Data Science Methodology | Data Science Methodology free course

0

Data Science Methodology | Data Science Methodology free course 



Data Science Methodology | Data Science Methodology free course 




If there is a shortcut to becoming a Data Scientist, then learning to think and work like a successful Data Scientist is it. Most of the established data scientists follow a similar methodology for solving Data Science problems. In this course you will learn and then apply this methodology that can be used to tackle any Data Science scenario.

The purpose of this course is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand. Accordingly, in this course, you will learn: - The major steps involved in practicing data science - Forming a business/research problem, collecting, preparing & analyzing data, building a model, deploying a model and understanding the importance of feedback - Apply the 6 stages of the CRISP-DM methodology, the most popular methodology for Data Science and Data Mining problems - How data scientists think! To apply the methodology, you will work on a real-world inspired scenario and work with Jupyter Notebooks using Python to develop hands-on experience.

This course is part of multiple programs

This course can be applied to multiple Specializations or Professional Certificates programs. Completing this course will count towards your learning in any of the following programs:
  • IBM Data Science Professional Certificate
  • Introduction to Data Science Specialization









 Don’t miss any coupons by joining our Telegram channel







DISCLOSURE: This post may contain affiliate links, meaning when you click the links and make a purchase, we receive a commission. 



 Note : Coupons might expire anytime, so enroll as soon as possible to get the courses for FREE or Huge discount

Post a Comment

0Comments
Post a Comment (0)

#buttons=(Accept !) #days=(20)

Our website uses cookies to enhance your experience. Learn More
Accept !