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This paper characterizes perfect folk theorems for repeated games with overlap- 
ping generations of finite-lived players. We prove two uniform folk theorems that 
admit arbitrarily long-lived players for a given discount factor; the result for 
n > 2 players requires a full-dimensional payoff space. Under no assumptions 
whatsoever, a nonuniform n-player folk theorem obtains in which the discount 
factor must covary with the players’ lifespans. Our focus on the overlap rather 
than the generation makes possible compact and explicit descriptions of all equilib- 
ria. We later synthesize our results in a more general setting with some finite- 
and some infinite-lived players. Journal of Economic Literature Classification 
Numbers: C72, C73. o 19% Academic PKSS, IIIC. 

1. INTRODUCTION 

A “folk theorem” asserts that any individually rational payoff of a stage 
game can be attained on average in an equilibrium of the corresponding 
repeated game. The wealth of known folk results underscores one dramatic 
difference between static and dynamic behavior. Although the earliest 
circulating folk theorems’ may have been conceived with the Nash equilib- 
rium concept in mind, more recent efforts, including this one, insist upon 
subgame perfection (cf. Selten, 1975). Further remarks shall therefore be 
confined to the latter arena of perfect folk results. 

* This paper is the second chapter of my Ph.D. dissertation in economics at the University 
of Chicago. My advisor, In-Koo Cho, was very instrumental early on in this project. I later 
benefited from the advice of Ariel Rubinstein and the remarks of several referees. All 
remaining errors are my own. Financial assistance from the Social Sciences and Humanities 
Research Council of Canada, the Searle Foundation, and the Jacob K. Javits Fellowship 
Program is gratefully acknowledged. 

’ Aumann (1985) sketches some of the earlier folk theorem literature. 
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By using a suitably defined payoff objective-the “overtaking crite- 
rion” -Rubinstein (1979) obtained his folk theorem for supergames with- 
out discounting. When payoffs are discounted, Fudenberg and Maskin 
(1986) (henceforth F-M) additionally require that the feasible payoff space 
have full dimension. Extension to the real world of mortal players has 
encountered yet another caveat. The folk theorem for finitely repeated 
games in Benoit and Krishna (1985) also requires at least two distinct Nash 
payoffs for each player in the stage game. Indeed, it is well known that in 
the finitely repeated Prisoners’ Dilemma, cooperation does not arise in 
equilibrium. The forward thrust of positive economic theory has sadly 
floundered upon this simple game. 

Combining elements of finite and infinite horizon games, this paper is a 
game theoretic foray into relatively new territory: overlapping generations 
(OLG) games. By this, we mean games played by n teams of finite-lived 
individuals, each of whom “lives” (i.e., plays) for n consecutive “over- 
laps”; at the end of each T period overlap, one player “dies,” to be 
replaced by the next younger fellow team member. We establish three 
separate folk theorems for OLG games. Each obtains for suitable selec- 
tions of the overlap length and discount factor, and the interplay between 
these two quantities shares centerstage in this paper. All results hold even 
when the stage game has only one Nash equilibrium. 

Recent work by Cremer (1986), Cooper and Daughety (1988), and Salant 
(1991) throws light on the flavor of results in this new field. But it is Kandori 
(1989) who-independently of this work-obtains the first general folk 
theorem for OLG games. Although our approach and extent of results 
differ somewhat from that of Kandori (1989), we do touch on a few com- 
mon themes. We first recall a simple example of cooperation in the re- 
peated Prisoners’ Dilemma by unboundedly rational finite-lived players. 
The insights acquired in this exercise then motivate our two-player folk 
theorem. As often occurs in game theory, for want of a mutual minimax 
point, the n-player results do not come so easily. But faced with two 
degrees of freedom (the discount factor and the overlap length) we must 
also decide which folk theorem we want. This predicament typifies the 
many surprises offered by this medley of finite and infinite repeated game 
theory. 

Our first n-player folk theorem obtains without even insisting upon a 
full-dimensional feasible payoff space-the very condition which drives 
the n-player results of both F-M and Benoit and Krishna (1985). Because 
the discount factor must co-vary with the players’ lifespans, we have 
suggestively labeled this a nonuniform folk theorem. A simple corollary 
slightly improves upon the folk theorem discovered by Kandori (1989). 
Since a nonuniform folk theorem always holds for general OLG games, 
one might suppose that the special revolving-door roster of players in our 
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model rather lends itself to the support of out-of-equilibrium threats. This 
intuition is not misguided. But the flexibility is to our advantage, as we 
derive a stronger uniform n-player folk theorem under the added assump- 
tion of full-dimensionality. Unlike our nonuniform folk theorem, this sec- 
ond result admits arbitrarily long-lived players for a given discount factor. 
Why is this? As it turns out, a full-dimensional payoff space affords us 
the luxury of immediate punishment for deviations; in its absence, some 
punishments must await the “death” of one or more players. 

In light of these somewhat bipolar results, it is natural to question the 
exact role played by the dimensionality of the payoff space. For instance, 
when n = 3, what is the incremental value of having a two- versus a one- 
dimensional payoff space? A nonuniform OLG folk theorem holds in either 
case, but can anything more be said? To this end, it is helpful to note that 
both of the above folk theorems must essentially tackle the same problem: 
How does one linearly disentangle the players’ payoff streams so that 
deviants are punished and punishers rewarded? Full-dimensionality allows 
us to construct player-specific punishments at the stage game level. This, 
in a nutshell, is what F-M and Benoit and Krishna (1985) have done. In 
an OLG game, however, we have more options. To deal with stage games 
in which all players receive identical payoffs, the equilibria for our nonuni- 
form folk theorem systematically exploit the cascading age hierarchy, 
sometimes deferring a given punishment or reward until one or more of 
the current players has died. Now, it so happens that we may combine the 
two approaches in a hybrid OLG-supergame model in which exactly m < 
n of the players are infinite-lived. The paper concludes on this note, 
with the following profitable extension of F-M and our earlier result: A 
nonuniform folk theorem’ obtains when the projection of the payoff space 
onto the coordinates corresponding to the injinite-livedplayers has dimen- 
sion at least m. This implies (for nondegenerate stage games) that our 
earlier nonuniform folk theorem holds when exactly one of the teams in 
the OLG game is actually a single infinite-lived player! 

Much insight into the structure of our equlibria is gained by an apprecia- 
tion of their resilient nature. That is, after any finite sequence of deviations, 
the play always returns to the principal equilibrium path once all current 
players have “died.” On the one hand, resiliency may enhance the intu- 
itive appeal of our equilibria, and will perhaps blunt some of the criticisms 
now motivating the renegotiation-proofness literature.3 But there is a much 
more far-reaching implication of resiliency-namely, that players need 
not know the entire history of the OLG game. In fact, it suffices that each 
player condition his actions on a fixed finite truncation of the action 

* By nonuniform, we now mean that the discount factor must covary with the mortal 
players’ lifespans. 

3 See Abreu et n/. (1989) for references. 
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history, which Kandori (1989) has christened informational decentralira- 
tion. Yet if behavior in one overlap does not depend at all on the previous 
history, then each overlap is just an isolated finitely repeated game, and 
the analysis (and proviso) of Benoit and Krishna (1985) applies. Thus, 
strategies for our uniform folk theorem do make use of the last portion 
of the previous overlap. In our nonuniform folk theorem, however, 
where the payoff space can be one-dimensional, players must condition 
their actions (albeit in a remarkably simple fashion) on the previous 
n - 1 overlaps.4 In other words, each player need only know the action 
history associated with the oldest living player; anything earlier is 
irrelevant. 

As already alluded to, our approach throughout is constructive and not 
existential. Explicit compact descriptions of the (occasionally Byzantine) 
strategies are provided. Interested readers can “see” for themselves 
the punishment routines at work. In particular, the equilibrium algorithm 
discovered for the nonuniform folk theorem is new, and is an important 
contribution of this analysis. In all equilibria, the discounting of future 
payoffs and the finite lifespans of the players have forced us to “make 
the punishment fit the time,” so to speak: During any overlap, “early” 
deviants from an equilibrium face a much different lot than do “late” 
ones. For instance, transgressions by younger players near the end of 
an overlap- in the “buffer zone”-provoke a temporary Nash respite; 
only when the oldest player dies do we proceed to punish the culprit. 
On the other hand, for deviations prior to the buffer zone, our nonuni- 
form folk theorem employs a nested hierarchy of minimax punishment 
phases based upon a player’s “age.” In effect, “elderly” deviants are 
punished at once, whereas criminal records are maintained for the 
“youth.” Nevertheless, we do believe that our proofs and strategies 
exhibit a simplicity that comes from treating the overlap as the basic 
atom of analysis. The focus in Kandori (1989) on the generation (i.e., 
n consecutive overlaps, during which n players “die”) is nonessentially 
more general, and unnecessarily complicates matters and conceals 
deeper results. 

Section 2 outlines the model and provides two motivational examples. 
In Section 3, we present the general results, and draw the distinction 
between uniform and nonuniform folk theorems. We then synthesize 
the intuition and analysis behind these two results in Section 4, and 
prove one last folk theorem. Most constructions of the equilibria, which 
represent a major contribution of this paper, are included in the text. 
An appendix contains the verification of each equilibrium. 

4 In the corresponding result in Kandori (1989), knowledge of the previous 2n - I overlaps 
is needed. We conjecture (but have been unable to prove) that our n - 1 is best possible. 
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2. THEMODEL 

Let G = (A,, A,, . . . , A,; U, , U,, . . , , U,) be an n-person (one- 
shot) normal form game. Blurring the distinction between pure and mixed 
strategies, we simply assume throughout that each Ai consists of player 
i’s mixed strategies; therefore, Ai is a compact and convex strategy space. 
Every player i maximizes his (continuous) payoff function Vi: A + R, 
where A = ny= ,Ai. We sometimes interchangeably refer to an element a 
E A, or its associated payoff vector, as an outcome of G. 

As we make liberal use of correlated strategies,’ the feasible payoff 
space V is the convex hull in R” of the set of attainable payoff vectors. 
Note that we only consider nondegenerate games G, i.e., where dim V L 
1. (All our results are vacuously true when dim V = 0.) Finally, we assume 
that deviations from mixed strategies are observable.6 

For convenience, set N = (1, 2, . . . , n}. Let M’ be a minimax strategy 
against player i in the game G. Not wishing to break ranks with the entire 
repeated game literature, we do not permit playersj # i to (privately among 
themselves) correlate their possibly mixed minimax strategies against i. 
By this, we mean that M’ = (Mi, Mhi), where 

MLi = (Mi,, . . . , Mi-, , Mj,, , . . . , ML) E arg min max Ui(ai, a-,), 
a-, ai 

and Mj is i’s best response to Mki. Intuitively, among all publicly prean- 
nounced and independently executed conspiracies (a fair description of an 
equilibrium) by all players j # i, ML, minimizes i’s payoff. Hence, no 
rational player i would willingly accept an average payoff below U,(M’). 
We assume WLOG that Ui(M’) = 0 for all i E N. The feasible and strictly 
individually rational payoff set is therefore the positive orthant of V. 
Finally, when 12 = 2, we often resort to the mutuaZ minimax outcome M= 
(M:, M:). 

We begin with a simple observation first made by Hammond (1973, and 
later resurrected in CrCmer (1986). 

5 This is not WLOG. The use of correlated strategies is for expositional ease only. Without 
the requisite public randomizing devices, arbitrarily long deterministic cycles would be 
needed. This, however, would lead to messier equilibrium routines, and might well require 
that players “live” longer. For instance, ensuring compliance with several nonindividually 
rational cyclical outcomes would necessitate a slightly more potent punishment mechanism 
than is employed below. 

6 F-M discuss this issue on page 536, and later consider unobservable mixed strategies. 
We avoid any such (admittedly nontrivial) complications. 
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EXAMPLE 1. Consider the game G, (see Fig. l), an example of the 
classic Prisoners’ Dilemma. The unique Nash equilibrium and minimax 
point of G, is (0, 0). The object is to explain “cooperation’‘-choosing 
C-when this game is played repeatedly by finite-lived rational individu- 
als. Consider an overlapping sequence of players, each of whom lives two 
periods. When a player is “young,” he plays his “father”; when “old,” 
he plays his “son.” Clearly, when one is old and playing his last game, he 
will choose his dominant strategy D. In our subgame perfect equilibrium, 
we insist that he play C when young. We must ask, “What if he deviates 
to D when young?” Should this occur, the threat is that his son will play 
D (and not C) against him; also, all subsequent plays (by future players) 
will be the one-shot Nash equilibrium outcome (D, D). Not only is this 
threat credible, it even remains so when future payoffs are discounted at 
any rate 6 > 4, for then - 1 + 36 > 0 + 0. 

Let there be II teams of players Sk = {k, k + n, k + Zn, . . .}, k E N. 
Returning to our earlier arbitrary game G, define OLG (G; 6, T) as the 
following repeated game: 

1. Every period, G is played by II finite-lived players, one from each 
team. Initially, the players are 1, 2, . . . , n. 

2. Every Tperiods the roster changes. Player k + tn from team S, dies 
and is replaced by player k + (t + I)n just after time (k + tn)T, for k E 
N and t = 0, 1, 2, . . . . 

3. Each player is fully apprised of the history of play, and seeks to 
maximize his lifetime average payoff. Future payoffs are discounted at 
some fixed and common rate 6 5 1. 

Much as with Kandori (1989), it suffices to consider only equilibria in 
which fellow team members use identical strategies. We thus simply refer 
to the players by their team numbers 1,2, . . . , n; hence, k always denotes 
the current player from team Sk, k E N. Note that each player lives for 
exactly nl”periods, and that the identities of all n players remain unchanged 
for T periods-the overlap duration- and then one is replaced. We later 
relax the insistence on identical overlaps to deduce the result of Kandori 
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FIGURE 2 

(1989). Also, all equilibrium strategies remain valid when the time domain 
is doubly infinite. 

Example 1 might suggest that we may approximate any feasible and 
strictly individually rational payoff vector by a subgame perfect average 
outcome of some OLG (G,; 6, 2’). In other words, a folk theorem holds. 
We further investigate this possibility in the next example. 

EXAMPLE 2. As vexing a game as is the Prisoners’ Dilemma, it still 
has one redeeming virtue: The Nash equilibrium coincides with the mutual 
minimax point. Thus, in a repeated setting, we can always threaten to 
revert to a subgame perfect zero payoff, as in Friedman (1971). We accord- 
ingly shift our attention to the game G, (see Fig. 2), taken from F-M. Note 
that (1, 1)-the only Nash equilibrium of G,-strictly Pareto-dominates 
the (mixed) minimax point (0,O). We claim that, for instance, (a, it) can be 
arbitrarily approximated by an average subgame perfect outcome of OLG 
(G2; 6, T) by choosing 6 < 1 and T < ~0 sufficiently large. Let a* = $(E, 
E) @ $(F, F) be a correlated strategy generating (2, t). Then the typical 
equilibrium overlap assumes the form 

(E, E), . . . , (E, E); a*, . . . , a*; (E, E), (E, E). 

Here, the initial (E, E) compensation phase lasts P periods, while a* is 
played T - P - 2 times. As is now the wont, we insist that a deviant 
participate in his own punishment. Ignoring simultaneous deviations, the 
threats which support the equilibrium are as follows: 

1. For deviations prior to the third last play of an overlap, 
(a) one immediate mutual minimax M = (F, F) follows; 
(b) after any deviation from (a), start (l), (2), or (3) as appropriate. 

2. If the older player deviates in his third last round, 
(a) his younger opponent plays F until the end of the overlap; 
(b) if the younger player deviates from (a), start (3). 

3. If the younger player deviates in any of the last three rounds of an 
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overlap, then (E, E) is played until the end of the current overlap, and a*‘s 
replace the next overlap’s (E, E) compensation phase. 
Computation should reveal that these punishments strictly deter any devia- 
tions exactly when 76* > 6 + 6 Pf2. It is therefore sufficient that 6 = 0.96 
and P = 18. Finally, for 6 < 1 and T (>20) large enough, the discounted 
average payoff can be chosen arbitrarily close to (4, 4). 

It is useful at this point to highlight the basic design of the above 
equilibrium. A mutual punishment mechanism is operative for most of the 
overlap. But when the older player has only one or two periods to go, we 
cannot credibly demand that he punish his opponent. Thus, a three-period 
buffer zune rounds out the overlap, during which we capitalize on the 
OLG structure. From here on, the nature of the punishments is decidely 
different. We threaten the oldest player with his minimax payoff if he 
deviates, and the consequent loss of his final (E, E) reward phase. Should 
the younger player deviate (for instance, by not punishing the older 
player), we finish the overlap with the one-shot Nash outcome, but deny 
the younger player his long compensation period at the outset of the next 
overlap. 

This equilibrium-and all others in this paper-is somewhat resilient: 
After any finite sequence of deviations, play always eventually returns to 
the principal equilibrium path. The two-player equlibrium described in 
F-M is resilient, while their n-player equilibrium can be made so. Given 
the changing identities of players in our model, and in light of the bur- 
geoning renegotiation-proofness literature, this new property of infinite- 
horizon games is especially useful. Simply put, players and their succes- 
sors are not forever condemned to an inferior outcome path. 

Much of our basic intuition flows from Examples 1 and 2. In the Prison- 
ers’ Dilemma, the (one-shot) Nash equilibrium is the worst outcome for 
either player; therefore, it serves as an out-of-equilibrium “stick” to deter 
deviators. The flip side to this scenario is captured in Example 2. Here, 
the Nash equilibrium is the unique Pareto optimal outcome, and thus is 
used in equilibrium as a reward for nut deviating. In general, however, 
the Nash outcome may lie anywhere within the feasible and individually 
rational payoff space, and may very well function simultaneously as a 
“carrot” for one player and a “stick” for another. 

3. THE FOLKTHEOREMS 

In this section we consolidate the ideas of Examples 1 and 2. Our first 
folk theorem works for sufficiently large discount factors 6 2 6, and 
overlap lengths T 2 To. Because 6 and T can vary independently over this 
range, we call this a uniform folk result. 
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3.1 A UNIFORM TWO-PLAYER FOLK THEOREM. Let G be a two- 
player normal form game. Let u = (u, , u2) be feasible and strictly individu- 
ally rational for G. Then VE > 0 3 6, < 1 and T,, < m so that 6 E [6,, l] 
and T 2 T,, + OLG (G; 6, T) has a subgame perfect discounted average 
payoff within E distance of u. 

Proof. Let e* be a Nash equilibrium of G, and set vk = U,(e*) for 
k = 1,2. Let a* be a correlated strategy generating U, so that uk = U&z*) 
for k = 1, 2. We may assume WLOG that u, # v, and u2 # v2. For if not, 
we can choose some feasible and strictly individually rational payoff vector 
ii within ~12 of u with ti:, # uk (k = 1, 2), and then proceed with 42 and 
ti in place of E and u. Finally, let bk be player k’s best outcome in G, for 
k = 1,2. 

The equilibrium path for the overlap when k is “oldest” assumes one 
of two forms, 

e* ,..., e*;a* ,..., a*;bk ,..., bk or a* ,..., a*;bk ,..., b”, 

according as vk > uk or uk < uk, respectively. Consider the first overlap 
above. A crucial and recurring feature is that the initial e* compensation 
phase and the final bk reward phase are each of fixed duration’-lasting P 
and S periods, respectively-whereas a * can be played an arbitrarily large 
number T - P - S times. A simple argument establishes the following 
result: 

Fact. Given P and S, there exist T, < 3~ and 6r E (0, 1) so that the 
average equilibrium payoff vector in any overlap lies within E of u when- 
ever T 2 T, and 6 1 6,. 

We now proceed to find P, S, T 2 T,, and 6, E [a,, 1) for which the 
above suggested path is in fact subgame perfect. The strategies involved 
are rather complex, and will accordingly be presented in the form of a 
computer program. We make use of a few dummy variables: A E {“good,” 
“bad”} registers any deviations “late” in an overlap; the next overlap 
begins with the oldest player’s favored outcome among a* and e* exactly 
when A = “good.” The counter t marks the current period in the overlap; 
t equals 1, 2, . . . , Tin succession, and then is reset to 1; we assume (but 
do not write) that t is automatically incremented after every play of G. 
Actions repeating “until t = x” occur up to and including time x. We 
choose the discount factor and the variables P, Q, and S afterward to 

’ This observation corresponds to the spirit of Theorem 2 of Kandori (1989): Here, the 
compensation phase acts as a “terminal payment” to all remaining players. 
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ensure that no deviation is profitable. To avoid confusion, we employ the 
notation x +- y to mean “assign x the value y.” Steps follow sequentially, 
unless otherwise prescribed. Instructions following deviations are in 
square brackets, and are executed immediately. 

The equilibrium program begins with A = “good.” For simplicity, let i 
be “old” and j “young,” with arbitrary players denoted k. For ease of 
reference, we always refer to steps 1, 2, and 3 as the main path. 

0 Reset t t 1. If A = “good” and ui > ui or if A = “bad” and vi < 
ui, start 1; else start 2. 

1. Play e* until t = P. 
2. Play a* until t = T - S. [Zfk deviates at t 5 T - Q - S, start 4; 

if k deviates at t > T - Q - S, start 5 if k = i and start 6 if k # i.] 

3. Play b’ until t = T. [Zfj deviates, start 6.1 Then reset A t “good,” 
and go to (*). 

4. Play M for Q periods. [Zf k deviates at t % T - Q - S, restart 4; if 
k deviates at t > T - Q - S, start 5 ifk = i and start 6 ifk # i.] Then 
return to the main path. 

5. Play M’ until t = T. [Zfj deuiates, start 6.1 Then reset A t “good,” 
and go to (*). 

6. Play e* until t = T. Set A + “bad,” and go to (*). 

(*) Interchange i ++ j, and restart the program. 

We can finally determine Q, S, P, T,, 2 T,, and 6, 2 6, (in that order) 
for which the above program is subgame perfect. The methodology is first 
to provide strictly positive penalties-at least 1 below-for any deviation 
when there is IZO discounting. Then, by continuity, there is some 6, E [6,, 
1) for which all penalties are still positive, as required. 

Let /I and w be the best and worst payoffs for any player in G, and 
suppose 6 = 1. For each step, we consider the “worst-case scenario,” 
where the incentive to deviate is greatest. Then step 4 deters deviations 
from step 2 if we choose Q so that 

w+Qu,>/3+1 (1) 

fork = 1,2. Since u %+ 0, the threat to restart step 4 dissuades any deviation 
from 4. Next, step 5 deters deviations from steps 2 and 4 by the older 
player i if S is chosen to satisfy 

QO + SCJk(bk) > /3 + 1 
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for k = 1, 2. Also, step 6 will inhibit the younger playerj from deviating 
from steps 2, 3, 4, and 5 if P satisfies 

(Q + S)w + P max (Us, uk) > /3 + (Q + S - l)V, + P min (uk, uk) + 1 

for k = 1, 2. Let TO = max (T,, P + Q + S). Finally, observe that after 
any deviation, all punishments and rewards are concluded within P + 
Q + S periods. Thus, by continuity, there is some 6, E [a,, 1) for which 
all threats remain credible for any 6 2 6, and T 2 To.* Q.E.D. 

It is worthwhile at this stage to point out a convenient feature of the 
above strategies which unfortunately does not extend to general n-person 
games. At the outset of each overlap, the Nash equilibrium of G has been 
variously used as a carrot or a stick, depending upon circumstances: 
Previously “good” older players begin their final overlap with their choice 
of e* (the Nash outcome) or a*; their “bad” counterparts must play 
whatever outcome they most detest. This use of the Nash outcome as a 
two-edged sword saves considerably on time and effort. But with three or 
more players, in equilibrium the Nash outcome might be preferred by one 
of the “good” younger players and not by the other. Hence, either (i) 
personalized (out-of-equilibrium) punishment outcomes are needed, or (ii) 
there must be unanimous preference for one particular outcome over the 
status quo. In the absence of a full-dimensional payoff space, we must 
opt for (i); therefore, the compensation phase is hereafter replaced by a 
punishment phase. 

Note also that a sufficient statistic for the entire history of the game is 
captured in the one simple binary “flag” A. Given that the cardinality of 
a length T history in any nondegenerate repeated game is at least 2’, it 
should be especially appealing that players need only condition their ac- 
tions on such a basic capsule summary of just the last overlap. All equilib- 
rium strategies in this paper are parameterized by a small number of such 
state variables. But due to the explicit time dependence in our routines, 
the equilibria are unavoidably nonstationary. 

When we attempt to generalize the above result to arbitrary n-player 
games, our first effort falls short. Indeed, we encounter the same game 
theoretic leap needed to move from n = 2 to n = 3 as first discovered in 
(an earlier version of) F-M. Both F-M and Benoit and Krishna (1985) must 
resort to the following assumption to get any meaningful folk theorem: 

* A referee has pointed out that uniformity also holds for all u within any compact set K 
C int V. Indeed, 6, < 1 and TI < 30 obtain just as before, with minor alterations. Next, we can 
clearly choose Q so that (1) is true for all u E K, and do likewise for S and P. That is, we 
can use the same parameters for all u E K, which establishes the claim. This remark applies 
with equal force to Theorem 3.4 below. 
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(FD) The feasible and individually rational payoff set for all players 
has dimension n, or is of full dimension. 

Now in any one-shot game, a given punishment or reward may have 
externalities. For instance, punishing i may necessarily inflict damage on 
j; or conversely, j may reap a windfall from i’s misfortune. But when the 
game has three or more players, we cannot take advantage of a natural 
duality inherent in two-player punishment strategies. In effect, two players 
can simultaneously punish one another (at the mutual minimax point)-a 
feat not possible when there are three or more players. A full-dimensional 
payoff space basically sidesteps this impasse by eliminating the exter- 
nality. That is, (FD) allows us to tailor a given punishment to hurt only its 
intended victim. As it turns out, however, we may dispense with (FD) 
altogether if we are willing to sacrifice uniformity. 

3.2. A NONUNIFORM n-PLAYER FOLK THEOREM. Let u = (a,, u2, 
. . . ) u,) be feasible and strictly individually rational for the n-player 
normal form game G. Then VE > 0 3T0 < m so that VT 2 T,, 36, < 1 so 
that 6 E [a,, 1] =$ OLG (G; 6, T) has a subgame perfect discounted 
average payoff within E distance of u. 

Proof. We assume the entire setting and preliminaries established in 
Theorem 3.1. That uk # uk Vk E N is crucial. We may thus choose a 
correlated strategy cc so that Ui(c*) = (ui + vi)/2 > 0 Vi E N. By design, 
no player is indifferent between a * and c*, although all prefer a* or c* to 
being minimaxed. We may also select correlated strategies a’, . . . , a” 
yielding positive payoffs for all players, and such that Uk(ak) < min ((uk + 
uJ/2, UJ Vk E N and U,(ak) 5 U,(a’) Vk, 1 E N. We should emphasize that 
ak is fashioned to hurt k and still leave all players with strictly individually 
rational (though possibly diminished) payoffs. 

At the heart of the program below is the evolution of the parameters h, 
y, and rr. When positive, A E N U (0) now records the identities of players 
deviating late in an overlap, and targeted for the punishment ah at the 
outset of the next overlap. Next, y E N U (0) is an overlap counter, initially 
set at its equilibrium value of 0; if y # 0, a change in equilibrium paths 
(7~ = 0 vs r = 1) is scheduled to occur when player y is replaced. In 
equilibrium, a* [resp. c*] is played on path rr = 0 [resp. 7~ = 11. We 
denote arbitrary players by j and k, and use the notationj >i k to mean, 
literally, “playerj is older than k when player i is oldest”; that is, either 
i 4 j < k orj < k < i or k < i d j, implying that j will die before k does. 
Finally, because the strategies of fellow team members are identical, we 
identify players 1 and n + 1 (so that y = n + 1 is interpreted as y = 1, 
for instance). 

In the overlap depicted below, player i is oldest, and the equilibrium 
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outcome sequence is a*, . . . , a*; b’, . . . , b’. Once more, the 6’ reward 
sequence lasts S periods. We begin on the path r = 0 with A = y = 0, 
andr = 1. 

0 Reset t t 1. If A = 0, start 2; else start 1. 
1. Play ah until t = P. [Zfj deuiates, start 4.1 
2. Playa*ifn=Oandc*ifr= luntilt=T-S.[Zfjdeuiatesat 

t 5 T - Q, - S, start 4; ifk deviates at t > T - Q, - S, start 7 if k = 
i and start 8 if k # i.] 

3. Play 6’ until t = T. [Zf k Z i deviates, start 8.1 Then reset A t 0, 
and go to (*). 

4. Play Mj for Q, periods. [Zf k #j deviates at t I T - Q, - R - S: 
Start5ifuk<ukandr = Oorifvk>ukandrr = 1,butstart6ifvk>uk 
andz- = Oorifv,<u,andn = l.Zfk#jdeviatesatt>T- Q, - 
R - S, start 7 if k = i and start 8 if k # i.] Then reset r t 1, set y t j, 
and return to the main path. 

5. Switch paths 7~ + 1 - 7~, and return to the main path. 
6. (a) Ifj >i k, set y + k. Then return to the main path. 

(b) If k zij, set j t k. Then increment r t r + 1, and restart 4. 
7. Play M’ until t = T. [Zf k # i deuiates, start 8.1 Then reset A t 0, 

and go to (*). 
8. Play e* until t = T. Then set A * k, and go to (*). 
(*) If y = i, switch paths r + 1 - rr and reset y t 0. Increment i c 

i + 1. Then restart the program. 

See the Appendix for selections of suitable parameter values, T,,, and, 
when T 2 T,, a minimal discount factor 6,(T) so that the program is 
subgame perfect .9 Q.E.D. 

We now briefly review the essence of the program. It is the creation of 
a dual-track equilibrium path that permits us to exploit the players’ strict 
preferences between a * and c*. Focus on the many plays of a* [or c*, its 
off-the-equilibrium-path counterpart]. First note that we need not worry 
about any deviations “late” in an overlap (in the buffer zone), for we can 
minimax the oldest player i until he dies, effectively denying him his 
coveted reward phase. This is buttressed by the threat to impose the 
next overlap’s punishment phase should any younger player j deviate (for 
instance, by opting not to administer the above lengthy punishment). 
Now consider the play prior to the buffer zone. We discourage any early 

9 To ensure that strategies are resilient, we could have used an optional flag p E N U {0}, 
so that when p = i the program is set to return to the principal equilibrium path n = 0 exactly 
n - 1 overlaps after player i dies. This measure is later incorporated into Theorem 4.1. 
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deviations from a * [or c*] by threatening to minimax the culprit Q, times. 
Here is the rub: Is this threat credible? Indeed, the punishers may suffer 
more than the criminal. Because 6 < 1, we must at all costs avoid an 
upward spiral of progressively longer minimax phases. We therefore ex- 
ploit the natural age asymmetry of the overlapping generations setting. 
For earlier deviants from the minimax phase who prefer the path 7~ = 0 
[or rr = 11, we can credibly threaten to abandon the minimax phase and 
switch paths. But what if a punisher who prefers the other path v = 1 [or 
r = 0] deviates? Well, if he is younger than the original culprit, we tell 
him, “Had you obeyed the equilibrium, you would have enjoyed your 
preferred path r = 1 [or T = 01 as soon as the culprit died; however, we 
shall now defer this path change until you die.” Otherwise, if the deviant 
punisher is older than the culprit, we proceed to minimax the would-be 
punisher for Q2 periods. We choose Q, , Q,, . . . , Q, inductively to ensure 
that progressively older players will opt not to deviate from an ongoing 
minimax phase. 

It is also important to observe that the program and its verification make 
no essential use of the identical length of the overlaps; it only requires 
that each exceed the computed value T. Thus, our folk theorem actually 
applies to the slightly more general class of games considered in Kandori 
(1989). Setting T = (T, , T,, . . . , TJ, we may define OLG (G; 6, T) exactly 
as was OLG (G; 6, I”), except that point 2 of its definition is replaced by 

2*. Player k + tn from team Sk dies and is replaced by player k + 
(t + 1)n just after time (T, + . * * + TJ + t(T, + * * . + TJ, fork E N 
and t = 0, 1, 2, . . . . 

This yields a quick constructive proof of 

3.3. THEOREM (Kandori, 1989). Let u = (aI, u2, . . . , a,) befeasible 
and strictly individually rational for the n-player normal form game G. 
Then VF > 0 3 T,, < 03 so that V T % (T,,, . . . , T,) 3 6, < 1 so that 6 E 
[a,, 11 + OLG (G; 6, T) has a subgame perfect discounted average payoff 
with E of u. 

The original result of Kandori (1989) is actually weaker, as T, depends 
on(T,,. . ., T,). It proves illuminating to contrast his result and strategies 
with ours. To a large extent, the two analyses have fundamentally different 
focuses: Kandori emphasizes not the overlap, but the generation, where 
generation t 2 0 consists of players {I + tn, 2 + tn, . . . , n + tn}. Instead 
of the n-fold “ratcheted” minimax mechanism that is the keystone of our 
approach, Kandori devotes the entire overlaps when players 2 + tn, 3 + 
tn, . . . , n + tn are the oldest to maintaining equilibrium discipline over 
generation t; it is here that his “terminal payments” are apportioned, 
irrespective of the target equilibrium payoff. Unfortunately, this procedure 
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FIGURE 3 

compromises any possible application of his result to all but the most 
asymmetrical age hierarchies. Indeed, his proof requires (T2 + . . . + Z’,,)/ 
T, 3 0 as E + 0. Essentially, his folk theorem is best suited to economic 
organizations with periodic mass (though staggered) departures of all 
players. 

Note that we often opt to wait as many as y1 - 1 overlaps until a deviator 
“dies” before throwing a party for his punishers. Unfortunately, the very 
nature of this approach limits the utility of our folk theorem. For such 
threats can remain credible only so long as @-‘jr exceeds some constant 
8 E (0, 1). It is in this sense that the overlap length T and the minimum 
possible 6, must covary. 

Even more telling is a simple continuous time implication of the covari- 
ante condition. That is, let 6, = eerA, where r > 0 is the interest rate and 
A the time interval between periods, and set 7 = AT. Then our equilibrium 
is subgame perfect so long as r(n - 1)~ < - log 8 < x. In other words, 
players cannot live “too long” or our folk theorem might not obtain. 
Whether this result is true in general is an open question; however, in 
discrete time, we can say something more definite: For a given discount 
factor, the overlap T cannot be too large, or would-be punishers may view 
the (heavily discounted) future rewards as insufficient compensation for 
repeatedly minimaxing another player. We illustrate this hitch with the 
simple coordination game in Fig. 3 devised by F-M. 

EXAMPLE 3. Consider G,. In this game, player 1 chooses rows, 2 
chooses columns, and 3 chooses matrices. It is crucial that all three players 
receive the same payoff, yielding a one-dimensional individually rational 
set of feasible payoffs. Thus (FD) is not satisfied. Despite the fact that the 
minimax point is (0, 0, 0), we have the following result”: 

CLAIM. Foral10<6<1andO<e<~,3To<~sothatT~To~ 
OLG (G,; 6, T) has no subgame perfect discounted average payoff less 
than a - E. 

I0 The claim is stronger than it seems, as its proof in no way depends on our standard 
assumption that team members use identical strategies. I am grateful to a referee for inquiring 
on this point. 
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Proof. Let the overlap length be T. Let w,Jt) be the least subgame 
perfect discounted total payoff for a player with t periods to go in his kth 
last overlap. Then w,(T) is the worst punishment we may inflict on any 
player. We remark that since T < 00, each wk(t) does indeed exist. We 
now shift gears. Decompose w*(t) and w&t) into payoffs accruing in each 
overlap, i.e., w*(t) = w:(t) + 6’w:(T; t) and w3(t) = w:(t) + Vw:(T; t) + 
tY+*wgT; t). 

Next, as F-M argue, for any given play of the game, the Pigeon-Hole 
Principle yields some player who can gain at least 4 by deviating. This is 
the linchpin to the whole analysis. Define ~~(0) = 0 V k. In order that no 
one-shot deviations by the oldest, middle, or youngest players (respec- 
tively) be profitable, we must have for t = 1, 2, . . . , T 

%(t) - 6’w:CT; t> - S”Tw:(T; t) = w;(t) 2 f + aw,(t - I), 

or 

w3(t) - S’+Tw;(T; t) = w;(t) + 6’w:(T; t) 2 4 + 6w,(t - I), 

or 

and 

w&) 2 a + Sw,(t - 1); 

w*(t) - Vw:(T; t) = w;(t) 2 t + 6w,(t - I), 

or 

w*(t) 2 a + Sw,(t - l), 

or 

1 -ST wz(t) + s*+Tm 2 t + Sw,(t - 1); 

and 

w*(t) 2 4 + Sw,(t - l), 
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1 - 6r 
w,(f) + 6’ 1 _ 6 - 2 a + 6w,(t - l), 

or 

w,(t) + s’+$ a + 6w,(t - 1). 

Because each wj,(T; t) < l/(1 - a), we can choose a minimum overlap 
length T, < m sufficiently large so that if T 2 To, then the above sets 
respectively imply that 

w&t) 2 $ + min @w,(t - l), 6w,(t - l), 6w,(t - l)), 

and 

w*(t) 2 4 + min @w,(t - l), 6w,(t - l), 6w,(t - 1) - s/2), 

and 

w,(t) 2 f + min @w,(t - I), 6w,(t - 1) - ~/2,6w,(t - 1) - s/2), 

wheret = T, T - 1,. . . , 12&T] + 1. (Here, lx] is the integer part of x.) 
By iterating these inequalities over the relevant range of t’s, and using 
w,(t - 1) 2 0, we have Vk 

w#) 2 (4 - ~12) + 8 min (w,(T - l), w,(T - l), w,(T - 1)) 

2 . . . 2 (4 - s&)(1 + 6 + fj* + . . . + fjL(‘-24TJ-l) 

2 (a - E/2)(1 - 2&)( 1 + s + * * * + sT) 

= (f - & + &2)(1 + 6 + * * * + sr) 

> (a - &)(l + 6 + . * * + P), 

where the last inequality is assured for T,, large enough. Normalizing w,(T), 
we find that the worst subgame perfect discounted average payoff is at 
least 4 - E, as required. 
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The absence of a full-dimensional payoff space thus implies an upper 
bound on the overlap length, and consequently on the players’ lifespans. 
A nonuniform folk theorem is simply the best we can hope for with this 
game.” 

This naturally leads us to consider an n-player uniform folk theorem. 

3.4. A UNIFORM n-PLAYERFOLKTHEOREM. Let u = (a,,. . .,a,,) 
be a feasible and strictly individually rationalpayoff vectorfor G. Suppose 
that (FD) holds. Then Qe > 0 3 T,, < mand6,< IsothatTrT,,and6E 
[a,, l] + OLG (G; 6, T) has a subgame perfect discounted average payoff 
within E of u. 

Proof. We now use much of the framework of Theorem 3.2. For 
instance, the typical equilibrium overlap is the same. The principal point 
of departure in this analysis is that (FD) allows us to design each personal 
punishment vector aA so that only player A suffers (yet with a positive 
payoff), and all others receive their equilibrium payoffs. Although not 
required for the initial punishment phase, this feature does allow us to 
forego the labyrinthine minimax mechanism. We illustrate the equilibrium 
program for the overlap when i is oldest, and begin with A = 0. 

0 Reset t t 1. If A = 0, start 2; else start 1. 
1. Play ah until t = P. [Zfj deviates at t I T - Q - R - S, start 4; 

ifk deviates at t > T - Q - R - S, start 6 ifk = i and start 7 if k # i.] 
2. Play a* until t = T - S. [Zfjdeviates at t 5 T - Q - R - S, start 

4; ifk deviates at t > T - Q - R - S, start 6 ifk = i and start 7 ifk # 
i.] 

3. Play b’ until t = T. [Zf k # i deviates, start 7.1 Then reset A t 0, 
and go to (*). 

4. Play Mj for Q periods. [Zf I Zj deviates, start 5.1 Then set 1 t j. 
5. Play a’ for R periods. [Zfj deviates at t 5 T - Q - R - S, restart 

4; if k deviates at t > T - Q - R - S, start 6 if k = i and start 7 if k # 
i.] Then return to the main path. 

6. Play M’ until t = T. [Zf k # i deviates, start 7.1 Then reset A t 0, 
and go to (*). 

7. Play e* until t = T. Then set A + k, and go to (*). 
(*) Increment i + i + 1, and restart the program. 

See the Appendix for selection of To and 6, so that the program is subgame 
perfect for suitable parameter values. Q.E.D. 

I’ In point of fact, Smith (1990) shows that (FD) can be replaced here and in the finitely 
and infinitely repeated contexts with a less onerous requirement: The payoff space must 
have two-dimensional projections onto every coordinate plane. 
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We comment briefly on the above program. The minimax and subse- 
quent R period recovery phases are a slight twist on the two-tier punish- 
ment scheme in F-M: The deviant is first minimaxed, and then (he alone) 
suffers through the recovery phase. Should anyone deviate from mini- 
maxing another, the recovery period commences at once (unlike 
F-M)-only now it is the deviant punisher who experiences his personal- 
ized punishment vector. As an aside, such a punishment mechanism does 
not resort to “punishment loops,” i.e., wherej must minimax k because 
k fails to minimax j. 

4. SUMMARY AND EXTENSIONS 

Thus far, the uniform and nonuniform folk theorems might appear dis- 
tant cousins at best. Although similar in statement, the different premises 
lead to somewhat disparate proofs. And yet in the search for subgame 
perfection, both results must essentially tackle the same problem: How 
does one disentangle the payoff streams of all n players? Indeed, when 
IZ > 2, this is the principal difficulty faced. There must be proper compensa- 
tion for engaging in the potentially self-lacerating punishment of a fellow 
player. But if, in a standard supergame with discounting, all players receive 
identical payoffs, this may not be possible without also rewarding the 
original deviant. F-M is unequivocal on this point. At the very least, 
players’ payoff sequences must be linearly independent. 

The uniform and nonuniform folk theorems represent two distinct reso- 
lutions of this quandary. In the uniform case, full-dimensionality allows 
us to fully disentangle the payoff streams at the stage game level; conse- 
quently, the OLG structure is really not needed for this purpose. Not 
surprisingly, F-M and Benoit and Krishna (1985) exercise this option in 
their models. In the nonuniform case, however, to deal with games like G,, 
we can repeatedly exploit the fact that the younger players will continue to 
receive payoffs long after the older ones are gone. Intuitively then, to 
ensure that all deviations are eventually punished, players must condition 
their actions in the current overlap on happenings over the past 12 - 1 
overlaps-that is, for as long as any player now in the game has been 
alive. Prior history can be safely ignored. 

In the sequel, we consider a cross-breed of our OLG model and a 
standard supergame. In particular, we define OLG’” (G; 6, T) analogously 
to OLG (G; 6, T), except that the first m < n of the n teams are rather 
degenerate, each consisting of just a single i&&e-lived player.12 Thus, at 
the end of exactly m of the “overlaps” in each “generation,” no player 

" This differs from the work of Fudenberg ef al. (1990) and Fudenberg and Levine (1989), 
where the “short-run” players each live for one period only. 
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will die. Note that OLG” (G; 6, T) = OLG (G; 6, T), while OLG” (G; 6, 
T) is rather awkward notation for a standard supergame. Next, let P”V 
be the orthogonal projection of V onto its first m coordinates (in R”). For 
instance, P”V = V, whereas P’V is simply the range of feasible payoffs 
for team 1. We then have the following natural extension of both Theorem 
3.2 and the perfect information folk theorem in F-M. 

4.1. NONUNIFORM FOLK THEOREM FOR A HYBRID OLG-SUPERGAME 
MODEL. Let u = (u,, u2, . . . , u,) be feasible and strictly individually 
rational for the n-player normal form game G. If dim P”V = m, then 
VE > 0 3T, < 3~ so that t/T 2 T,, 36, < 1 so that 6 E [a,, l] 3 OLG”(G; 
6, T) has a subgame perfect discounted average payoff within F of u. 

Proof, See the Appendix. 

Note that Theorem 3.2 considers the case m = 0, whereas F-M proved 
that uniformity obtains when m = n. A remarkable corollary of this result 
is that Theorem 3.2 also holds when exactly one of the teams is a single 
infinitely lived player. I3 In retrospect, the logic is most compelling: Indeed, 
the earlier algorithm for our nonuniform folk theorem is valid so long as 
the life expectancy of any two current players differs by at least one 
overlap. 

APPENDIX 

Verification of the Program for Theorem 3.2. As with Theorem 3.1, 
we first suppose 6 = 1, and show that each punishment can be made an 
effective deterrent. Since U,(ak) > 0 for all k E N, we may choose Q, so 
that 

w + Q,U,(a”) > /3 + 1 (2) 

for all k E N. This ensures that step 4 deters early deviations from steps 
1 and 2. We then select the Q’s inductively so that given Q,, Q,, , satisfies 

Q/w + (Q,+I - Q, + l)U,(ak) > p + 1 

forallkENandl= 1,2,. . . , n - 1. This guarantees that the progressively 
longer minimax phases promised by step 6(b) prevent (appropriate) devia- 
tions from step 4. Next, for step 5 to discourage (appropriate) deviations 
from step 4, we must choose R large enough that 

I3 These demographics correspond, for instance, to those in Atkeson (1991). 
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Q,w + R max (u,, (uk + uJ2) > /3 + (Q, + R - 1) min (uk, (uk + U2) + 1 

for all k E N. Step 7 deters late deviations from steps 2 and 4 by the oldest 
player if S satisfies 

Qnw + SUk(bk) > /I + 1 

for all k E N. Continuing, step 8 discourages all other players’ late devia- 
tions from steps 2, 3, 4, and 7 if we select P so that 

(Q, + S)o + (P + R) min (uk, (uk + ~$2) > P 

+ (Q, + R + S - 1)~~ + PU,(d) + 1 

for all k E N. Note that we can define 6, and T, as was done in Theorem 
3.1. Next, we select a minimum overlap length 7’, 2 max (T, , P + Q, + 
R + S) so that step 6(a) deters (appropriate) deviants from step 4: 

Q,~ + (T, - S) max (uk, (uk + uJ2) > P + (Q, - 1) max (% (% + u&/2) 

+ (TO - S) min (uk, (uk + U&/2) + 1 

for all k E N. Finally, given T 2 T,,, there is some level of discounting 6,, 
E [a,, 1) for which the program remains credible. 

Verification of the Program for Theorem 3.4. Assume S = 1. Then step 
4 deters early deviations from steps 1, 2, and 5 if Q satisfies (2). Step 5 
will prevent any deviations from step 4 if R is large enough that 

Qo + Ruk > j3 + RU,(d) + (Q - lb, + 1 

for all k E N. Next, step 6 discourages late deviations from steps 1, 2, and 
5 by the oldest player if we select S so that 

Qw + RU,(d) + S&(69 > /3 + 1 

for all k E N. Finally, step 7 deters all younger players from deviating late 
during steps 1, 2, 3, 5, and 6 if P satisfies 

(Q + R + S)o + PuL > p + (Q + R + S - l)u, + P&(ak) + 1 

for all k E N. As this program is viable for any T 2 P + Q + R + S, we 
may let T,, = max (T, , P + Q + R + S). Finally, because all punishments 
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are completed within P + Q + R + S periods, the equilibrium remains 
subgame perfect for discount factors exceeding some 6, E [S, , 1). 

Q.E.D. 

Proof of Theorem 4.1. We first note that if dim PmV = m, then dim 
V = d 5 m. Hence, V is locally the intersection of n - d hyperplanes in 
R”. In particular, we may assume WLOG that the players are ordered so 
that the payoff vector x = (x1, . . . , x,) close to u is feasible exactly when 

x, = (Y,,o + (Y,,l XI + . . . + (Y,,dxd (3) 

forr=d+l,..., n. Then, as with Theorem 3.2, we may select rz 
correlated strategies al, . . . , a” yielding positive payoffs to all players, 
with ak designed to give player k a payoff below min (&, (uk + uJ2); 
however, by (3), we may insist that fork = 1, 2, . . . , m, the punishment 
ak leaves all other playersj # k, j = 1, 2, . . . , m with their equilibrium 
payoffs. 

We now carefully amalgamate the programs of Theorems 3.2 and 3.4. 
The idea is the following: For deviations by the infinitely lived players 1, 
2 f *, m, the threat to shift into a recovery phase deters deviations from 
the minimax phase; for all other players, we must use the punishment 
mechanism of our nonuniform folk theorem. 

The typical equilibrium overlap is once more the same as in Theorem 
3.2. We begin on the path r = 0 with A = y = p = 0, and r = 1. Player 
i is the oldest. 

0 Rest I t 1. If h = 0, start 2; else start 1. 
1. Play a” until t = P. [Zfj deviates, start 4. ] 
2. Play a* if rr = 0 and c* if r = 1 until t = T - S. [Zfj deviates at 

t 5 T - Qn-m+, - R - S, start 4; if k deviates at t > T - en-,,,+, - 
R - S, start 8 if k = i and start 9 if k # i.] 

3. Play b’ until t = T. [Zfk # i deuiates, start 9.1 Then reset A * 0, 
and go to (*). 

4. Play Mj for Q, periods. [Zf k # j deviates at t 5 T - Qnmm+, - 
R - S:Setltkandstart5ifkIm;elsestart6ifvk<ukand~ = 0 
orifvk>ukandn= l,butstart7ifvk>ukand~=Oorifvk<ukand 
rr = l.Zfk#jdeviatesatt>T- Qn-,,,+, -R - S,startgifk= iand 
start 9 if k # i.] Then set y + j, 1 t j, and reset r + 1. Return to the main 
path if j > m. 

5. Reset r t 1, and play a’ for RI periods. [Zf j deviates at t 5 T - 
Qn-m+, - R - S, restart 4; if k deviates at t > T - Qnmm+, - R - S, 
start 8 if k = i and start 9 if k # i.] Then return to the main path. 
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6. Switch paths 7~ t 1 - 7r, and return to the main path. 
7. (a) Ifj >i k, set y t k, p + i, and return to the main path. 

(b) If k >; j, set j + k and p + i. Then increment r t r + 1, and 
restart 4. 

8. Play M’ until t = T. [Zfk # i deviates, start 9.1 Then reset A t 0, 
and go to (*). 

9. Play e* until t = T. Then set A t k, and go to (*). 
(*) If y = i, switch paths rr + 1 - r and reset y t 0. Increment i t 

i + 1. If p = i, reset 7~ t 0 and p t 0. Then restart the program. 

We leave it as an exercise to verify that there are values of Q,, . . . , 
Qn-m+, 7 R > R, , S, P, and T,, so that all threats in the above program are 
strict deterrents. The theorem follows. Q.E.D. 
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