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Abstract. The present paper introduces aggregative spaces and their
category AGS, and then establishes a dual adjunction between AGS
and the category Agop of aggregation operators on bounded partially
ordered sets. Spatial aggregation operators and sober aggregative spaces,
enabling us to restrict the dual adjunction between AGS and Agop to
a dual equivalence between the full subcategory of Agop consisting of
spatial aggregation operators and the full subcategory of AGS consisting
of sober aggregative spaces, will also be subjects of this paper.

Keywords: Aggregation operator, Aggregative space, Q-space, Gener-
alized topological space, Category theory, Adjoint situation, Duality,
Spatiality, Sobriety.

1 Introduction

There is a considerable interest in the studies on (n-ary) aggregation operators
(agops for short) for replacing the particular bounded partially ordered set (poset
for short) ([0, 1],≤) by other reasonable bounded posets, e.g. agops on ([a, b],≤)
in [3,10,14], agops on (I[0, 1],�w) (the so-called an interval-valued agops) in [12],
agops on (L∗,≤L∗) in [8], triangular norms on a general bounded poset in [4], a
general bounded lattice in [15,16], pseudo-uninorms on a general complete lattice
in [17,18]. As is shown in [5,11,13], agops on general bounded posets and their
category Agop provide a useful and an abstract framework for such studies.

The dualities between certain ordered algebraic structures and certain spaces
have been an important issue in many branches of mathematics (see [6,7] and the
references therein). The famous duality between the full subcategory SobTop
of Top of all sober topological spaces and the full subcategory SpatFrm of
Frm of all spatial frames [9] is one of such dualities. In an analogous manner to
this duality, our aim in this paper is to find out an appropriate notion of space
providing a categorical duality for agops. For this purpose, after the next pre-
liminary section, we introduce the aggregative spaces and their category AGS,
and establish a dual adjunction between AGS and Agop in Section 3. Section
4 provides the notions of spatial agops and sober aggregative spaces, and proves
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a dual equivalence between the full subcategory SobAGS of AGS of all sober
aggregative spaces and the full subcategory SpatAgop of Agop of all spatial
agops. Furthermore, the presented dual adjunction and dual equivalence have
been also discussed for some full subcategories of Agop.

2 Preliminaries

2.1 Categorical Tools

Adjoint situations and equivalences in the category theory are essential tools for
formulating the main results of this paper. By definition, an adjoint situation
(�, φ) : F � G : C → D consists of functors G : C → D, F : D → C, and

natural transformations idD
�→ GF (called the unit) and FG

φ→ idC (called
the co-unit) satisfying the adjunction identities G(φA) ◦ �G(A) = idG(A) and
φF (B) ◦ F (�B) = idF (B) for all A in C and B in D. If (�, φ) : F � G : C → D
is an adjoint situation for some � and φ, then F is said to be a left adjoint to
G, F � G in symbols. A functor G : C → D is called an equivalence if it is
full, faithful and isomorphism-dense. In this case, C and D are called equivalent
categories, denoted by C ∼ D.

Proposition 1. [2,7] Given an adjoint situation (�, φ) : F � G : Cop → D, let
Fix (φ) denote the full subcategory of C of all C-objects A such that φop

A : A →
FGA is a C-isomorphism, and Fix (�) the full subcategory of D of all D-objects
B such that �B : B → GFB is a D-isomorphism. Then the following statements
are true:

(i) The restriction of F � G to [Fix (φ)]op and Fix (�) induces an equivalence
[Fix (φ)]op ∼ Fix (�).

(ii) If φop
A is an epimorphism in C for each C-object A, then both Fix (φ) and

Fix (�) are reflective in their respective categories with the reflectors F opGop and
GF , and reflection arrows φop

A and �B, resp.

For more information about adjoint situations and equivalences, we refer to [1].

2.2 Aggregation Operators and Their Categories

Let (L,≤) be a bounded poset with the least element ⊥ and the greatest element
	. An aggregation operator on L is defined to be a function A :

⋃

n∈N+

Ln → L

satisfying the following conditions:
(AG.1) If α1 ≤ β1, α2 ≤ β2, ... and αn ≤ βn for all αi, βi ∈ L, i = 1, 2, ..., n

(n ∈ N
+), then A(α1, ..., αn) ≤ A(β1, ..., βn).

(AG.2) A(α) = α for all α ∈ L.
(AG.3) A(⊥, ...,⊥) = ⊥ and A(	, ...,	) = 	.
For n ≥ 2, a function B : Ln → L is called an n-ary aggregation operator on L

iff the conditions (AG.1) and (AG.3) are satisfied. A 1-ary aggregation operator
B : L → L is the identity map idL on L. Every aggregation operator A on L
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uniquely determines a family of n-ary aggregation operators {An | n ∈ N
+} by

An(α1, ..., αn) = A(α1, ..., αn).
With regard to the special cases of (L,≤), an aggregation operator on L

produces an aggregation process for fuzzy sets, interval-valued fuzzy sets, in-
tuitionistic fuzzy sets, type 2 fuzzy sets and probabilistic metrics [5]. We fur-
ther remark that whereas (AG.2) is proposed as a convention by some authors
(e.g., see [3,11,13]), this condition is used to set up many interesting properties
of aggregation operators such as their close connection with partially ordered
groupoids in [5].

Definition 1. [5] The category Agop of aggregation operators has as objects
all triples (L,≤, A), where (L,≤) is a bounded poset and A is an aggregation

operator on L, and as morphisms all (L,≤, A)
u→ (M,≤, B), where u : (L,≤) →

(M,≤) is an order-preserving function such that u(⊥) = ⊥, u(	) = 	 and the
following diagram commutes for all n ∈ N

+:

Ln un−→ Mn

An ↓ ↓ Bn

L
u−→ M ,

i.e. u(A(α1, ..., αn)) = B (u(α1), ..., u(αn)) for all α1, ..., αn ∈ L. Composition
and identities in Agop are taken from the category Set of sets and functions.

Definition 2. [5] (i) Asagop is the full subcategory of Agop of all (L,≤, A)
such that A is associative, i.e.

A(α1, ..., αk, ...αn) = A2(Ak(α1, ..., αk), An−k(αk+1, ..., αn))

for all n ≥ 2, k = 1, .., n− 1 and α1, ..., αn ∈ L.
(ii) Smasagop is the full subcategory of Asagop of all (L,≤, A) such that A

is symmetric, i.e.

A(α1, ..., αn) = A(απ(1), ..., απ(n))

for all n ∈ N
+, α1, ..., αn ∈ L and for all permutations π(1),...,π(n) of {1, .., n}.

3 Aggregative Spaces and Their Relations with
Aggregation Operators

3.1 Definition of Aggregative Spaces and Their Category

For a given set X , we call a subset τ of the power set P(X) of X an aggregative
system on X if ∅ ∈ τ , X ∈ τ , and G1, G2 ∈ τ implies G1 ∩ G2 ∈ τ for all
G1, G2 ∈ P(X). By an aggregative space, we mean a pair (X, τ) of a set X
and an aggregative system τ on X . To formulate the category of aggregative
spaces, we need to recall that every function f : X → Y determines a function
f← : P(Y ) → P(X), sending each subset G of Y to the preimage of G under f .
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Definition 3. The category of aggregative spaces, denoted by AGS, is a cate-
gory whose objects are aggregative spaces, and whose morphisms f : (X, τ) →
(Y, ν) are functions f : X → Y having the property that for every G ∈ ν,
f← (G) ∈ τ . Composition and identities in AGS are the same as those in Set.

It is remarkable to mention that AGS is a special kind of the category
(Z1,Z2)S of (Z1,Z2)-spaces, which has been developed in [6]. More clearly,
AGS is exactly the same as the category (V⊥,F)S, where V⊥ and F are the
subset systems, defined by V⊥ (P ) = {∅} and F (P ) = {G ⊆ P | G is finite} for
every poset P in [6].

3.2 Dual Adjunction between AGS and Agop

Our aim in this section is to show that there exists an adjoint situation (η, ε) :
ΩAG � PtAG : Agopop → AGS. For this purpose, we first establish the functors
ΩAG : AGS → Agopopand PtAG : Agopop → AGS.

Every aggregative space (X, τ) induces an Agop-object (τ,⊆, X(∩)τ ), where
X(∩) is the aggregation operator on P(X), defined by X(∩) (G1, ..., Gn) = G1∩
... ∩ Gn and X(∩) (G) = G for every G,G1, ..., Gn ∈ P(X) (n ≥ 2), and X(∩)τ
is the restriction of X(∩) to the set

⋃

n∈N+

τn. This means that the assignment of

the Agop-object (τ,⊆, X(∩)τ ) to every aggregative space (X, τ) is a function
ΩAG from the objects of AGS to the objects of Agop. On the other hand,
for a given AGS-morphism f : (X, τ) → (Y, ν), the restriction f←

|ν of f← to ν

is an Agop-morphism f←
|ν : (ν,⊆, Y (∩)ν) → (τ,⊆, X(∩)τ ). Thus, ΩAG can be

extended to a functor from AGS to Agopop:

Proposition 2. The map ΩAG : AGS → Agopop, defined by

ΩAG (X, τ) = (τ,⊆, X(∩)τ ) and ΩAG (f) =
(
f←
|ν
)op

,

is a functor.

In the formulation of the functor PtAG : Agopop → AGS, we will use the
notion of filter defined as follows.

Definition 4. Let (L,≤, A) be an object of Agop. A subset G of L is called a
filter of (L,≤, A) iff G satisfies the next conditions:

(F1) G is an upper set of (L,≤), i.e. for all α, β ∈ L, α ∈ G and α ≤ β imply
β ∈ G,

(F2) ⊥ /∈ G,
(F3) 	 ∈ G,
(F4) For all α1, ..., αn ∈ L, α1, ..., αn ∈ G iff A(α1, ..., αn) ∈ G.

Lemma 1. Given an Agop-object (L,≤, A), let F(L) denote the set of all fil-
ters of (L,≤, A). For each a ∈ L, let Ψa = {G ∈ F(L) | a ∈ G} and Ψ(L) =
{Ψa | a ∈ L}. Then, PtAG(L,≤, A) = (F(L), Ψ(L)) is an aggregative space.
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Proof. For each G ∈ F(L), by (F2) and (F3) in Definition 4, F(L) = Ψ� ∈ Ψ(L)
and ∅ = Ψ⊥ ∈ Ψ(L). Furthermore, we obtain from (F4) that for all a, b ∈ L,
Ψa ∩ Ψb = ΨA(a,b). Therefore, Ψ(L) is an aggregative system on F(L).

Proposition 3. The map PtAG : Agopop → AGS, defined by

PtAG

(
(L,≤, A)

u→ (M,≤, B)
)
= PtAG(L,≤, A)

PtAG(u)→ PtAG(M,≤, B),

where [PtAG(u)] (G) = (uop)
←

(G) for all G ∈ F(L), is a functor.

Proof. Lemma 1 shows that PtAG maps the objects of Agopop to the objects

of AGS. Let (L,≤, A)
u→ (M,≤, B) be an Agopop-morphism, i.e. (M,≤, B)

uop→
(L,≤, A) is an Agop-morphism. For every G ∈ F(L), since (uop)← (G) ∈ F(M),
PtAG(u) : F(L) → F(M) is a set map. In addition to this, we easily see that for
every b ∈ M , [PtAG(u)]

←
(Ψb) = Ψuop(b), i.e. [PtAG(u)]

←
(V ) ∈ Ψ(L) for every

V ∈ Ψ(M). This proves that PtAG(u) : PtAG(L,≤, A) → PtAG(M,≤, B) is an
AGS-morphism. Hence, the assertion follows from the fact that PtAG preserves
composition and identities.

To accomplish our task in this section, we now consider two natural transfor-
mations-the unit and co-unit of the asked adjunction-given in the next two lem-
mas.

Lemma 2. For every AGS-object (X, τ), the map η(X,τ) : X → F (τ), de-
fined by η(X,τ) (x) = τ(x) = {G ∈ τ | x ∈ G}, is an AGS-morphism (X, τ) →
PtAGΩAG (X, τ). Moreover, η =

(
η(X,τ)

)
(X,τ)∈Ob(AGS)

: idAGS → PtAGΩAG is

a natural transformation.

Proof. It is obvious that for every x ∈ X , τ(x) ∈ F (τ), and so η(X,τ) : X → F (τ)
is indeed a map. To see that η(X,τ) : (X, τ) → PtAGΩAG (X, τ) is an AGS-
morphism, note first that

PtAGΩAG (X, τ) = (F (τ) , Ψ (τ)) .

Then, since η←(X,τ) (ΨG) = G for every G ∈ τ , we obtain that η←(X,τ) (V ) ∈ τ for

every V ∈ Ψ (τ), i.e. η(X,τ) : (X, τ) → PtAGΩAG (X, τ) is an AGS-morphism.
The proof of the second part requires only the naturality of η which means the
commutativity of the rectangle

(X, τ)
η(X,τ)−→ PtAGΩAG (X, τ)

f ↓ ↓ PtAGΩAG (f)

(Y, ν)
η(Y,ν)−→ PtAGΩAG (Y, ν)

for every AGS-morphism (X, τ)
f→ (Y, ν). Since

[PtAGΩAG (f)]
(
η(X,τ)(x)

)
=

(
f←
|ν
)← (

η(X,τ) (x)
)
,
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the commutativity of the rectangle above follows from the following observation:
For every x ∈ X and every H ∈ ν,

H ∈ η(Y,ν) (f(x)) ⇔ H ∈ ν and f(x) ∈ H ⇔ f←
|ν (H) ∈ τ and x ∈ f←

|ν (H)

⇔ f←
|ν (H) ∈ η(X,τ) (x) ⇔ H ∈

(
f←
|ν
)← (

η(X,τ) (x)
)

⇔ H ∈ [PtAGΩAG (f)]
(
η(X,τ)(x)

)
.

Lemma 3. For every Agop-object (L,≤, A), the map e(L,≤,A) : L → Ψ(L),
defined by e(L,≤,A) (a) = Ψa, is an Agop-morphism (L,≤, A) → ΩAGPtAG(L,≤
, A). Moreover, ε =

(
eop(L,≤,A)

)

(L,≤,A)∈Ob(Agop)
: ΩAGPtAG → idAgopop is a

natural transformation.

Proof. Consider first that ΩAGPtAG(L,≤, A) =
(
Ψ(L),⊆,F (L) (∩)Ψ(L)

)
. In

order to prove that e(L,≤,A) : (L,≤, A) → ΩAGPtAG(L,≤, A) is an Agop-
morphism, we proceed as follows. For all a, b ∈ L with a ≤ b, since Ψa ⊆ Ψb

(by (F1) in Definition 4), e(L,≤,A) is order-preserving. We also obtain from (F2)
and (F3) in Definition 4 that e(L,≤,A) preserves ⊥ and 	. Furthermore, by mak-
ing use of (F4) in Definition 4, we see that Ψa1 ∩ ... ∩ Ψan = ΨA(a1,...,an) for all
a1, ..., an ∈ L, and so

e(L,≤,A)(A(a1, ..., an)) = ΨA(a1,...,an) = Ψa1 ∩ ... ∩ Ψan

= e(L,≤,A)(a1) ∩ ... ∩ e(L,≤,A)(an)

= F(L) (∩)Ψ(L)

(
e(L,≤,A)(a1), ..., e(L,≤,A)(an)

)
.

This completes the proof of the first part of the assertion. For the second part, the
only property of ε that we have to verify is its naturality, i.e. the commutativity
of the diagram

ΩAGPtAG(L,≤, A)
ε(L,≤,A)−→ (L,≤, A)

ΩAGPtAG(u) ↓ ↓ u

ΩAGPtAG(M,≤, B)
ε(M,≤,B)−→ (M,≤, B)

(1)

for each Agopop-morphism (L,≤, A)
u→ (M,≤, B). Since all arrows and all

compositions in (1) are taken in Agopop, it can be simplified to be a rectangle

(M,≤, B)
e(M,≤,B)−→

(
Ψ(M),⊆,F (M) (∩)Ψ(M)

)

uop ↓ ↓ PtAG(u)
←
|Ψ(M)

(L,≤, A)
e(L,≤,A)−→

(
Ψ(L),⊆,F (L) (∩)Ψ(L)

)
,

(2)

where all arrows and all compositions are performed in Agop. The commuta-
tivity of (2) is obtained as

[
PtAG(u)

←
|Ψ(M)

◦ e(M,≤,B)

]
(b) = [PtAG(u)]

← (Ψb) = Ψuop(b)

=
[
e(L,≤,A) ◦ uop

]
(b)

for all b ∈ M .
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Theorem 1. (η, ε) : ΩAG � PtAG : Agopop → AGS is an adjoint situation.

Proof. It is not difficult to check the adjunction identities

PtAG

(
ε(L,≤,A)

) ◦ ηPtAG(L,≤,A) = idPtAG(L,≤,A),

εΩAG(X,τ) ◦ΩAG

(
η(X,τ)

)
= idΩAG(X,τ)

for every Agop-object (L,≤, A) and every AGS-object (X, τ). Then, the re-
quired result follows immediately from Lemma 2 and Lemma 3.

Remark 1. Since ΩAG (X, τ) = (τ,⊆, X(∩)τ ) is an object of Smasagop for
every AGS-object (X, τ), the adjoint situation in Theorem 1 can be restricted
to an adjoint situation (η, εr) : Ωr

AG � PtrAG : Smasagopop → AGS, where
Ωr

AG (PtrAG) is the co-domain (the domain) restriction of ΩAG (PtAG) and
εr(L,≤,A) = ε(L,≤,A) for every Smasagop-object (L,≤, A). An analogous adjoint
situation can also be written for the category Asagop instead of Smasagop.

4 Spatial Aggregation Operators, Sober Aggregative
Spaces and Their Duality

Spatiality and sobriety are two important notions that enable us to restrict the
adjunction ΩAG � PtAG to an equivalence. To clarify this fact, we first start
with their definitions:

Definition 5. (i) An Agop-object (L,≤, A) is called spatial iff for all a, b ∈ L
with a � b, there exists a G ∈ F(L) such that a ∈ G and b /∈ G.

(ii) An AGS-object (X, τ) is called sober iff for all U ∈ F (τ), there exists a
unique x ∈ X such that U = τ(x).

Proposition 4. Let (L,≤, A) be an Agop-object, and (X, τ) an AGS-object.
(i) (L,≤, A) is spatial iff e(L,≤,A) : (L,≤, A) → ΩAGPtAG(L,≤, A) is an

Agop-isomorphism.
(ii) (L,≤, A) is spatial iff (L,≤, A) is isomorphic to (ν,⊆, Y (∩)ν) for some

aggregative space (Y, ν).
(iii) (X, τ) is sober iff η(X,τ) : (X, τ) → PtAGΩAG (X, τ) is an AGS-

isomorphism.

Proof. (i) Note first that (L,≤, A) is spatial iff for all a, b ∈ L, Ψa ⊆ Ψb im-
plies a ≤ b. Now, by assuming spatiality of (L,≤, A), this equivalence directly
gives the injectivity of the underlying set map of e(L,≤,A), and so does its bi-

jectivity. It is easy to check that e−1
(L,≤,A) : ΩAGPtAG(L,≤, A) → (L,≤, A) is

an Agop-morphism, and so e(L,≤,A) : (L,≤, A) → ΩAGPtAG(L,≤, A) is an
Agop-isomorphism. Conversely, if e(L,≤,A) : (L,≤, A) → ΩAGPtAG(L,≤, A) is

an Agop-isomorphism, then since e−1
(L,≤,A) : ΩAGPtAG(L,≤, A) → (L,≤, A) is

an Agop-morphism, Ψa ⊆ Ψb implies a = e−1
(L,≤,A) (Ψa) ≤ e−1

(L,≤,A) (Ψb) = b for

all a, b ∈ L, so (L,≤, A) is spatial.
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(ii) If (L,≤, A) is spatial, then we have from (i) that (L,≤, A) is isomorphic to
(ν,⊆, Y (∩)ν) for the aggreative space (Y, ν) = PtAG(L,≤, A). Conversely, sup-
pose (L,≤, A) is isomorphic to (ν,⊆, Y (∩)ν) for some aggregative space (Y, ν),
i.e. there exists an Agop-isomorphism u : (L,≤, A) → (ν,⊆, Y (∩)ν). Then, for
a, b ∈ L with a � b, since u(a) � u(b), there exists at least one z ∈ Y such that
z ∈ u(a) and z /∈ u(b). It is clear that u(a) ∈ ν (z) and u(b) /∈ ν (z), and so
a ∈ u← (ν (z)) and b /∈ u← (ν (z)). Hence, we obtain the spatiality of (L,≤, A)
from the fact that u← (ν (z)) is a filter of (L,≤, A).

(iii) follows from that for a given AGS-object (X, τ), (X, τ) is sober iff the
underlying set map of η(X,τ) is a bijection iff η(X,τ) : (X, τ) → PtAGΩAG (X, τ)
is an AGS-isomorphism.

Corollary 1. The full subcategory SpatAgop of Agop of all spatial objects is
dually equivalent to the full subcategory SobAGS of AGS of all sober objects.

Proof. Since Proposition 4 (i) and (iii) verify that Fix (ε) = SpatAgop and
Fix (η) = SobAGS, the assertion follows from Theorem 1 and Proposition 1
(i).

Proposition 5. SpatAgop and SobAGS are reflective subcategories of Agop
and of AGS with reflectors Ωop

AGPtopAG and PtAGΩAG, and the reflection arrows
e(L,≤,A) and η(X,τ), respectively.

Proof. Since e(L,≤,A) = εop(L,≤,A) is obviously an epimorphism in Agop, and

Fix (ε) = SpatAgop and Fix (η) = SobAGS, Proposition 1 (ii) directly yields
the claimed result.

Proposition 6. Let (L,≤, A) be an Agop-object, and (X, τ) an AGS-object.
(i) ΩAG (X, τ) is spatial, (ii) PtAG(L,≤, A) is sober.

Proof. (i) is immediate from Proposition 4 (ii). To see (ii), let us first consider
the fact that PtAG(L,≤, A) = (F(L), Ψ(L)). Then, the sobriety of PtAG(L,≤, A)
follows from the observation that for all U ∈ F (Ψ(L)), G = {a ∈ L | Ψa ∈ U} is
the unique element of F(L) with the property that U = [Ψ(L)] (G).

Proposition 7. The full subcategory SpatAsagop of Asagop of all spatial ob-
jects, the full subcategory SpatSmasagop of Smasagop of all spatial objects
and SpatAgop are equivalent to each others.

Proof. Since SpatSmasagop is a full subcategory of SpatAgop, the inclusion
functor SpatSmasagop ↪→ SpatAgop is a full and faithful functor. For ev-
ery SpatAgop-object (L,≤, A), by Proposition 4 (i) and Proposition 6 (i),
ΩAGPtAG(L,≤, A) is a SpatSmasagop-object, and e(L,≤,A) : (L,≤, A) →
ΩAGPtAG(L,≤, A) is a SpatAgop-isomorphism. This proves that the inclu-
sion functor SpatSmasagop ↪→ SpatAgop is isomorphism-dense, and hence
an equivalence. Similarly, the inclusion functor SpatAsagop ↪→ SpatAgop is
an equivalence, which completes the proof.
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Corollary 2. SpatAgopop ∼ SpatAsagopop ∼ SpatSmasagopop ∼
SobAGS.
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