Measurements of jet substructure in quark & gluon jets

Robin Aggleton (Uni. Hamburg) on behalf of the CMS & ATLAS collaborations

QCD & Jet Substructure

Jet substructure fundamental tool in many SM & BSM analyses \rightarrow "Tagging" decays of W/Z/H/t

Understanding of quark/gluon jet substructure vital \rightarrow QCD often large background

Wide variety of predictions available; data not always well-modelled

- \rightarrow Often large source of uncertainty when evaluating taggers
- \rightarrow Gluon jets less well-modelled, fewer constraining measurement

Jet substructure measurements offer insight into various contributions & scales \rightarrow Feedback into better understanding, better modelling, better tagging

Phys. Rev. D 97 (2018) 072006

http://cms-results.web.cern.ch/cms-results/publicresults/publications/B2G-17-001/index.html

Overview of measurements

Jet production vs distance parameter 2005.05159

Jet mass <u>JHEP 11 (2018) 113</u>

Jet substructure observables in $t\bar{t}$ Phys. Rev. D 98 (2018) 092014

Soft drop jet observables Phys. Rev. D 101 (2020) 052007

Lund Jet Plane Phys. Rev. Lett. 124 (2020) 222002

Jet production vs distance parameter

Anti-k_T jet clustering characterised by distance parameter R

Approx. size in η - ϕ plane

How much energy is cluster by jet depends on:

- Emission of secondary quarks/gluons that can fall outside R
- Non-perturbative hadronisation
- Additional particles from the underlying event (= multiple interactions between the proton remnants)

Measure jet p_T spectrum relative to R = 0.4 jets in dijet events, unfolding result

υн

Amounts depend on whether jet initiated by quark or gluon

Jet production vs distance parameter

Reasonable agreement with Powheg+Pythia8 Large R with lower p_T less well-modelled

Comparison with NLOJET++ calculations: \rightarrow clear that NLO and NP corrections required

Resummed calculations even better

Soft Drop JHEP 1405 (2014) 146

Jet grooming technique: remove soft, wide-angle radiation from jet

- Correlations amongst out-of-jet soft gluon emissions & wide-angle radiation from other jets \rightarrow causes non-global logarithms for non-global observables, hard to handle beyond leading-log \rightarrow grooming removes these
- Reduces effects of initial-state radiation (ISR), underlying event (UE), & pileup
- Accesses more of the core parton information

Recluster jet with Cambridge-Aachen (C/A), then work backwards along clustering history:

If subjets satisfy condition: $\frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}$ then stop \rightarrow this is the groomed jet

Otherwise, redefine the jet as the larger-p_T subjet, and iterate

z_{cut}: controls soft/hard-ness of groomed-away radiation

β: controls whether collinear/wide-angle radiation groomed away Robin Aggleton | robin.aggleton@cern.ch

Soft Drop Observables

Measure several observables after applying soft drop, and varying soft drop parameters:

- Dimensionless jet mass, $\rho = \log(m^2/p_T^2) \rightarrow \text{less dependence on } p_T$
- p_T balance, $z_g = \frac{\min(p_{T,j1}, p_{T,j2})}{p_{T,j1} + p_{T,j2}}$
- Splitting opening angle, $r_g = \Delta R_{12}$

►
$$z_{cut} = 0.1, \beta = 0, 1, 2$$

All related: $\rho \sim \log(z_g r_g^2)$

Measure in dijet events: 2 anti- k_T R=0.8 jets, $p_T^{\text{leading jet}} > 300$ GeV, $p_T^{\text{leading jet}} < 1.5 \times p_T^{\text{subleading jet}}$ Unfold back to particle-level

Soft Drop Observables Sature

Compare data with analytical calculations at varying orders in α_{s} : (1704.02210, 1712.05105, 1603.09338, 1603.06375)

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

Similar results from CMS using 2015 data looking at ungroomed & groomed jet mass in dijet events:

Jet Substructure Observables in tī

Strong dependence of ΔR_g on $\alpha_S^{FSR} \rightarrow$ can use to extract most-compatible value:

11

A different way to represent a jet: start with a hard quark/gluon core, with a soft emission

z = relative momentumfraction of emission vs core

 ΔR = separation between emission & core

Ĥ Universität Hamburg DER FORSCHUNG I DER LEHRE I

2007.06578

 \overline{Z}

Lund Jet Plane SATLAS

- Use high-p_T dijet events:

 $p_T^{\text{leading jet}} > 675 \text{ GeV}, p_T^{\text{leading}} < 1.5 \times p_T^{\text{subleading}}$

- Cluster anti-k_T R= 0.4 jets
- Identify reconstructed tracks (charged hadrons) with $p_T > 500$ MeV within $\Delta R < 0.4$ of jets
 - Uses fine granularity of tracker
- Cluster tracks (charged hadrons) with C/A
- Iteratively de-cluster: treat each step as an emission \rightarrow add a point to Lund plane
- Unfold reconstructed to charged-particle level

υн versität Hamburg

Take "slices" through phase space:

15

In(1/Z) UE, MPI hard & wide

In(1/*z*)

10⁻²

- Lund Plane can isolate physical effects
- Difference in Herwig7 parton showering clearly hard, wide-angle emissions
- Collinear region more sensitive to hadronization mouer (Sherpa AHADIC vs Lund string model)

Lund Jet Plane

Compare with calculation of Lund Jet Plane:

- Valid down to $k_T \approx 5 \text{ GeV}$
- Combined with non-perturbative corrections from MC

Good agreement with data in well-understood region

2007.06578

Summary

Wide variety of measurements probing nature of QCD

- Across parton showering, hadronisation, etc
- Pushing our understanding through new techniques & observables
- Precision comparison between LHC data & pQCD predictions
 - Soft Drop key tool to improve understanding of substructure & at high p_T
- Clearly identify regions in which existing MCs perform strongly... and not so strongly
 - Exciting to see feedback of results into simulation

New generation of taggers exploit even more information about individual jet constituents

Modelling under even more scrutiny

Robin Aggleton | <u>robin.aggleton@cern.ch</u>

Grooming now a standard tool, not just for highly-boosted W/Z/H/t; Lund Jet Plane can help decouple the various effects

Herwig7 tunes

		SoftTune	CH1	CH2	CH3
$\alpha_S(m_Z)$		0.1262	0.118	0.118	0.118
PS	PDF set $\alpha_S^{\text{PDF}}(m_Z)$	MMHT2014 LO 0.135	NNPDF3.1 NNLO 0.118	NNPDF3.1 NNLO 0.118	NNPDF3.1 NNLO 0.118
MPI	PDF set $\alpha_S^{\text{PDF}}(m_Z)$	MMHT2014 LO 0.135	NNPDF3.1 NNLO 0.118	NNPDF3.1 LO 0.118	NNPDF3.1 LO 0.130
$p_{\perp,0}^{\min}$		3.502	2.322	3.138	3.040
b		0.416	0.157	0.120	0.136
μ^2		1.402	1.532	1.174	1.284
$p_{ m reco}$		0.5	0.4002	0.479	0.471
$\chi^2/N_{\rm dof}$ (fit)		_	4.15	1.54	1.71
$\chi^2/N_{\rm bins}$		12.5	5.11	1.50	1.67

Table 2: Values of the parameters for SoftTune [3, 12], CH1, CH2, and CH3.

