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Abstract. We prove that for every ¢ > 0 there exists a constant K = K(c) such that every
graph G with » vertices and minimum degree at leust cn contains a cycle of length ¢ for
every even £ in the interval [4,ec(G) — K] and every odd ¢ in the interval [K, 0c{G) — K],
where ec{(7) and o¢(G) denole the length of the longest even cycle in & and the longest odd
cycle in G respectively, We also give a rough estimate ol the magnitude of £.
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1. Introduction

In this note we will study the set of distinct cycle lengths in graphs. For a graph G,
we define the cycle spectrum CS(G) of (7 as the sequence £ < --- < £, of lengths of
cycles in G. The study of cycles in graphs has long been fundamental, and many
questions about properties of graphs that guarantee some particular range of
cycle Jengths have been considered. For example, a graph G with n vertices is said
to be pancyclic if CS(G) = [3,n]. 1t was proved by Bondy [5] that if G is a
hamiltonian graph of order n with [E(G)| > = then either G is pancyclic or # is
even and G = K,,2. '

Brandt [7], [8] intreduced the idea of weakly pancyclic graphs, that is, graphs
with cycles of all lengths from the girth to the circumference. Here the girth ¢(G) is
the fength of the shortest cycle in G, and the circumference ¢(G) is the length of the
fongest cycle. Brandt showed that if |£{(G)| > [(n — 1)*/4 + 1] then G is weakly
pancyclic. Bollobas and Thomason [4] proved that if G is a nonbipartite graph of
order # and size at least {#?/4] — n + 59, then G contains a cycle of length ¢ for
4 < ¢ < ¢(¢). Degree conditions for weakly pancyclic graphs were considered by
Brandt, Faudree and Goddard [9], who showed in particular that if ¢ is a
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non-biparlite 2-connected graph with minimum degree 8{G) > n/4 4+ 250 then G
is weakly pancyclic unless the shortest odd cycle in ¢ has length 7.

In graphs with fewer edges, it is still the case that a reasonably large density
can force a large range of cycle lengths, Bondy and Simonovits [6] showed the
very general result that if' [E(G)| > 100kn' ' /% then G contains the cycle (s, for
every m € [k,kn'/¥], answering a conjecture of Erdés ([11], [13]). (For a recent
improvement of this result see Verstraéte [19].) Others considered the question of
how many different cycle lengths were present in (. Proving a conjecture of Erds
and Hajnal {12], Gyarfas, Komlés and Szemerédi showed that for suitable positive
constants a, b, if the minimum degree §(G) > b then

I
> =>alog ¥G).

wesioy !

This implies that a large number of distinct cycle fengths exist in G. As part of the
difficult and intricate proof of this result, they showed that most even cycles were
present over a certain interval dependent on the minimum degree (most meaning
with the exception of multiples of 2 for some integer r > 2). See Bollobés ([2] and
[3]) for other results in this general area.

Faudree suggested the question of measuring the maximum gap in the cycle
spectrum for graphs under various edge density conditions, For a graph G and a
positive integer 5, we say that the cycle spectrum CS(G) is s-dense in the interval
[k, m] if for every £ € [k, m], at least oneof £,4 — 1,... ¢ — s + |isin C8(G). For
example, the theorem of Bondy and Simonovits [6] implies that if
E(G)| > 100kn'* 1% then CS(G) is 2-dense in the interval [2f, 2fcn'”’]. This
approach was considered in [15] for graphs with minimum degree s £ where k
is a constant and also for graphs that are hamiltonian and have at ledst one pair
of adjacent vertices with high degree sum.

In this rote we also consider 4 minimum degree condition. Note that Bondy’s
theorem [5] (together with Ore’s classical theorem [18] that a graph with minimum
degree at least /2 is hamiltonian) implies that the cycle spectrum of any graph G
with 6(G) > n/2 is 2-dense in the interval {4, n]. Note that in this case # is the
circumlerence ¢(G) of G. Results of Fan [14] and Verstradte [19] {improving on
[I7]) show that il G is a graph with minimum degree 6 then the cycle spectrum of G
contains cd consecutive even integers, for a positive constant ¢. Our goal is to prove
the following theorem, which implies that for each ¢ > 0 there exists K such that afl
sufficiently large graphs G with 6(G) > en, the cycle spectrum CS(G) is 2-dense in
theinterval [4, ¢(G) — K. Below oc(G) and ec{G) denote, respectively, the length of
the longest odd cycle and the length of the longest even cycle in G.

Theorem 1. For every real number ¢ >0 there exists a constant K=K{c) de-
pending only on ¢ such that the following holds. Let G be a graph with n > 45K Jet
vertices and minimum degree at least en. Then G containg « cyele of length ! for
every even integer { € [4,ec(G) — K| and every odd integer t € [K,0c(G) — K].
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The simpler statement that & contains cycles of ail even lengths up to
¢(G) — K is not true, as the following example shows. Let m >3 be an odd
integer and suppose i = 2ms where s > 2 is an integer. We form a graph & from
a disjoint union of m copies KX}, 111, ..., Ky[Xm, Y] of the complete bipartite
graph K., by adding m vertex-disjoint edges ey,...,e, as follows. For
1 <i<m— 1welete join a vertex v of ¥; to a vertex of X, |, und we let e, join
a vertex of ¥, to a vertex of ¥} different from . Then §(H) = s = n/2m and
¢(G) = n — | but the longest even cycle has fength only 25 = n/m. This example
also shows that, for ¢ = 1/2m, Theorem 1 is best possible up to the error term &,
since H contains cycles of all even lengths in [4,7/m] and all odd lengths in
[2m + 2,n — 1] and there are no other cycle lengths. For general ¢ there is also
the simpler example of the complete bipartite graph with [cn] vertices in one class
and n — {ca] vertices in the other.

In our approach to proving Theorem 1, we show that K{c) = O{c™*).
However, we emphasize that this is only a very rough estimate and we do not
undertake to find the smallest possible value of K here. We remark that the proof
can be made somewhat simpler if we do not attempt to bound £ by a reasonable
function of ¢.

All graphs considered here are finite simple graphs. For terms not defined here
see [10].

2. Proof of Theorem 1

We begin by collecting a number of useful facts into a lemma. Parts (1} and (3) are
immediate. Results essentially the same as (2) appear in the work of many
authors, see eg. Beck [1]. For completeness we give its short proof in Section 3,

Lemma 2. Let B[U, W] be a bipartite graph with vertex clusses U and W. Let d(U)
and d{W) denote the average degree of vertices in U and W respectively. Then

. W has a subset W' with |W'| = |W|(d(W)/(2]U| — d{W})) such that every
vertex w in W' has dy(w) > d(W) /2. h

2. There exist nonempty subsets U" C U and W' C W such ihat the subgraph
BIU", W of B induced by U" UW" has dy«(u) > d{U)/2 for all ue U" and
din (W) = d(W) )2 for all w e W*.

3. B[U. W] has u puth of length at least 28(B)-1 starting from any vertex x of B,
where 8(B) denotes the minimum degree of B.

We shall also need the following elementary technical lemma. We include its very
standard proof in Section 3 for completeness. Here I'(v) denotes the neighbor-
hood of the vertex v.

Lemma 3. Let ¢ > 0 be given, and let G be a bipartite graph with vertex classes
Vo= {o, .. 0 and W, where |W) = n. Suppose r = [2/c¢] and d{v;} = en for
euch i. Then for some i #= jwe have () N (0} = 2n/2.
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Our first step in the proof of Theorem 1 will be to show that in a given graph
G, there exists a subgraph H consisting of a bipartite subgraph Hy of large min-
imum degree, whose number of vertices is a large constant, together with a long
path that joins one vertex of Hy to another, and is otherwise disjoint from H,. To
prove the theorem, we will show that a cycle of a given length # can be found by
“shortening” the path until it is only slightly shorter than ¢, and then adding a
path in Hy of precisely the right length to form the cycle.

Lemma 4. Let ¢ > 0 be given, und let G be a graph with n vertices and mininium
degree 6(G) > en. Let Ky > [50000(:_4], and suppose 1> SKye~ V. Let Cy be «
cyele in G of length at least 5Ky, Then G contdains a subgraph H consisting of

L.« bipartite graph Hy with vertex clusses X U{xp} and Y where |X| <Ky,
|Y| << Ky, 6(Hy) = k = 03[(0/4096, anel xo I3 adiacent to every vertex of Y,

2. apath P of length at least |Cy| — 4Ky and of the same parity as {Cy| that joins xy
fo a vertex xy of X, and iy otherwise disjoint from Hy,

Proof of Lemma 4. Let G be a graph as described and let Cy be a cycle in G with
length at least 5Ky, For convenience we fix an orientation of Cj. Let S be an
interval of Cy of order 2K, in other words § is a set of 2K, consecutive vertices on
Cy. Let &y  § be a subset of set Ky obtained hy laking alternate vertices in § (so
that all pairs of vertices in S, are an even distance apart in 5). Consider the
bipartite subgraph Gy = G[S;, V(G\S]. We note that (S, V(G\S) >
[Sol(en — |S]) = enKy/2, and so dg,(V(G\S) = ¢Ky/2. Thus applying Lemma
2(1) we obtain a subset W of F(G)\S such that |#]| > @ 1 — 2Kg), in which
every vertex of W) has degree at least ¢Kp/4 into S,

Our aim now is to identify a certain special subsct W5 of Wy. If W contains at
least ¢Kp/2(4 — ¢} vertices that are not on Cy, we let W, be a subset of W\ ¥ (Cy)
of size [cKy/2(4 — ¢)]. We refer to this case as Case A. Otherwise,
M NV(Cy)| > eln — 5Ky/2)/(4 — ¢), so since [V(CoOAS| <n — 2Ky we can
cover Co\S' by [(n — 2Ky)/2Ky] < n/2K, intervals of order 2K, Thus some
interval [/ in Cy\S of order 2K, contains al least 2cKy(n — 5K,/2)/
(4 — c)n > cKy/(4 ~ ) verlices of 7. In this case, which we call Case B, we let
W, be a subset of I M W) of size [¢Ky/2(4 — c}] such that all vertices of ¥4 are an
even distance apart in 7. In either case each vertex of W5 still has degree al least
cKp/4 into 8. )

Now we apply Lemma 2(2) o the bipartite subgraph G» = G[Sp, #5]. The
result is an induced bipartite subgraph B[Sy, W3], where each w & W4 has
ds,(w) > dg,(Wa)/2 > cKp/8, and each s S; has  dy(s) > de (Sp)/2 >
(f%l/lS(]!)d@_,(%)/z > CZK[), where Cy = Cz/lﬁ(ﬁf- = C‘). Then CK()/S < |S;| S Kg]
and oKy < |W3] < [eKo/2{4 — ¢)).

First we consider Case A. We choose xy to be lhe first vertex of §; on the
interval S (in our fixed orienfation). Let A4 be a set of size [¢2Ky] contained in the
neighbourhood of xy in W3, and let G* be the subgraph of B[Ss, W] induced by
M U {83\ {xg}}. Then each vertex of M has degree at least ¢K;/8 — 1 into S\ {xol,
so G has at least e2Kp{cKy/8 — 1) edges. Hence the average degree on both sides
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of G* is at least ¢2{cKy/8 — 1). Therefore, by Lemma 2(2) there exists a subgraph
HolX, Y] of ¢* with X C S5\{xp} and ¥ C M with minimum degree at least
ea(eKy/8 — 1)/2 > ¢*Ky/4096. Then HylX, Y] satisties (1) of Lemma 4. For (2),
we take x; to be the vertex of X that is farthest from x; on the interval S, and let
the path P be the segment of Cy that joins x, to xy and is disjoint from the rest of
X (note that xy and x| are an even distance apart in § and so P has the same
parity as Cp). Then P has length at least |Co| — 2Ky, This proves Lemma 4 in
Case A.

Now we turn to Case B, Let W5 = {w,...,w,} in the order in which they
appear on the oriented cycle Cy (recall they ail fall into the interval / and are all
even distances apart in 7). Let / be the smallest index such that there exists j </
where w, and w; have a common neighbourhood & of size [¢’Ko/128] in Sy. By
Lemma 3 applied (o B[S;, 3], we know that 7< [16/¢]. Let sy and s3 be
elements of & that arc farthest apart in the interval 8, and such that the
oriented path Colywy,s2) in Cy [rom w; to 5o is disjoint from the oriented path
Cn (S| s WJ,‘).

Consider the graph G* = GN\{s;,s2}, W\ {wy,...,w;,w;}]. Note that
each vertex in & \ {s|,52} has degree at least 2Ky — l6c™ I'— 2in G*. Further,
we know [N\ {s),s:}] > ¢’K/128 ~ 2. Thercfore the number of edges in G* is at
least

2 ) 2
£ K() 1() (‘”(13[{0 C‘K() C'K[)
-2 5 S — L — 2K,
([28 )(“K" ¢ ) =128 5 e o

Thus, the average degree on both sides of * is at least this number divided by
max{|M\ {si, 52}, Wi} < ¢Ky/6, which is greater than

36621{() 3 & . [2(,'2 CCQ_K(; C“K()

64 4 16 c 32 2048

4 and the second [rom the

Here the first inequality follows since Ky > 50000¢
definition of .
Applying Lemma 2(2) o &* we obtain a graph HlX, Y] with

X W\ {wy, .. owpw ) and Y C M {sy,s2} with minimum degree at least

Ky
K > .
— 4098

Then, setling xg = wy, we sce that Hy satisfies (1) as claimed.

To verify (2), we choose x| 1o be the element of X that is farthest from xp on
the interval 7, thal is, we let x; = w, where » < p is the highesi index such that
ws € X. Finally we let the path P be Cy(xy, 52 )0w;Cy(s1,x0). Note that s, and s, are
an cven distance apart in § and so P has the same parity as Cp(x1,xp). Then P has
length at least |Cy| — 4Ky, satislying (2). |
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We are now ready to prove Theorem 1.

Proof of Theorem [. Let K = 5Ky, where K = 130000c™°. Let Cy be a longest
even or a fongest odd cycle and let #y be the bipartile subgraph of G and P the
path guaranteed by Lemma 4(1). Recall that the minimum degree & of H; satisfies
c'31((]/4096 <k < Kp. We first note that the bipactite subgraph H; contains cycles
of all even lengths between 4 and 2k, by Lemma 2(3) and (he fact that xy is
adjacent to every vertex of ¥. We therefore need only check that G contains a
cycle of length ¢ for every ¢ in the jnterval [2k, £(P)] with ¢ the same parity as £(P),
where ¢(P) denotes the length of the path £.

Let 1 € [2k, £(P)] be fixed. We now describe a sequence ol paths £y, Py, ..., Py
with the following properties,

1. Each P, joins x, to x; and is otherwise disjoint from Hy, and its length has the
same parity as ¢(P),

2. KR =P,

3. UP) — Q<P ) < HP) — 1 for cach i, where O = 15¢=2 4 12¢~ ",

4 0P <t =4 <py ).

We begin by setting Py = P. Assume that paths 5,...,/% have been con-
structed. If' £(P) <t — 4 then we set f = i and stop. Otherwise we select
r = {3/c] vertices Z = {z1,...,2.} on P, spaced at distance 4 apart and let S be
the smallest interval centaining them. Note that this is possible since
UP) > 2k > 'Ky /2048 > 4r by definition of K. Then by Lemma 3 applied to
the graph G[Z, ¥{G\S] (with ¢ = 2¢/3), some pair z £ 2 in Z have at least
2¢*n/9 common neighbours in ¥(G)\S. If one such neighbour v is disjoint from
By U Hy, then we let £y be the path obtained by replacing the (z,2') segment of
P by z32’. Note that this shortens the path by an even length of at least 2 and at
most 4r. Otherwise at least 2(:2.'1/9 — 2Ky common neighbours of z and 2z fall
onto £. Since P, has length less than #, and # > 90Ke *, there is an interval /
in P of length at most 15¢ 2 that is disjoint from § and contains three common
neighbours and therefore two that arc an even distance apart in £, say y, and .
We abtain £, 1 by removing the {z,2') and (v, )n) segments of £ and adding the
edges zy; and 2y (or £y and zy», whichever resulls in a connected path). This
shortens P; by at least 2 and at most 4 + 15¢72. This completes the definition
of the paths P

Having found the path Py, which by (3) satisfies t — Q < &(P;) <t — 4, we
then use Lemma 2(3) as above to complete il {0 a cycle of length ¢ by adding
an (xo,x¢} path of the required even length in H;. Note that this is possible
since Ky > [50000¢ ° implies & > ¢*Ky/4096 > (/2. This completes the
proof, O
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3. Proofs of Lemmas

Proof of Lemma 2(2). In fact we shall prove a stronger statement: that there exist
U" C U and WY C W such that |B[U/, ")} > d(U)|U'|/2 Tor every U' € U", and
\B[U", W = d{W)|W'|/2 for every W' C W". Here |G| denotes the number of
edges in the graph G. Then Lemma 2(2) foliows immediately by taking ¢ = {u}
and W' = {w}.

We let h £ U” C U/ and @ ## W" C W be minimal such-that

BIU", W) = d()|U"|/2 + d(W)

w| /2.

Note that such a choice exists since the pair (I, W) itself satisfies this condition.
We claim that (U7, W) has the desired property. To see this, suppose on the
contrary that there exists some Uy C U” such that [B[Upy, W"]| < d(U)|Us|/2. Note
that U, # UY, so UMNUy is not emply., But then |[BlUN\U,, W] =
BIU" W — (BlUy, W > d(UNU|/2 + d(W)|W"|/2 — d(U)|Ugl/2 = d(U)
U™ Unl/2 + d(W){IW"|/2, which shows that the pair (U™ Uy, W} contradicts the
choice of (U”, W"). Similarly we reach s contradiction if there exists some
Wy, € w" such that |B[U", Wyl < d{(W)|W,|/2. Therefore the statement is Lrue,
which proves Lemma 2(2). : C

Proof of Lermma 3. Note we may assume that {#| = n, and that each v has
degree exactly en in G, since adding edges cannot decrease the size of the largest
commen neighbourhood. We let W = {w,...,w,}, and for each o; we let x;
denote the vector of length » that has [ in the jth position if w;v; is an edge of G,
and 0 otherwisc, Then note that {x;,x;) = |T'{v;) N ['{v;){ for each i and j, where
{,} denotes the standurd innner preduct in R”. Suppose on the contrary that
|0{v) D ()| < 2n/2 Tor all i # .

We consider the quantity § = 30_ x> /_,x}. Then by definition

S = 327 d(w;)?, and hence by the Schwarz inequality we find

=1
I 2
S> (Zd(w,-)) /n.
i=1
On  the . other hand, 8 =37 [T + X200 ) < 3o (D)l +

(r» — e?n/2 by our assumption. But each ¢ has exactly ¢n neighbours, so
Sy [P(ws)] = 327, d{ws) = enr. Hence we oblain '

((:nr)zfr.' < S <enr + (7 — M2,

Therefore er < 1 4 (r — De/2, so since 2/¢ <r < 2/c¢ + | we conclude 2 < 2,
This contradiction shows that the result holds. W
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