http://www.lirmm.fr/~macao
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starts diagram reconstruction, data are exported for use in Galicia (see Section 3.5).
This latter tool is a general platform for formal concept analysis which, among
others, proposes an implementation of ICG whereas the developments of the general
Multi-Fca method is well advanced. At the end of the ICG algorithm, results are
imported in Objecteering and interpreted for giving to the designer a usual UML
class diagram. Initial class and association names are especially preserved while new
artifacts are automatically named.

Objecteering offers a programming language (J) with which we could have
implemented ICG but after a first implementation of ICG in J, efficiency reasons
have dictate our choice of exporting data and processing them in Java. The use of
Galicia is entirely hidden to the UML designer.

ICG has been applied to several UML frameworks of France Telecom R&D
under the direction of Dao [6]. Results are really encouraging. The reconstructed
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UML diagrams help designers to discover better generalizations that greatly simplify
their design (after removal of useless artifacts). Another concrete result is that, when
results are uninterpretable or inadequate, often designers reconsider their initial
design with a fresh eye and find inconsistent or inappropriate naming, description
or organization of classes and associations. In this last case, ICG has to be applied
after modifications of the initial diagram have been done to fix the problems.

4.4.2 Open questions

Scenarios of use From the designer point of view, defining good scenarios for
using such reconstruction methods is crucial. We believe that step-by-step methods
like ICG, where generalizations emerge little by little, can help the designer to
understand and interact with the process. A natural extension of our work would
be identifying actions a designer could do, as accepting or not some of the general-
izations, stopping the process before it converges, applying some simplifications on
the diagram, etc.

Semantic issues Capturing the semantics of modeling through the rather syntactical
aspect of UML diagrams is an actual challenge. Problems raised by semantics include:

– Naming: names used in diagrams are a source of many problems of conflict and
synonymy that we think can be solved only by a designer, perhaps guided by an
ontology of the application domain;

– End ordering: the association name and its attached black triangle explicitly or-
der the classes that are at the two ends of the association [25]. We have preserved
this asymmetry by identifying an origin and a destination in the association
description. In the case of very symmetrical associations, this ordering could not
be suitable. Using UML 1.4 metaclass EndAssociation (or UML 2.0 metaclass
Property) as an additional context is a way of solving this problem but that
complicates the process;

– Association class status: as said in [25], “the association class and the association
are the same semantic entity.” This could indicate that variables and methods of
the association class could be used as formal attributes of the association, and the
association class would not appear as a class. This question is not yet closed;

– Level of importance of formal attributes: as reported in [26] with a reference going
back to Aristotle’s work, some descriptions are essential (tell what the subject is)
while other are accidental (tell something else about the subject). Distinguishing
between these kinds of descriptions would improve the generalization process,
but UML notation does not actually give keys to do that. Generalizations based
only on same arity multiplicity for example are somewhat questionable and could
be avoided or considered with less importance than generalizations based on
aspects like same name variables.

Towards a unified approach The iterative construction schema could be extended
considering variables and methods as formal objects. Variables as well as methods
can be described by their name, signature (type for variable, parameter list plus
return type for methods), multiplicity for attributes, thrown exceptions and code
for methods, etc. From each of the four many-valued context is computed the
associated Galois sub-hierarchy. In practice this is justified because generalizing
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one of the four kinds of formal objects (class, association, variable, method) can
have consequences on the others, for example new generalizations on variables or
methods can determine new generalizations on classes.

5 Conclusion

We presented an approach which allows the classical FCA to deal with a relational
context family, i.e., a set of formal contexts whose objects are related by links.
Relational datasets characterize a large number of practical situations ranging from
relational databases to software artifacts such as models or source code. Therefore it
is of prime importance to develop tools for the analysis of such data.

Our own approach is the first one to enable the discovery of formal concepts
characterized by both the shared features of member objects and by their relations
to other formal concepts. Its core mechanism is a high-level algorithmic method
that constructs several lattices on top of a relational context family. In case of
circular dependencies between contexts of the family, the construction proceeds
by subsequent lattice construction and relational extensions of contexts. The final
structures represent the fixed point of a complex and yet implicit lattice (vector)
function. Our method is therefore capable of discovering inter-concept relations
despite the loops that may exist in object structure.

The construction of the appropriate lattices for an entire RCF is a challenging
problem that conveys aspects tightly related to key trends in modern data analysis
and, even more so, machine learning. Indeed, relational learning and relational data
mining, two disciplines that study the analysis of relational data, are very dynamic
nowadays (see [11]). Besides being affiliated to these state-of-the-art trends, the
resolution of the above problem presents features of constructive learning as the
concepts discovered on some contexts will be used to discover other concepts on
related contexts. In more specific terms, the language used to describe the discovered
abstractions is refined during the discovery process.

Although the approach has put the emphasis on the theoretical framework,
effective algorithmic and software tools implementing the theoretical developments
have been designed and tested. The practical impact of the framework and its
respective set of tools is clearly illustrated by the current achievements in the
industrial application on analysis of UML structural models. As a matter of fact,
the ICG method for constructing GSHs on top of a RCF drawn from a UML
class diagram, is a key part of the Macao project involving France Télécom and
Softeam. Thus, it was implemented in the ObjecteeringT M CASE Tool and has
shown encouraging effectiveness in its working environment.

In the near future, we will thoroughly investigate the behavior of the current meth-
ods and carry out a complete set of performance tests on them. Further algorithmic
design and tool development will be necessary to demonstrate the entire capacity
of the relational paradigm in FCA. Another research track involves experiments on
various scenarios of human interactions with the CASE tool where designers could
guide the reconstruction algorithm.
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