
 

COMPUTATIONAL INTRACTABILITY AND PSEUDORANDOMNESS 

  
 
 
The areas of computational intractability and pseudorandomness (see article by 

Avi Wigderson, Herbert H. Maass Professor, page 1) have been among the most exciting 
scientific disciplines in the past decades, with remarkable achievements, challenges, and 
deep connections to classical mathematics. For example, the Riemann Hypothesis, one of 
the most important problems in mathematics, can be stated as a problem about 
pseudorandomness, as follows. The image above represents a “random walk” of a person 
or robot along a straight (horizontal) line, starting at 0. The vertical axis represents time, 
and each of the colored trajectories represents one instance of such a walk. In each, the 
robot takes 100 steps, with each step going Left or Right with probability 1/2. Note the 
typical distance of the walker from its origin at the end of the walk in these eight colored 
experiments. It is well known that for such a random (or “drunkard”) walk of n steps, the 
walker will almost surely be within a distance of only about √n from the origin, i.e., about 
ten in this case. 

One can study walks under a deterministic sequence of Left/Right instructions as 
well, and see if they have a similar property. The Riemann Hypothesis, which probes the 
distribution of prime numbers in the integers, supplies such a sequence (called the 
Möbius sequence), roughly as follows (see article for more detail). At each step t, walk 
Left if t is divisible by an odd number of distinct primes, and walk Right if it is divisible 
by an even number. Walking according to this sequence maintains the same distance to 
the origin as a typical drunkard walk if and only if the Riemann Hypothesis is true. 

Research at the Institute into some of the deepest and hardest problems in the 
areas of computational intractability and pseudorandomness is being supported by grants 
from the National Science Foundation. The first, a $10 million grant, is being shared by a 



team of researchers at the Institute (led by Wigderson and Russell Impagliazzo, Visiting 
Professor), Princeton University, New York University, and Rutgers, the State University 
of New Jersey, which is seeking to bridge fundamental gaps in our understanding of the 
power and limits of efficient algorithms. 

A second grant of $1.75 million is funding research directed by Jean Bourgain 
and Peter Sarnak, Professors in the School of Mathematics, along with Wigderson and 
Impagliazzo into central questions in many areas of mathematics (analysis, number 
theory, ergodic theory, and combinatorics) and computer science (network theory, error 
correction, computational complexity, and derandomization) to gain a better 
understanding of fundamental pseudorandomness phenomena and their interaction with 
structure. This has the potential to revolutionize our understanding of algorithmic 
processes. 
 

RANDOMNESS AND PSEUDORANDOMNESS 

BY AVI WIGDERSON 

The notion of randomness has intrigued people for millennia. Concepts like “chance,” 
“luck,” etc., play a major role in everyday life and in popular culture. In this article I try 
to be precise about the meaning and utility of randomness. In the first part I describe a 
variety of applications having access to perfect randomness, some of which are 
undoubtedly familiar to the reader. In the second part I describe pseudorandomness, the 
study of random looking phenomena in non-random (or weakly random) structures, and 
their potential uses. 

Perfect randomness and its applications 

The best way to think about perfect randomness is as an (arbitrarily long) 
sequence of coin tosses, where each coin is fair—has a 50-50 chance of coming up heads 
(H) or tails (T)—and each toss is independent of all others. Thus the two sequences of 
outcomes of twenty coin tosses, 
HHHTHTTTHTTHHTTTTTHT and 
HHHHHHHHHHHHHHHHHHHH, 
have exactly the same probability: 1/220. 

Using a binary sequence of coin tosses as above, one can generate other random 
objects with a larger “alphabet,” such as tosses of a six-sided die, a roulette throw, or the 
perfect shuffle of a fifty-two-card deck. One of the ancient uses of randomness, which is 
still very prevalent, is for gambling. And indeed, when we (or the casino) compute the 
probabilities of winning and losing in various bets, we implicitly assume (why?) that the 
tosses/throws/shuffles are perfectly random. Are they? Let us look now at other 
applications of perfect randomness, and for each you should ask yourself (I will remind 
you) where the perfect randomness is coming from. 

Statistics: Suppose that the entire population of the United States (over three hundred 
million) was voting on their preference of two options, say red and blue. If we wanted to 
know the exact number of people who prefer red, we would have to ask each and every 
one. But if we are content with an approximation, say up to a 3 percent error, then the 



following (far cheaper procedure) works. Pick at random a sample of two thousand 
people and ask only them. A mathematical theorem, called “the law of large numbers,” 
guarantees that with probability 99 percent, the fraction of people in the sample set who 
prefer red will be within 3 percent of that fraction in the entire population. Remarkably, 
the sample size of two thousand, which guarantees the 99 percent confidence and 3 
percent error parameters, does not depend on the population size at all! The same 
sampling would work equally well if all the people in the world (over six billion) were 
voting, or even if all atoms in the universe were voting. What is crucial to the theorem is 
that the two thousand sample is completely random in the entire population of voters. 
Consider: numerous population surveys and polls as well as medical and scientific tests 
use such sampling—what is their source of perfect randomness? 

Physics and Chemistry: Consider the following problem. You are given a region in a 
plane, like the one in Figure 1. A domino tiling of this region partitions the region into 
2x1 rectangles—an example of such a tiling is given in Figure 2. The question is: how 
many different domino tilings does a given region have? Even more important is 
counting the number of partial tilings (allowing some holes). Despite their entertaining 
guise, such counting problems are at the heart of basic problems in physics and chemistry 
that probe the properties of matter. This problem is called the “monomer-dimer problem” 
and relates to the organization of di-atomic molecules on the surface of a crystal. The 
number of domino tilings of a given region determines the thermodynamic properties of a 
crystal with this shape. But even for small regions this counting problem is nontrivial, 
and for large ones of interest, trying all possibilities will take practically forever, even 
with the fastest computers. But again, if you settle for an estimate (which is usually good 
enough for the scientists), one can obtain such an estimate with high confidence via the 
so-called “Monte-Carlo method” developed by Nicholas Metropolis, Stanislaw Ulam, 
and John von Neumann. This is a clever probabilistic algorithm that takes a “random 
walk” in the land of all possible tilings, but visits only a few of them. It crucially depends 
on perfect random choices. In the numerous applications of this method (and many other 
probabilistic algorithms), where is the randomness taken from? 

 

Figure 1   Figure 2 

Congestion in Networks: Imagine a large network with millions of nodes and links—it 
can be roads, phone lines, or, best for our purpose, the Internet. When there is a large 
volume of traffic (cars/calls/email messages), congestion arises in nodes and links 



through which a lot of traffic passes. What is the best way to route traffic so as to 
minimize congestion? The main difficulty in this problem is that decisions as to where 
cars/calls/emails go are individual and uncoordinated. It is not hard to see that (in 
appropriate networks) if the many source-destination pairs were random, congestion 
would, almost surely, be quite small in every node.  However, we don’t tend to choose 
where we go or whom we call randomly—I call my friends and you call yours, and in 
such cases high congestion is bound to arise. To fix this problem, Leslie Valiant proposed 
the following ingenious idea, which is used in practice. Whenever A wants to send an 
email to B, she will actually choose a random intermediate point C, send the email to C, 
and ask C to forward it to B (forget privacy and compliance issues—they are beside the 
point here). While doubling the number of email messages, Valiant proved that (in 
appropriate networks) the congestion drops by huge factors with very high probability. 
Again, perfect randomness and independence of different decisions are essential for this 
solution to work. 

Game Theory: Sometimes the need for perfect randomness arises not for improved 
efficiency of some task (as in the previous examples), but for the very understanding of 
fundamental notions. One such notion is “rational behavior,” a cornerstone of economics 
and decision theory. Imagine a set of agents (e.g., people, companies, countries, etc.) 
engaged in a strategic interaction (e.g., traffic, price competition, cold war) in which each 
agent influences the outcome for everyone. Each agent has a set of optional strategies to 
choose from, and the choices of everyone determine the (positive or negative) value for 
each. All agents have this information—what set of actions then would constitute rational 
behavior for them all? John Nash formulated his (Nobel Prize–winning) notion of “Nash 
equilibrium” sixty years ago, which is widely accepted to this day. A set of strategies 
(one for each agent) is said to be a Nash equilibrium if no player can improve its value by 
switching to another strategy, given the strategies of all other agents (otherwise, it would 
be rational for that player to switch!). While this is a natural stability notion, the first 
question to ask is: which games (strategic situations as above) possess such a rational 
equilibrium solution? Nash proved that every game does, regardless of how many agents 
there are, how many strategies each has, and what value each agent obtained given 
everyone’s choices . . . provided that agents can toss coins! Namely, allowing mixed 
strategies, in which agents can (judiciously) choose at random one of their optional 
strategies, makes this notion universal, applicable in every game! But again, where do 
agents in all these situations take their coin tosses? 

Cryptography: This field, which underlies all of computer security and e-commerce 
today, serves perhaps as the best demonstration of how essential randomness is in our 
lives. First and foremost, in cryptographic situations there are secrets that some know and 
others don’t. But what does that mean? “Secret” is another fundamental notion whose 
very definition requires randomness. Such a definition was given by Claude Shannon, the 
father of information theory, who quantified the amount of uncertainty (just how much 
we don’t know about it) using another fundamental notion, entropy, which necessitates 
that the objects at hand be random.  

For example, if I pick a password completely randomly from all decimal numbers 
of length ten, then your chances of guessing it are precisely 1/1010. But if I choose it 
randomly from the set of phone numbers of my friends (also ten-digit numbers), then 



your uncertainty is far smaller: your probability of guessing my secret is larger, namely 
1/the number of my friends (and yes, cryptography assumes that my adversaries know 
everything about me, except the outcomes of my coin tosses). But secrets are just the 
beginning: all cryptographic protocols like public-key encryption, digital signatures, 
electronic cash, zero-knowledge proofs, and much more, rely completely on randomness 
and have no secure analog in a deterministic world. You use such protocols on a daily 
basis when you log in, send email, shop online, etc. How does your computer toss the 
coins required by these protocols? 

Pseudorandomness 

A computational view of randomness: To answer the repeatedly asked question above, 
we have to carefully study our ubiquitous random object—the coin toss. Is it random? A 
key insight of theoretical computer science is that the answer depends on who (or which 
application) uses it! To demonstrate this we will conduct a few (mental) experiments. 
Imagine that I hold in my hand a (fair) coin, and a second after I toss it high in the air, 
you, as you are watching me, are supposed to guess the outcome when it lands on the 
floor. What is the probability that you will guess correctly? 50-50 you say? I agree! Now 
consider a variant of the same experiment, in which the only difference is that you can 
use a laptop to help you. What is the probability that you will guess correctly now? I am 
certain you will say 50-50 again, and I will agree again. How can the laptop help? But 
what if your laptop is connected to a super computer, which is in turn connected to a 
battery of video recorders and other sensors around the room? What are your chances of 
guessing correctly now? Indeed, 100 percent. It would be trivial for this machinery to 
calculate in one second all the required information: speed, direction, and angular 
momentum of the coin, the distance from my hand to the floor, air humidity, etc., and 
provide the outcome to you with certainty.  

The coin toss remained the same in all three experiments, but the observer 
changed. The uncertainty about the outcome depended on the observer. Randomness is in 
the eye of the beholder, or more precisely, in its computational capabilities. The same 
holds if we toss many coins: how uncertain the outcome is to a given observer/application 
depends on how they process it. Thus a phenomenon (be it natural or artificial) is deemed 
“random enough,” or pseudorandom, if the class of observers/applications we care about 
cannot distinguish it from random! This viewpoint, developed by Manuel Blum, Shafi 
Goldwasser, and Silvio Micali and Andy Yao in the early 1980s, marks a significant 
departure from older views and has led to major breakthroughs in computer science of 
which the field of cryptography is only one. Another is a very good understanding of the 
power of randomness in probabilistic algorithms, like the “Monte-Carlo method.” Is 
randomness actually needed by them, or are there equally efficient deterministic 
procedures for solving the monomer-dimer problem and its many siblings? Surprisingly, 
we now have strong evidence for the latter, indicating the weakness of randomness in 
such algorithmic settings.  A theorem by Russell Impagliazzo and Wigderson shows that, 
assuming any natural computational problem to be intractable (something held in wide 
belief and related to the P≠NP conjecture), randomness has no power to enhance 
algorithmic efficiency! Every probabilistic algorithm can be replaced by a deterministic 
one with similar efficiency. Key to the proof is the construction of pseudorandom 
generators that produce sequences indistinguishable from random ones by these 
algorithms.  



 
Random-like behavior of deterministic processes and structures: What can a clever 
observer do to distinguish random and non-random objects? A most natural answer 
would be to look for “patterns” or properties that are extremely likely in random objects, 
and see if the given object has them. The theorem mentioned above allows the observer 
to test any such property, as long as the test is efficient. But for many practical purposes, 
it suffices that the object has only some of these properties to be useful or interesting. 
Examples in both mathematics and computer science abound. Here is one: A property of 
a random network is that to sever it (break it into two or more large pieces), one 
necessarily has to sever many of its links. This property is extremely desirable in 
communication networks and makes them fault-tolerant. Can one construct objects with 
such a random-like property deterministically and efficiently?  

This question has been addressed by mathematicians and computer scientists 
alike, with different successful constructions, e.g., by Gregory Margulis, Alexander 
Lubotzky, Ralph Philips, and Peter Sarnak on the math side and by Omer Reingold, Salil 
Vadhan, and Wigderson on the computer science side. An even more basic fault tolerant 
object is an error-correcting code—a method by which a sender can encode information 
such that, even if subjected to some noise, a receiver can successfully remove the errors 
and determine the original message. Shannon defined these important objects and proved 
that a random code is error-correcting. But clearly for applications we need to construct 
one efficiently! Again, today many different deterministic constructions are known, and 
without them numerous applications we trust every day, from satellites to cell phones to 
CD and DVD players, would simply not exist!  

Proving that deterministic systems and structures possess random-like properties 
is typically approached differently by mathematicians and computer scientists. In 
mathematics the processes and structures are organic to the field, arising from number 
theory, algebra, geometry, etc., and proving that they have random-like properties is part 
of understanding them. In computer science, one typically starts with the properties 
(which are useful in applications) and tries to efficiently construct deterministic structures 
that have them. These analytic and synthetic approaches often meet and enhance each 
other (as I will exemplify in the next section). A National Science Foundation grant to 
further explore and unify such connections in the study of pseudorandomness was 
recently awarded to Jean Bourgain, Sarnak, Impagliazzo, and Wigderson in the Institute’s 
School of Mathematics (see cover). 

 
Randomness purification: Returning to the question of providing perfect randomness to 
all (as opposed to specific) applications, we now put no limits on the observers’ 
computational power. As true randomness cannot be generated deterministically, one 
cannot help but assume some, possibly imperfect, source of random coin tosses. Can one 
deterministically and efficiently convert an imperfect random source to a perfect one? 
How should we model imperfect randomness?  

Experience with nature gives some clues. Without getting into (the interesting) 
philosophical discussion of whether the universe evolves deterministically or 
probabilistically, many phenomena we routinely observe seem at least partly 
unpredictable. These include the weather, stock market fluctuations, sun spots, 
radioactive decay, etc. Thus we can postulate, about any such phenomena, that their 



sequence of outcomes possesses some entropy (but where this entropy resides we have no 
clue). Abstractly, you can imagine an adversary who is tossing a sequence of coins, but 
can choose the bias of each in an arbitrary way—the probability of heads may be set to 
1/2, 1/3, .99 or even 1/π, so long as it is not 0 or 1 (this would have zero entropy). 
Moreover, these probabilities may be correlated arbitrarily—the adversary can look at 
past tosses and accordingly determine the bias of the next coin. Can we efficiently use 
such a defective source of randomness to generate a perfect one? The (nontrivial) answer 
is no, as shown twenty years ago by Miklos Santha and Umesh Vazirani, who defined 
these sources, extending a simple model of von Neumann. But while dashing hope in one 
direction, they also gave hope in another, showing that if you have two (or more) such 
sources, which are independent of each other, then in principle one can utilize them 
together to deterministically generate perfect randomness. So if, for example, the 
weather, stock market, and sun spots do not affect each other, we can hope to combine 
their behavior into a perfect stream of coin tosses. What was missing was an efficient 
construction of such a randomness purifier (or extractor in computer science jargon).  

The solution of this old problem was recently obtained using a combination of 
analytic and synthetic approaches by mathematicians and computer scientists. Some time 
ago David Zuckerman suggested the following idea: suppose A, B, and C represent the 
outcome of our samples of (respectively) the weather, the stock market, and sun spots 
(think of them as integers1). He conjectured that the outcome of the arithmetic AxB+C 
would have more entropy (will be more random) than any of the inputs. If so, iterating 
this process (with more independent weak sources) will eventually generate a (near) 
perfect random number! Zuckerman proved that this concept follows from a known 
mathematical conjecture. While this mathematical conjecture is still open, recent progress 
was made on a completely different conjecture by Bourgain, Nets Katz, and Terence Tao 
(extending the work of Paul Erdös and Endre Szemerédi). They studied properties of 
random tables, and tried to find such properties in specific, arithmetic tables, namely the 
familiar addition and multiplication tables. Here is an intuitive description of the property 
they studied. Consider a small “window” in a table (see Figure 3).  

 

 
Figure 3: A random table and a typical window 

                                                        

1 Actually they should be taken as numbers modulo some large prime p, and all 
arithmetic below should be done modulo p. 



 
Call such a window good if only a “few” of the numbers in it occur more than 

once. It is not hard to prove that in a random table, all small windows will be good. Now 
what about the addition and multiplication tables? It is very easy to see that each has bad 
windows!2  However, Bourgain, Katz, and Tao showed that when taken together these 
two tables are good in the following sense (see Figure 4): for every window, it is either 
good in the multiplication table or in the addition table (or both)! Boaz Barak, 
Impagliazzo, and Wigderson gave a statistical version of this result, and used it to prove 
that Zuckerman’s original extractor works! 

 

 
Figure 4: The addition and multiplication tables 

 
The above story is but one example. Fundamental results from number theory and 

algebraic geometry, mainly on the “random-like” behavior of rational solutions to 
polynomial equations (by André Weil, Pierre Deligne, Enrico Bombieri, and Bourgain) 
were recently used in a variety of extractor constructions, purifying randomness in 
different settings.  

Million-dollar questions on p
problems in mathematics and c

seudorandomness: Two of the most celebrated open 
omputer science, the Riemann Hypothesis and the P vs. 

                                                        

2 If rows and columns of a window form an arithmetic progression, the addition 
table will be bad. If they form a geometric progression, the multiplication table will 
be bad. 



NP question, can be stated as problems about pseudorandomness. These are two of the 
seven Clay Millennium problems, each carrying a $1 million prize for a solution (see 
www.claymath.org/millennium for excellent descriptions of the problems as well as the 
terms for the challenge). They can be cast as problems about pseudorandomness despite 
the fact that randomness is not at all a part of their typical descriptions. In both cases, a 
concrete property of random structures is sought in specific deterministic ones. For the P 
vs. NP question the connection is relatively simple to explain. The question probes the 
computational difficulty of natural problems. It is simple to see that random problems3 
are (almost surely) hard to solve, and P vs. NP asks to prove the same for certain explicit 
problems, such as “the traveling salesman problem” (i.e., given a large map with 
distances between every pair of cities, find the shortest route going through every city 
exactly once). 

Let’s elaborate now on the connection (explained on the cover of this issue) of the 
Riemann Hypothesis to pseudorandomness. Consider long sequences of the letters L, R, 
S, such as  

SSRSLLLLLSLRRLSRRRRRSLSLSLL . . . 
Such a sequence can be thought of as a set of instructions (L for Left, R for Right, 

S for Stay) for a person or robot walking in a straight line. Each time the next instruction 
moves it one unit of length Left or Right or makes it Stay. If such a sequence is chosen at 
random (this is sometimes called a random walk or a drunkard’s walk), then the moving 
object would stay relatively close to the origin with high probability: if the sequence was 
of n steps, almost surely its distance from the starting point would be close to √n. For the 
Riemann Hypothesis, the explicit sequence of instructions called the Möbius function is 
determined as follows for each step t. If t is divisible by any prime more than once then 
the instruction is Stay (e.g., t=18, which is divisible by 32). Otherwise, if t is divisible by 
an even number of distinct primes, then the instruction is Right, and if by an odd number 
of distinct primes, the instruction is Left (e.g., for t=21=3x7 it is Right, and for 
t=30=2x3x5 it is Left). This explicit sequence of instructions, which is determined by the 
prime numbers, causes a robot to look drunk, if and only if the Riemann Hypothesis is 
true!  

_ 

Avi Wigderson, Herbert H. Maass Professor in the School of Mathematics, is a widely 
recognized authority in the diverse and evolving field of theoretical computer science. 
His main research area is computational complexity theory, which studies the power and 
limits of efficient computation and is motivated by fundamental scientific problems. 
Since being appointed to the Faculty in 1999, Wigderson has overseen the Institute’s 
activities in theoretical computer science, which began in the 1990s, initially organized 
by visiting professors with the involvement of Enrico Bombieri, IBM von Neumann 
Professor in the School. The European Association for Theoretical Computer Science and 
the Association for Computing Machinery Special Interest Group on Algorithms and 

awarded the 2009 Gödel Prize for outstanding papers in 
 Wigderson and former Visitors Omer Reingold (1999–

Computation Theory recently 
theoretical computer science to
                                                        

3 This has to be formally defined. 



2003) and Salil Vadhan (2000–01). The three were selected for their development of a 
new type of graph product that improves the design of robust computer networks and 
resolves open questions on error correction and derandomization. The papers cited are 
“Entropy Waves, the Zig-Zag Graph Product, and New Constant Degree Expanders” by 
Reingold, Vadhan, and Wigderson (conceived and written at the Institute) and a 
subsequent paper, “Undirected Connectivity in Log-Space,” by Reingold. The prize is 
named for Kurt Gödel, who was a Member (1933–34, 1935, 1938, 1940–53) and 
Professor (1953–78) of the Institute. 


