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ABSTRACT 

We develop an image analysis system to automatically detect pleural thickenings and assess their characteristic values 
from patients' thoracic spiral CT images. Algorithms are described to carry out the segmentation of pleural contours and 
to find the pleural thickenings. The method of thresholding was selected as the technique to separate lung’s tissue from 
other. Instead thresholding based only on empirical considerations, the so-called “supervised range-constrained 
thresholding” is applied. The automatic detection of pleural thickenings is carried out based on the examination of its 
concavity and on the characteristic Hounsfield unit of tumorous tissue. After detection of pleural thickenings, in order to 
assess their growth rate, a spline-based interpolation technique is used to create a model of healthy pleura. Based on this 
healthy model, the size of the pleural thickenings is calculated. In conjunction with the spatio-temporal matching of CT 
images acquired at different times, the oncopathological assessment of morbidity can be documented. A graphical user 
interface is provided which is also equipped with 3D visualization of the pleura. Our overall aim is to develop an image 
analysis system for an efficient and reliable diagnosis of early stage pleural mesothelioma in order to ease the 
consequences of the expected peak of malignant pleural mesothelioma caused by asbestos exposure. 

Keywords: malignant pleural mesothelioma; thoracic spiral CT; computer-assisted diagnosis; feature extraction; 
supervised range-constrained thresholding; lung pleura; pleural thickenings; computer-generated 3D imaging. 
 

1. INTRODUCTION  
1.1 Malignant Pleural Mesothelioma 

Mesothelioma is a usually malignant tumor of mesothelial tissue, e.g. of that of the pleura. It is statistically documented 
that 70-90% of malignant pleural mesothelioma can be traced back to asbestos exposure [1, 2]. After a statutory 
prohibition in the year 1993 in Germany to use asbestos, occurrence of malignant pleural mesothelioma morbidity and 
mortality in Germany is expected to peak during 2010s, due to the long latency period of - on the average - 35 years. 

1.2 Current Investigation Program in Germany 

In Germany, an assessment program is applied to asbestos exposed persons. Besides a lung function test, a typical non-
invasive diagnosis based on thoracic axial CT images (Figure 1) is also included in this assessment program. Depending 
on the layers’ thickness, the number of images varies between 80 slices with a thickness of 5 mm to about 700 slices 
with a thickness of 0.5 mm. Physicians view each slice on a workstation in order to find pleural thickenings. The 
diagnostic findings are documented in a standardized form containing data such as their size, position, and growth rate 
[3].  
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1.3 Motivation 

This visual diagnostic approach is a very time consuming procedure, taking about 20 to 30 minutes per data set, and is 
considered as being often subjective, since differences in the diagnostic results between different investigating clinicians 
do occur [4]. To increase the accuracy of the localization and of the topological information of these quite small image 
regions within a subjective visual evaluation, an even longer investigating time would be needed for each data set. 
However, due to the increasing number of investigations and high work load of the physicians involved, this solution is 
not practicable. Therefore, a method is needed to provide a more accurate assessment of pleural mesothelioma at an early 
stage, which is reliable, consistent, and reproducible. 

After diagnosis of malignant pleural mesothelioma, survival time was documented to be between 4 to 18 months without 
any therapy [5]. For early stage pleural mesothelioma, however, pleurectomy together with perioperative treatment can 
reduce the morbidity and delay the mortality [6]. Thus, efficient and reliable diagnosis of early stage pleural 
mesothelioma is a key factor to ease the consequences of the expected peak of malignant pleural mesothelioma. The aim 
of this work is to develop a computer system to automatically detect and quantitatively assess pleural thickenings in axial 
thoracic CT images. 

 
Fig. 1. Original thoracic CT image of an asbestos exposed patient. 

 

2. METHODS 
2.1 Algorithm steps 

We have developed an image analysis system to automatically detect and assess pleural thickenings in thoracic CT 
images of asbestos exposed patients, in order to diagnose already the early stage of pleural mesothelioma [7,8,9]. The 
algorithms behind it can be described in six steps as follows. 

1. Segmentation of pleural contours 
An appropriate method to determine a threshold is employed to separate lung tissue from another tissue [10]. Spurious 
remaining artifacts are eliminated by applying a morphological opening three times followed by two applications of a 
closing, both with a 3×3 structure element [11]. In addition to the sought lung boundaries, the contour computation 
algorithm also yields a variety of other closed contours, such as those of other, vessel-related regions, and the edges of 
the patient table. By means of the bounding box, those two closed contours whose bounding box areas form the largest 
pair are identified as the pleural contours. 



 
 

 
 

2. Detection of pleural thickenings 
The contour of healthy pleura as computed up to this stage can be modeled as being convex shaped. The QuickSort 
algorithm is employed to find the convex hull. Candidate pleural thickenings are locally concave deviations from the 
convex hull [12], which can be found by calculating the difference between the convex hull and the existing contour. 

3. Identification of pleural thickenings 
The above procedures provide a set of candidates for pleural thickenings. A candidate thickening can only form a pleural 
thickening if it extends over at least three slices, and only if 10 percent of its pixels, lying within the contour, exhibit a 
Hounsfield unit larger than a given threshold for this purpose, which separates genuine pleural thickenings from fat 
(Figure 2). 

4. Assessment of characteristic properties 
The pleural contour is interpolated at those locations where a pleural thickening was detected to provide a local model of 
the healthy pleura contour. The interpolation is based on a second order spline model [13]. Integration of these volumes 
over the layers involved yields the total volume of each pleural thickening. 

5. Spatio-temporal matching 
Oncopathological assessment of the growth of pleural thickenings of a patient requires that axial CT data sets from the 
same patient, but taken at different times, have to be matched (or registered) with each other. This step, which will be 
implemented in future, seeks to provide a semi-automatic matching of anatomic structure recorded at different times, so 
that a pleural thickening can be traced over time. For this purpose, the anatomical matching of significant landmarks 
such as the position of Carina tracheae, the centre of Processus spinosus, and corners of lungs will be carried out 
manually to calculate the transformation matrices. 

6. 3D Visualization of pleural thickenings 
The segmented pleura is approximated by triangulation invoking the “Marching Cubes” algorithm and can be visualized 
as a 3D object [14]. 

 
Fig. 2. Pleural thickenings detected as concave differences from the convex hull. Note that the classification algorithm in its 

present form does not utilize information about the position of the detected pleural thickenings, which leads to 
misclassifications of a concave area near the spinal cord and along the mediastinum and bronchus. 

2.2 Lung Segmentation by Thresholding 

As mentioned above, thresholding is applied to separate the lung tissue from other areas in the thoracic CT image, with 
the aim of automatic detection of the pleura contours of lung lobes. Until now, the determination of an appropriate 
threshold for this step was based on the empirical considerations that, in our data sets, lung tissue with Hounsfield units 
in the range between -180 to -910 HU is reasonably well separated from other, surrounding tissues such as fat ranging 
between -50 to -220 HU [15]. A first estimate of the lung areas was then obtained by thresholding at the empirical value 
of -550 HU.  



 
 

 
 

However, in order to improve the reliability and the robustness of the algorithm, an approach based on a novel technique, 
the supervised range-constrained thresholding, is applied instead of the former empirical estimation. Guided by data 
examples, a priori knowledge of these examples was integrated into the threshold computation. The method consists in 
details of three steps, which will be described as following. 

2.3 Supervised Range-Constrained Thresholding 

1. Basic Approach 
Thresholding, as a homogeneous point operation, is a segmentation technique widely applied in several fields of image 
processing [16]. The th eshold is used to separate an mage into, in generally, two regions. Considering a two-
dimensional data set 
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mapping from gray levels or other features to class labels. For a two-level thresholding, a threshold θ  determines the 
clas label  at every position of the data set into the object class  and the background class . The 
thresholding operation is then defined as follows: 
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Naturally, classification errors will occur. In this two-class decision problem, two error types are distinguished. The first 
type are false negatives, which wrongly assign object points to the background class. The other error type are false 
positives. This error classifies background pixels into the object class. An ideal threshold shall minimize a criterion 
related to both types of classification errors. 

2. Supervision-Based Approach for Threshold Selection 
In the above mapping, increasing the threshold causes the false negative error to increase, since more object elements are 
then classified as background. Thus the false negative error is a monotonically increasing function of the threshold. 
Similarly, decreasing the threshold causes an increase of the false positive error, since more background elements are 
then classified as object. Thus, the threshold must lie in a certain range to keep both types of classification errors [10,17] 
sufficiently small. In others words, the threshold shall not be smaller than a lower bound B

LBH , since then the false 

positive error would become too large. On the other hand, the threshold shall not exceed an upper bound B
UBH , since 

otherwise the false negative error will become too large. The a priori knowledge to confine the range of threshold is 
derived from the frequency distribution or histogram of the background itself. In order to determine an appropriate 
threshold guided by the background frequency distribution, the following steps are to be done. 

a. The region of interest, in which the object is present, is to be determined. 

b. Estimate the proportion of the background area to the area of the region of interest, and then find 
the minimal and maximal value of the background area proportion to determine the corresponding 
histogram interval. 

c. Determine the sought threshold lying between the boundary thresholds by seeking the best 
separation within this interval.  

3. Estimation of the Proportion of the Background Area 
Before the determination of the associated lower and upper threshold bounds, the background frequency distribution has 
to be estimated first. The estimation can be done in mainly three ways [10]: 

• A Ground Truth can be used to calculate the boundary parameters, if a number of sample data set with ground 
truths is available.  

• Prior knowledge on an individual image can be used to approximate the two parameters, when sample images 
with ground truth are not available. 

• Visual judgment is the sole method, when neither ground truth nor prior knowledge was available. The 
estimation of parameters can be facilitated by using the macro pixel [10]. 



 
 

 
 

4. Supervised Range-Constrained Least Valley Detection 
For reasonably selected error bounds, the boundary thresholds will be located near a valley of the corresponding 
histogram (Figure 3) [10,18], which is assumed to separate the two different regions, i.e. object and background. The 
decision threshold is thus determined by the valley within the interval. In order to determine the boundary thresholds and 
the final decision threshold via the least valley-approach, the following steps are carried out: 

a. Calculation of the cumulative histogram of the data set  with  representing 
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b. Determine , which is the data value corresponding to the background lower bound lowr B
LBH : 
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c. Determine , which is the data value corresponding to the background upper bound highr B
UBH : 
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d. Evaluate the histogram entry of each data value between the above bounds [ ,  by 

calculating the relative deviation of the cumulative histogram with the usage of an appropriate 
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by substitution of with the finest incremental step value, the relative deviation becomes step-
wise deviation: 
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the step-wise deviation is hence equal to the value of the histogram: ( )d i

 ( ) ( )d i h i= . (6) 

e. Find the minimum of these histogram entries and thence the threshold: 

 { }min min ( )SRCLVD h i
iθ = . (7) 



 
 

 
 

 
Fig. 3. A histogram from an original thoracic CT image, ranging from 0 to 65,535. 

 

3. RESULTS 
3.1 Application Steps 

In order to test the reliability and the robustness of the algorithm, the described technique was applied both to find the 
region of interest and the lung area itself. We define the whole thorax in each slice as region of interest. Hence, the 
supervised range-constrained thresholding algorithm had to find the thorax out of the whole image, which includes also 
the edges of CT system table seen in several CT slices. After thresholding, a method of bounding box was used to find 
the largest region within the binary result. The region with the largest bounding box was considered to be the thorax, 
which is the region of interest fed forward to the second step. 

The second step was to detect the lung area within the thorax. Since the lung area has lower Hounsfield values than that 
of the connective tissue and blood vessels contained in the thorax, the reverse threshold was applied in this case. After 
binary thresholding, a pair of regions was sought, whose bounding boxes form the largest pair. Those two regions were 
then identified as the lung area. 

3.2 Estimation of Parameters 

To confine the background area, slices were analyzed. The estimation of the two parameters needed was in our case 
based on visual judgment. In order to estimate the parameters for both steps, a number of slices were viewed. The slices 
were selected such as to achieve the estimation results for the lower and upper bound of the proportion of background 
area, which cover existing data. Manual segmentation was performed to quantify the proportion of the background area 
to the area of the region of interest. The background and the region of interest were then separately labeled to create a 
binary image. Figure 4 shows the originals of two CT slices and the binary supervised segmentations to determine the 
upper and lower bounds of the background proportion to the thorax as the region of interest. Figure 5 shows the binary 
supervised segmentation to determine the upper and low bound of the background proportion to the lungs as the sought 
object. Based on these random selected CT slices, the values for the parameters shown in Table 1 are were obtained. 



 
 

 
 

  
Fig. 4. Two samples after manual segmentation to estimate the lower and upper bound of the proportion of the background 

area with the thorax as the region of interest. 

   
Fig. 5. Three samples after manual segmentation to estimate the lower and upper bound of  the proportion of the background 

area with the lung area within a slice as the region of interest of the final step. 

Tab. 1. Supervision parameters to constrain the range of background proportion to sought object. 

 Lower bound B
LBH  Upper bound B

UBH  

Parameters to detect thorax 0.5045 0.6494 

Parameters to detect lungs 0.3319 0.4653 

 

3.3 Results of Thresholding 

Figure 6 shows the results from four original CT slices. Slices are randomly selected from the middle part of the thorax, 
i.e. slices within the range of 15% to 85% of the total number of each CT data set. Figures on the left side show the 
results after the application of the supervised range-constraint thresholding to detect the thorax in the original CT slices 
as the region of interest for the next step. In the thorax of some slices, bronchi remain as a large area close to the lung, 
whereas large vessels can be found as connective tissue within the lungs. 

The right-hand side of Figure 6 shows the results after the application of supervised range-constrained thresholding to 
detect the lungs within the thorax. As the input of this algorithm step, results from the last step were taken. All results 
show that the lungs were detected correctly. 

Figure 7 shows the results for slices in which the lung areas are very close to each other. 

Figure 8 shows thresholding results of two CT slices. The upper and lower left pictures show the results after the 
application of the constrained thresholding technique to detect the thorax. The whole thorax within the slice was detected 
correctly. After detection of the thorax, the result was fed forward to detect the lung area. The upper and lower right 



 
 

 
 

pictures show the results after the application of constrained thresholding to detect the lung area. In this case, certain 
large vessels within the lung were not included into the detected lung tissue. 

 

 

  

  
Fig. 6. Left: Results after thorax detection. Right: Results after the detection of the lungs. Both the thorax and lungs were 

detected correctly. 



 
 

 
 

   

  
Fig. 7. Left: Results after thorax detection. Right: Results after the detection of the lungs. Both the thorax and lungs were 

detected correctly. Two close lungs can be also separated correctly. 



 
 

 
 

  

  
Fig. 8. Left: Results after thorax detection. Right: Results after the detection of the lungs. In both slices, some large vessels 

were not included into the connected lung tissue. 

 

4. CONCLUSIONS 
In this paper, we described parts of the development of an image analysis system concerning an approach to separate the 
lung tissue from other areas within the thoracic CT image, in order to automatically detect the pleura contours of lung 
lobes. The technique is based on thresholding. In the former version, threshold determination was based on the empirical 
considerations that Hounsfield units of lung tissue ranging between -180 to -910 HU are reasonably well separated from 
other surrounding tissues such as fat with Hounsfield value between -50 to -220 HU. A first estimate of the lung areas 
was obtained by thresholding at -550 HU. 



 
 

 
 

In order to improve the reliability and the robustness of the software system, a recent approach based on supervised 
range-constrained thresholding is applied. This method consists of three steps. First, the region of interest has to be 
determined in the image. The histogram of the region of interest is used under supervision to estimate the frequency 
range in which the region of interest and the background vary. Finally, the threshold is determined by minimum 
histogram valley. 

REFERENCES 

1. O. Hagemeyer, H. Otten, and T. Kraus, “Asbestos consumption, asbestos exposure and asbestos-related 
occupational diseases in Germany,” Int Arch Occup Environ Health. 79(8):613–620, 2006. 
2. H. J. Raithel, T. Kraus, K. G. Hering, and G. Lehnert, “Asbestbedingte Berufskrankheiten: Aktuelle 
arbeitsmedizinische und klinisch-diagnostische Aspekte,” Deutsches Ärzteblatt, 93(11):A685–A693, 1996. 
3. K. Hering and T. Kraus, “Coding CT-classification in occupational and environmental respiratory disease (OERD),” 
International Classification of HRCT for Occupational and Environmental Respiratory Diseases, Springer, Tokyo, pp 
15-23, 2005. 
4. T. M. I. Carl, “Interreadervarianz bei der HRCT- und CXR-Befundung in einer Längsschnittstudie bei ehemals 
asbeststaubexponierten Personen,” Doctoral Thesis, Medizinische Fakultät, RWTH Aachen, 2004. 
5. S. Sohrab, M. Hinterthaner, G. Stamatis, K. Rödelsperger, H.J. Woitowitz, and N. Konietzko, “Das maligne 
Pleuramesotheliom,” Deutsches Ärzteblatt, 97(48):A3257–A3262, 2000. 
6. M. Pistolesi and J. Rusthoven, “Malignant pleural mesothelioma: Update, current management, newer therapeutic 
strategies,” Chest. 126(4):1318-1329, 2004. 
7. S. Vogel, T. Klein, D. Meyer-Ebrecht, and T. Kraus, “Ein Bildverarbeitungssystem für die automatisierte 
Vermessung und quantitative Verlaufsdokumentation von pleuralen Verdickungen,” in Proc. Workshop Bildverarbeitung 
für die Medizin 2004 Algorithmen - Systeme - Anwendungen, Berlin, pp 433-437, 2004. 
8. P. Jäger, S. Vogel, A. Knepper, T. Kraus, and T. Aach, “3D-Erkennung, Analyse und Visualisierung pleuraler 
Verdickungen in CT-Daten,” in Proc. Workshop Bildverarbeitung für die Medizin 2006 Algorithmen - Systeme - 
Anwendungen, Hamburg, pp 11-15, 2006. 
9. K. Chaisaowong, P. Jäger, S. Vogel, A. Knepper, T. Kraus, and T. Aach, “Computer-assisted diagnosis for early 
stage pleural mesothelioma: Automated extraction of pleura to detect pleural thickenings from thoracic CT images,” in 
Proc. International Workshop on Advanced Image Technology, Bangkok, pp 229-234, 2007. 
10. Q. Hu, Z. Hou, and W.L. Nowinski, “Supervised range-constrained thresholding,” IEEE Trans Image Process.  
15(1): 228-240, 2006. 
11. A.C. Silva, P.C.P. Carvalho, and R.A. Nunes, “Segmentation and reconstruction of the pulmonary parenchyma,” In-
house technical report, Vision and Graphics Laboratory, Instituto Nacional de Matemática Pura e Aplicada, Brazil, 2002. 
12. C.B. Barber, D.P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM TOMS. 22(4):469–
483, 1996. 
13. F.L. Bookstein, “Shape and information in medical images: A decade of  morphometric synthesis,” CVIU. 66(2): 97-
118, 1997. 
14. W.E. Lorensen and H.E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” Comput 
Graph. (Proceedings of ACM SIGGRAPH) 21(4):163-169, 1987. 
15. H. Morneburg, Bildgebende Systeme für die medizinische Diagnostik, Publicis MCD Verlag, 3 ed., Erlangen, 1995. 
16. Bernd Jähne, Digital Image Processing, Springer-Verlag, Berlin, Heidelberg, 2005. 
17. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern., SMC-
9(1):62–66, 1979. 
18. A. Rosenfeld, and P. De la Torre, “Histogram concavity analysis as an aid in threshold selection,” IEEE Trans. Syst. 
Man Cybern., SMC-13:231-235, 1983. 


	6514-131ChaisaowongManuscript.pdf
	1. INTRODUCTION  
	1.1 Malignant Pleural Mesothelioma 
	1.2 Current Investigation Program in Germany 
	1.3 Motivation 
	2. METHODS 
	2.1 Algorithm steps 
	1. Segmentation of pleural contours 
	2. Detection of pleural thickenings 
	3. Identification of pleural thickenings 
	4. Assessment of characteristic properties 
	5. Spatio-temporal matching 
	6. 3D Visualization of pleural thickenings 

	2.2 Lung Segmentation by Thresholding 
	2.3 Supervised Range-Constrained Thresholding 
	1. Basic Approach 
	2. Supervision-Based Approach for Threshold Selection 
	3. Estimation of the Proportion of the Background Area 
	4. Supervised Range-Constrained Least Valley Detection 


	3. RESULTS 
	3.1 Application Steps 
	3.2 Estimation of Parameters 
	3.3 Results of Thresholding 

	4. CONCLUSIONS 



