Derandomizing BPP

Lecture Notes of a course by Avi Wigderson

Summarized by Ronen Shaltiel

Contents

1

2

A Tale of two Generators

1.1 Introduction
1.1.1 Definitions
1.1.2 Generators. e
1.1.3 Hardness Vs. Randomness

1.2 The Blum-Micali-Yao Generator
1.2.1 One way functions
1.2.2 Hard Bits and the Goldreich-Levin theorem
1.2.3 Proof of the Goldreich-Levin theorem
1.2.4 Prediction tests Vs. Statistical tests
1.2.5 The Generator’s construction

1.3 The Nisan-Wigderson Generator
1.3.1 One way functions Vs. Unapproximable functions
1.3.2 Nearly disjoint sets
1.3.3 Constructing the generator
1.3.4 A generator for constant depth circuits

Using a worst case complexity assumption

2.1 Worst case complexity Vs. Distributional complexity

2.2 Randomness Vs. Non-Uniformity
2.2.1 Distributional Complexity
2.2.2 Worst case complexity Lo

2.3 From Worst-case hard to slightly unapproximable
2.3.1 Transforming a boolean function into a polynomial
2.3.2 Random self reducibility o000

2.4 Hardness Amplification
2.4.1 Theconcept
2.4.2 Xor lemmas and Product theorems
2.4.3 Proof of product theorem

2.5 The main theorem

CU s = o WD N

O S g g —
] O Ot Ot W O

20

Chapter 1

A Tale of two Generators

1.1 Introduction

In the previous chapters, we studied the power of randomness in several settings. In this
chapter we address the more general question. What is the power of randomized algorithms?
Are they more powerful than deterministic ones? The current state of affairs is that there
are computation problems for which we have polynomial randomized algorithms, and only
exponential time deterministic algorithms. We don’t know weather randomness can help
save running time, and if it does, at what rate.

Our aim is to take any randomized algorithm that runs in polynomial time, and simulate
it using a deterministic algorithm, trying to minimize the running time of the deterministic
algorithm. We will call such simulations “derandomization of BPP”.

1.1.1 Definitions

For completeness we repeat definitions from previous chapters. The letter n receives special
treatment, and all functions that appear in the text are assumed to be functions of n if not
otherwise defined. We are not consistent in the notation, it is sometimes tedious to explicitly
state the dependence of parameters on n. We often speak about families of circuits, functions,
and such. We keep the convention that for a family f = {f,} the domain of f, is {0,1}".
The meaning of “f = {f,} has property P”, is “there exist some ny such that for all n > ng,
fn has the property P,”.

Definition 1.1 dtime(t) = {L| there exists a deterministic Algorithm which runs in time
O(t) and accepts L}.

Definition 1.2 bptime(t,r) = {L| there exists a probabilistic Algorithm which runs in time
O(t), uses O(r) random bits, and accepts L with two sided error of at most €}.

Definition 1.3 P = Uj<.coodtime(nc).
Definition 1.4 BPP = Ui<ccoobptime;3(n°,n°).

Definition 1.5 EXP = Uj<.coodtime(2").

1.1.2 Generators

The obvious tradeoff between randomness and running time is the following:
Theorem 1.6 for all € < 3, bptime.(t,r) C dtime(2" - t).

Proof: To make a randomized algorithm deterministic, simply run it (given an input z)
using all possible strings of length r. Accept x iff the majority of the runs accepted x.

Corollary 1.7 BPP C EXP

Our goal is to simulate BP P using less time. Theorem 1.6 shows us that if we could simulate
a randomized algorithm using less random bits, we could derandomize BPP. A generator is
a machine that takes as input m random bits, and outputs n “pseudo-random” bits (m < n).
the exact meaning of “Pseudo-Randomness” depends on the entity which receives the bits.
They should look random to the receiver. Note that randomness is now defined not as a
property of the probability distribution, but rather it is “in the eyes of the beholder”!

Definition 1.8 A (m, 1, s,€)-Generator G is a family of functions {Gy}1<p<co Such that for
all n:

o G,:{0,1}™M — {0, 1}
e G, is computable in time [(n).
e for all circuits C = {C,} of size s(n):
| Pracpioy (C(@) = 1) = Prycgony=(C(Gu(y)) =1)| < €
Theorem 1.9 if there exists a (m,1,t,§)-Generator then
bptime.(t,r) C bptime.ys(1(r) + t,m(r))

Proof: Given a randomized algorithm A that runs in time #(n), and uses r(n) random bits.
construct a randomized algorithm B which uses m(r(n)) random bits denoted z. It computes
y = G,m)(2) and runs A(z,y). this takes t(n)+[(r(n)) steps. If this scheme fails, then there
is some n and z’ of length n, on which B errs with probability at least ¢ + . We know
that A errs with probability no more than e. There is a standard construction that takes a
(uniform) algorithm, and transforms it into a family of boolean circuits, Where the size of
the circuit is 2, where ¢ is the running time of the algorithm. Let C(z,y) be the circuit that
is built from A(z,y). We now use the non uniformity of boolean circuit to define the circuit
C(y) = C(2',y), which is of the same size as C. Since The computation of C,/ is identical
to that of A(x,-), we get:

|P7"yeR{0,1}n(Cx' (?J) = 1) - PTZER{O,I}m(C(Gn(Z) = 1)| >0

Which is a contradiction.

Remark 1.10 Note that our goal is to fool BPP Algorithms. Yet in order to achieve this, we
need a generator that fools boolean circuits (of size roughly the running time of the algorithms
we want to fool). This is an obstacle we will face the rest of this chapter. In order to fool
uniform computation, we need to fool non-uniform one.

Corollary 1.11 if there exists a (m,1,t%,0)-Generator then
bptime(t,r) C dtime(2™ (I(r) + 1))

Proof: Apply theorem 1.9 and 1.6 in sequence.

1.1.3 Hardness Vs. Randomness

Unlike the previous chapters, there are currently no constructions of generators that fool
boolean polynomial circuits. We may find some comfort in the fact that the missing ingre-
dient, that keeps us from achieving such constructions, is the standard hurdle confronted by
complexity theory. That is, the failure to prove the existence of hard functions. (functions
that cannot be computed by polynomial size circuits). Because of this difficulty, all the
results we will prove will have the following form:

the existence of hard functions
implies
the existence of “good” generators
implies
BPP C"sub-exponential time”.
The next sections will be devoted to derandomizing B P P using as weak as possible unproven
assumption.

1.2 The Blum-Micali-Yao Generator

Definition 1.12 A generator G is called 0-fast (for 6 < 1) if it is a (n®, n%, n, n—i)—genemtor
for some constant ¢ and all d, e.

Using corollary 1.11, the existence of a d-fast generator implies:
bptime (n®,n®) C dtime(?”cs n“)

In this section we will build a d-fast generator for all § > 0. (Under the assumption that
some class of hard functions exist) This implies: BPP C ﬂ5>0dtime(2"5).

1.2.1 One way functions

Our first example of “hard functions” are one way functions. These are functions that are
easy to compute, but hard to invert.

Definition 1.13 a family of functions f = {f.}, fn: {0,1}" — {0,1}" is called one-way if:
e there is a polynomial Algorithm that computes f.

e for every family of polynomial circuits C = {C,}
Procqoay (Cul(fu(@) € £, (fu(x))) < en
e lim, .6, -n°=0 for all c.

we will actually need the function to be one to one.

Definition 1.14 A one way permutation f is a function that is both one way, and one
to one. in such a case f~' is a function, and the former inequality can be written in the
following form:

Prycpon(Culy) = 1Y) < &

One way function seem suitable for constructing a generator. take as input y, € {0,1}™,
and set y; = f(y;—1) for 1 < i < k = poly(m). One property of a random string is that
given any prefix of it, the remaining bits cannot be predicted. Note that given y, yx_1, .., ¥i
a polynomial circuit cannot predict y;_; with non negligible success probability. So we may
hope that y; ; seems random to a polynomial circuit. this leads us to define: G(y,) =

(yk7 sy yU)
However, there are several difficulties with this scheme:

1. Tt is indeed true that for a random y, f~'(y) cannot be computed by a polynomial
circuit. Yet, this does not rule out the possibility that the first bit of f~!'(y) can be
computed by a polynomial circuit.

2. Is the unpredictability of the suffix of a string, given it’s prefix enough to prove that the
string is pseudo-random? (note that in our case, the y’s are not at all pseudo-random
when read in the opposite direction (yo, .., Yx))-

The next few sections deal with these problems.

1.2.2 Hard Bits and the Goldreich-Levin theorem

As we have seen in the previous section, given a hard function ¢ : {0,1}" — {0,1}", (in our
case ¢ = f~! when f is a one way permutation), it may be the case that some bits are not
hard. For example, the “discrete log” function (which is conjectured to be one way), has an
“easy” bit (the least significant bit) and a “hard” bit (the most significant bit). By “easy”
bit we mean one that can be computed in polynomial time, by “hard” bit, we mean one that
computing it is as hard as computing the entire function.

It would be nice, if every hard function had a hard bit. But why restrict ourselves to bits?
Any polynomial function will do.

Definition 1.15 Given a family of functions g = {gn}, gn : {0,1}" — {0,1}" a hard bit for
g is a family of functions b = {b,}, b, : {0,1}" — {0,1} such that given a family of circuits
B = {B,} which achieves:

1
Prycpio3n (Bn(z) = bu(gn(2))) > 5+ en

there exists a family of circuits A = {A,} (that may use B as a sub-circuit), such that the
following holds:

® Procy(oay (An(@) = gu(x)) > (£)°0)

e A is of size (M)O(l)

the function b captures the “hardness” of g. The parameters in definition 1.15 are defined
to achieve the following result:

Lemma 1.16 If f is a one way permutation, and b is a hard bit for = then for every
family of polynomial circuits C = {C),} and constant d:

_ 1 1
Pryeqiony (Ca(y) = ba(fi' (1) < 5+ —
Remark 1.17 We choose to define hard bits for the “hard” (inverse) side of one way func-
tions, because this is more general and can be applied to functions that are not one way.

We are now left with the need to build hard bits for hard functions. The parity of all the
output bits seems suitable, but this may fail if two “hard” bits “cancel” each other. (For
example if their parity is constant). The solution is to take the parity of a random subset of
bits. To make this formal, we need to extend the function.
Definition 1.18 For a function f : {0,1}" — {0,1}" define f : {0,1}"x{0,1}" — {0,1}"x
{0,1}™ in the following way: A

fz,y) = (f(z),y)
Note that:

e if f is a permutation, so is f.

e Given a circuit for f, one can construct a circuit of the same size for f, which achieves
the same success probability. (This means that if f is a one way permutation, so is f).

« (NHT=(
Definition 1.19 The Goldreich-Levin function G Lo, : {0,1}" x {0,1}" — {0,1} is defined
as:

GLoy(x,y) = (Z x;y;)mod2 = EB T

1<i<n {ilyi=1}

It will sometimes be useful to us to think of GLs, as inner product of n-bit vectors over

GF(2).
Theorem 1.20 (Goldreich-Levin) For every function g, GL is a hard bit for g.

The Goldreich-Levin theorem is a very useful one. whenever we have a hard non-boolean
function, we can build a boolean function that is almost as hard.

6

1.2.3 Proof of the Goldreich-Levin theorem
It is enough prove that given a family of circuits B = {B,,} such that:

1
Pryyepfo,1yn (Ban(7,y) = GL2n((gn(),9))) > 9 + €n

we can construct a family of circuits A = {4,,} such that:

€
Proegpoy (An(@) = ga(@)) > ()

and size(A) = (224Bmyo(1),
It is instructive to first prove this using slightly different parameters, and then extend the
technique for the general case. So we start by proving the following lemma, (which will

actually be required as a special case of the Goldreich-Levin theorem in the next sections).

Lemma 1.21 Given a family of circuits B = {B,}, and functions &,,1,, where § = o(1),
and 16 = o(1), such that:

Prw,yGR{O,l}" (BZn(xa y) = GL((gn(x)a y))) > 1- 571
we can construct a family of circuits A = {A,} such that:

Precatony (An(r) = ga(2)) > (1 = D)1 = =)

nc

for any constant c, and size(A) = (size(B)n)°W).

Proof: define:
X = {#]Pryepqonp (Ble,y) = GL{g(x),y)) > 1 - 16}

Since:

(1= p(z)(1=10) + p(z) 2 1=
We get that p(z) > 1 — 1. call z good, if it is in X. Fix a good z, and set z = g(z). Our
aim is to compute the bits of z one by one. Note that for all y:

zi = GL(z,y) ® GL(z,yY)

where o
<i>_{ g oj=i

Yi = y; otherwise

So if we could compute GL(x,-) we would be done. Since z is good, B errs only for a 0
fraction of the y’s. Using the fact that if y is uniformly distributed, so is y¥, we get for all
1

Prycponp ({B(w,y) = GL(z,9)} A{B(2,y"?) = GL(z,y™)}) > 1-26 (L.1)

1 — 2[6 is far enough from %, to use amplification. This suggests the following scheme:

7

for 1 <« <t, (where t is a parameter that will be determined later)
pick y, €g {0,1}™.

for all a,i:

compute h, = B(z,,), and h) = B(x, y®).

compute b’, = h, © h{V.

let €’ be the majority of the b',.

Claim 1 For all i, Pry, _,,(e' # z;) < e UV,

Proof: Since x is good, and the y, are uniformly distributed, 1.1 holds. when the event
occurs, b%, = z;. So this process computes z; with some advantage over % Since the y,’s are
independent, taking the majority of the guesses amplifies the success probability. define the
random indicator variable: .

Di _ { 1 bfl = Z;

@ 0 otherwise

and set D' = ", D! using the chernoff inequality we get for all i:

A t
Pri, (D' < 5) <e 0

which in our terminology is the requested claim.

Using claim 1 we have: _
Priy(Fice # z) < ne 0

Fixing t = ©(logn) we get that the suggested scheme computes all the bits of z correctly,
with probability 1 — m. The scheme can easily be converted into a circuit C of size

(size(B)n)°M). (At this point the circuit is probabilistic, as it randomly picks the {y.}).
When applying C' to a uniformly selected input z. there is a pu(X) > 1 — % chance that x
is good, when this happens the analysis we made is correct, and so C' computes z = g(z)
correctly with probability (1 — 7)(1 — pol;(n))' To transform C' into a deterministic circuit,
we simply note that, Since C' achieves the desired success probability, on random z, v, .., y;.
There is a fixing of yy, .., y;, such that C' achieves the same success probability on random
x, and fixed yi,..,y;. Define A(z) to be the circuit C' when y,..,y; are fixed. note that

size(A) < size(C), and so A is the circuit we wanted to build in the first place.

We will now prove the general case.

Lemma 1.22 Given a family of circuits B = {B,} such that:

1
Prayepior (Ban (%, y) = GLa ((gn(2),y))) > 5 Tén

we can construct a family of circuits A = {A,} such that:
€
Proepony (An(z) = gn(2)) 2 (5)0(1)

and size(A) = (224Bn)o)

€

Proof: We will attempt to imitate the proof of lemma 1.21. define:

€

T3

ki
It is obvious that p(X) > §. Again, call z good if z € X. Fix a good z, and set z = g(z).
Once again, our strategy will be to compute the bits of z one by one.

However, we can’t compute G L(z,y) and GL(z,y), simultaneously, with probability greater
than % as we did in the previous case. Suppose we could construct a series of ¢ vectors {y,}
such that:

DN =

X = {2 Prycyonp (Bl,y) = GL(g(x).v)) >

1. the y,’s are uniformly distributed and pairwise independent.
2. we can compute h, = GL(z,y,) for all a.

In this case we could use exactly the same strategy as in lemma 1.21, to continue. There is
only one exception, the y,’s are not independent, only pairwise independent. However, we
can still amplify the success probability using this assumption.

Claim 1 for all i, Pry, (¢! # z) < &

Proof: The proof is similar to the one of the claim in lemma 1.21. The only difference is
that we cannot use the chernoff inequality, because the y,’s are only pairwise independent,
and so we use the chebycheff inequality. Again we define the random indicator variable:

@ 0 otherwise

and set D' =Y, D! using the chebychef inequality we get for all i:

; ; te 4
Pr,, (D' = E(D)| 2) <
which in our terminology is the requested claim.
[]
Using claim 1 we have:
, 4
Priy,y(Ji: e’ # z) < 771 (1.2)
€

And thus, we can compute z = g(x), with good probability. The problem is we don’t know
how to fulfill condition 2 above. However, we can achieve it with non-negligible probability.

2’. with probability 271°8¢, all the h,’s can be computed simultaneously.

Set k = logt, and consider the following scheme:

Pick a random (uniformly chosen) matrix of size n x k with entries in {0, 1}.
compute yo, = M -« for all o € {0, 1}*

pick a random 3 € {0, 1}F

It is standard to check that the y,’s satisfy condition 1 above. note that for all a:
ho = GL(2,ys) = 2/ (Ma) = (!M)'a

(where Matrix multiplication, is over GF(2)). since M is a random matrix, zM is uniformly
distributed in B*, which implies:

P?”Myﬁ(ﬂ = ZM) = 27k = 2710gt

When (3 = zM, we can compute h, = ('« for all a € {0,1}*, (and Thus fulfill condition
2'). Combining this with claim 1.2, we can build a probabilistic circuit C' that computes all
the z;’s correctly with probability 27 1%¢%(1 — 4%). The circuit is of size (size(B)nlogt)°W.
choosing t = log 2—22, we get that C' computes z = g(x) with probability (£)°("), and size(C) =

€
. n
(@)0(1). When activating C' on uniformly chosen z there is a § chance that z is good.

When this happens the analysis we made is correct, and so:
Pros(Clz, M, B) = g(z)) >

This is exactly what we need except for the fact that C' is probabilistic (it selects M, 3
randomly). However, since C' computes g(x) with some probability of success, when = and
it’s “random coins” are picked randomly, There has to be some way to fix the “random
coins” which achieves the same probability. formally:

Prons(Ce, M, §) = g(x)) = Ens(Pra(Clz, M, §) = g(x)))

< max g (Pry(Clz, M, B) = g(x)))

fixing A(z) = C(x, M, 3) for the M, 3 which achieve the maximum, we have that A is the
circuit we wanted to build in the first place.

1.2.4 Prediction tests Vs. Statistical tests

Recall that a string is “Pseudo-Random” if it passes some list of prescribed tests. (in our
case if every circuit of some bounded size cannot distinguish between the pseudo-random
string and a truly random one). We'll call these tests statistical tests:

Definition 1.23 a distribution D on {0,1}", is said to e-pass all statistical tests of size s,
iof for every circuit of size s:

|Procpon (C(x) = 1) = Procpoapm (Clz) = 1) <€

Using this notation, a (-, -, s, €)-generator is one that e-passes all statistical tests of size s. At
the end of section 1.2.1 we noticed that random strings pass another kind of tests, we will
call: “prediction tests”.

10

Definition 1.24 a distribution D on {0,1}" is said to e-pass all prediction tests of size s,
if for every 1 < i <n and every circuit of size s on i — 1 inputs:

1
|P7"xep{0,1}"(0(351, --,%’—1) = xz)| < 5 + €

Notice that if a distribution D, e-passes all statistical tests of some size, then it e-passes all
prediction tests of slightly smaller size. This is true, since given a circuit C' that predicts
the ¢’th bit. We can construct a circuit C’ which gets n bits, activates C' on the first i — 1
bits and compares the result to the given i’th bit. On random strings C’ outputs 1, with
probability %, where on strings selected from D it outputs 1, with probability % + €

It is quite surprising (and very useful) that the opposite direction is also true:

Theorem 1.25 If a distribution D on {0,1}", £-passes all prediction tests of size s, then
it e-passes all statistical tests of size s' = s — O(n).

Proof: Let C be a circuit of size s’ such that:
| Proepoaye (C(x) = 1) = Procponn(Clz) =1)| > €

We can view the string chosen according to D as n bit random variables by, .., b,. We will
view the uniform distribution on n bits the same way, denoted 1, ..,7,. define:

e D; = (by,ba, by, i1, Tigo, oy Tn)
® P = Prae,, (Clz) =1)
Notice that:
e Dy = U, (The uniform distribution on n bits).
e D,=D
® Py = Pricpo1y(C(z) = 1)
o P, = Prycpon(C(z) =1)
It follows that:

e<|P,—P|= > (P,—P.1)< > |P— P

1<i<n 1<i<n
So there exists i such that: |P; — P;_1| > £. w.l.o.g. assume that:

P—P_, > € (1.1)
n

Define: D; = (by,ba,..,bj 1,b;.7j41,..,70), and P = Prye,; (C(x) = 1). Note that D;_; =

[)l%ﬁi, (meaning that D; ; is the same as flipping a coin and sampling from D; and D;
depending on the outcome of the coin). This implies:

11

P+ P
2
Let’s separate {0, 1}" to three parts: {0,1}" = {0,1}*"! x {0,1} x {0,1}"* denoted u, y, w
respectively.
We will construct a circuit C' on i — 1 bits (denoted u):
pick d € {0,1}.
pick w € {0, 1}
“activate” C'(u,d,w).
if it outputted “1” output d, otherwise output d.

Py =

(1.2)

Claim 1 Pryc, (0.1} den{o,1}wenfoay—i (C'(T1, ., Ti1) = ;) > 5+ < meaning that there is a
small circuit that predicts the i’th bit given the previous bits.

Proof: We want to calculate the probability that C' computes b; correctly. The probability
is over the choice of u = (by, .., b;_1), and uniformly chosen d,w. (We think of d as r;, and w

as (ri+17) rn))

Pr(C'(u) = b;) = Pr(b; = d|C(u,d,w) =
+Pr(b; = d|C(u,d,w) =

o
T T
=2
2 9
& =
& X
EE

|
o

which can be written as:

Pr(b; = d|C(u,d,w) = 1)P;_; + Pr(b; = d|C(u,d,w) = 0)(1 — P;_;) (1.3)

We will bound this expression by bounding both summands.

Pr(C(u,d,w) = 1]b; = d)Pr(b; = d)

Prb;=d yd,w)=1) = 1.4
(b= diClu,d w) =1) Pr(C(u,d,w) = 1) (14)
_ P
- 2P,
- Pr(C(u,d,w) = 0)|b; = d)Pr(b; = d)
Pr(b,=d yd,w)=0) = 1.
r(Cw, d,w) =0) Pr(C(u,d, w) =0) (1.5)
1P
2(1 - P1)
Combining 1.3,1.4 and 1.5, we get:
1 P-P 1 ¢
P ! = bz = = : L= -
r(C'(u)) 5 + 5 5 + -
Where the last equality is using 1.1 and 1.2. This completes the proof of the claim.
[]

12

What is left is to transform C’ to a deterministic circuit. This can be done by fixing d, w,
using:

maxd,w(PrweD{o,l}n(C’('i,w(xl, W Til1) = T;))

Z Ed,w(Pr$ED{U,1}” (C‘Ii,w(l’h .y {L‘i_l) = 1‘1))
= Prd,w,wED{O,l}"(C{j,w(xla --,$i71) = CUZ)
defining C"(z) = C} () we get a circuit which predicts the i’th bit with = advantage. Note
that: size(C") = size(C) + O(n). (w may be of length n), so s = s’ + O(n) as needed.
[]

Using theorem 1.25 it suffices to show that a generator passes all prediction tests, in order
to show that it passes all statistical tests.

1.2.5 The Generator’s construction

We are now in a position to refine the attempts we made at subsection 1.2.1, and handle
the difficulties we pointed out there. Recall, that we want to construct a J-fast Generator,
(for any given ¢), using the sole assumption that one way permutations exist. In subsection
1.2.2 we proved that if one way permutations exist, then there exists one way permutations
with hard bits (theorem 1.20). So we assume w.l.o.g. That f~! has a hard bit, which we
will denote b = {b,,}. the Generator is defined in the following way:

Definition 1.26 (The Blum-Micali-Yao Generator) For 0 < 6 < 1 define the generator
G° = {G%} which takes as input n° bits denoted y and output n bits. set:

® Yo=1Y.

Yi = fas(Yiz1) for 1 <i<m.
bi == bn5(yi)-
d G?L(y) = (bnflabnfb "7b0)-

recall (definition 1.12) that a 0-fast Generator, is one that uses a polynomial procedure to
extend n? bits into n bits, and induces a distribution that e-passes all statistical tests, where
lim,_,, €,n° = 0 for all e.

Theorem 1.27 For all 0 < § < 1, G° is a 0-fast Generator.
Proof: Computing G is indeed polynomial in n, since f and b can be computed in poly-
nomial time. For future use, we remark on the connection between ¢ and the running time

of G°

Remark 1.28 There exists c, such that for all §, G2 runs in time n®.

13

We now proceed with the proof of the theorem.

Claim 1 For all e, G° L -passes all prediction tests of polynomial size.

nE
Proof: Suppose that there exists a polynomial family of circuits C' = {C},}, that “catches”
the generator. That is, there exist e such that for infinitely many n there exist ¢ with:

o (CEWi) = (G)] > —

ne

Pr

We will construct a polynomial circuit C’ that computes the hard bit of fq;;l with non-
negligible advantage:

On input z € {0,1}"":

Set 21 = z, compute 241 = frs(2;) (for 1 < j <i—2).
Compute h; = b,s(z;) (for 1 <j <i—1).

output C(hi_l, ey hl)

Note that C" is of polynomial size. We will prove that:

Pr oy (C'2) = bus (£4(2))) ni (1.6)

The Random Variable (h;_j,.., h;) has the same distribution as G2 (y)|;.;,_1. To see this,
note that f,s is a permutation. This means that if it’s input is uniformly distributed, so is
it’s output. So, y,—_(;—1) is uniformly distributed, and has the same distribution of 2. From
this point both the generator and the circuit use the same procedure to compute the 7 bits.
This means that C" activates C' with the same distribution of the generator. On such, C
is promised to compute the i’th bit with non-negligible advantage. The 7’th bit is exactly
bys (f5'(2)). This proves 1.6. Note that size(C’) is polynomial in n, and since b is a hard
bit of f~!, this is a contradiction.

[]
Using theorem 1.25 we deduce that G° nel_l—passes all statistical tests of polynomial size, for
all e. This completes all the conditions needed to certify G2 as a d-fast generator. °

Theorem 1.29 (main theorem, Blum-Micali-Yao)
If one way permutations exist then BPP C ﬂ5>0dtime(2"5)

Proof: For a fixed § > 0 we proved (theorem 1.27) that the existence of a one way permu-
tation implies that G° = {G°} is a J-fast generator. Remark 1.28 says that there is some c
(which does not depend on §) such that G® runs in time n¢. we can use corollary 1.11 and
definition 1.12 to get:

bptime%(nt, n') C dtime(Q”t(s (n' +n)) C dtime(?”%&)

Taking 0(p,t) = & we get: . o ‘)
bptimey (n',n’) C dtime(2"")

Since this is true for all ¢, p, (and switching between p and §) we get:

BPP C Ngsodtime(2")

14

1.3 The Nisan-Wigderson Generator

1.3.1 One way functions Vs. Unapproximable functions

In the previous section, we were able to derandomize BPP using the assumption that one
way permutations exist. We would like to get the same conclusion using a weaker hardness
assumption. Apart from pure mathematical satisfaction, this is motivated by the observation
that there are currently only few functions which are conjectured to be one way. Apart from
that, in our efforts we try to measure the “distance” between deterministic and probabilistic
computation. The following theorem shows that the existence of one way permutations
already implies a limitation on the power of BPP.

Theorem 1.30 If one way permutations exist, then:
(NPNco— NP)\ BPP # 0
“Randomness is not powerful enough to simulate NP NcoyP”.

Proof: Let f be a one way permutation, using theorem 1.20 we can assume w.l.o.g. that
/7! has a hard bit which we will denote b = {b,}. consider the languages:

Li = {z| b(f ' (z)) = i}, for i € {0,1}

Note that for i € {0,1}, L; € NP, because given z one can guess y = f '(z) which is
of length |z|, and check in polynomial time that f(y) = z, and b(y) = 4, and since f is
a permutation, if x ¢ L; there is no y that satisfies both conditions. Both L; are also in
co— N P, because they complement each other. On the other hand, none of them is in BPP.
Suppose Lo € BPP, then there exists a probabilistic algorithm A, which accepts Ly with
two sided error of . Using Adelman’s theorem (BPP C P/poly, which we will prove in 2.2)
we get a circuit that checks membership in Ly, such a circuit computes (b(f1))(-) on every
input, so it has success probability 1.
Alternatively, we could take A, transform it into a probabilistic polynomial circuit (with the
same success probability), and then fix the random input to a choice which achieves this
probability.

[]
As far as we know, BPP may be as powerful as EX P, or ¥% NTI%, so we'd rather use an
assumption that allows these situations.
Let’s examine the way we used our hardness assumption: We need the function to be “easy”
for uniform deterministic computation, because the generator has to compute the function.
On the other hand, it (or it’s inverse, in the case of one way functions) has to be hard for
polynomial circuits. Observe that when we use corollary 1.11, to derandomaize BPP using
a 0-fast generator, the significant factor we pay in the running time is 2"6, which is added
because of the enumeration of all possible seeds of the generator. The contribution of the
running time of the generator is a much smaller factor, as it is not exponentiated. So we
could still get the result if the generator G2 : {0,1}™ — {0, 1} will run in time 2"°”. Since
the generator runs in exponential time, we may as well have the “easiness” condition be: the
function can be computed in exponential time.

15

Definition 1.31 A family of generators G = {G°} for 0 < § < 1 is called a quick family of
generators if there exist a constant ¢ such that for all 6, G° is a (n’, 2”65,nd, n—i)—genemtor
for all d,e.

Compare this with the definition of d-fast generators (definition 1.12). The first difference
is methodological, since the running time of the generator is going to play a role, and is
dependent on §, we need to speak about a family of generators. The only other difference
is that we allow the generator to run in exponential time. With this in mind we define the
following class of hard functions:

Definition 1.32 A function f = {f,}, fu: {0,1}" — {0,1}" is called “unapprozimable by
polynomial circuits” if for every family of polynomial circuits C = {Cy,}:

PTIGR{O,I}n (Cn(x) = fn(Cn(x))) < €

where limy, s €, - n° =0 for all c. We will call such functions “unapproximable”, ommiting
the size of the circuits.

Remark 1.33 We also need to assume some “easiness” condition on f = {f,}. We must
have it, because the generator needs to compute f = {f,}. Since the generator runs in
exponential time, we may as well demand that f = {f,}, is computable in exponential time.
This is a much weaker condition then one way functions. Recall that the “easy” side of the
function, was computable in polynomial time. Here both conditions apply to f, (rather than
one to f and one to f~', in the case of one way functions). This changes nothing, and is
more comfortable.

Compare definition 1.32 of one way functions (definition 1.13), and note that using this
notation, a one way permutation is a polynomial permutation whose inverse is unapprox-
imable. Could we use the same construction, changing only the “easiness” condition of the
one way permutation? The answer is negative. When we proved that the BMY-generator is
fast (theorem 1.27), we used the fact that the easy side can be computed by a polynomial
circuit. The circuit used it to produce 7 — 1 generator-like bits, from a single input. Note
that this difficulty seems inescapable. When constructing a circuit that computes the hard
function, from a circuit that breaks the generator, we have to somehow compute many bits
of “Generator’s output” to feed into the first circuit. It seems that this requires the circuit to
have as much computational power as the generator. The clever idea behind the generator
is that the circuit compensates for it’s weakness by using it’s non-uniformity.

1.3.2 Nearly disjoint sets
Definition 1.34 A collection of sets {S;}1<i<n, where S; C [l] is called a (k,m)-design if:

e Foralli, |S;|=m

e Foralli#j,|SiNS;| <k.

16

Our aim is to construct a design minimizing [, k while maximizing m. (I, k, m will be functions

of n).

Theorem 1.35 For a prime number m, such that logn < m < n, there exists a (logn,m)-
design with | = m?2.

Proof: Since m is prime, GF(m) is a field over [m]. We will take [= m?, and identify []
with [m] x [m]. Given a polynomial ¢ of degree d < logn, over GF(m) we define:

Se=Atq() |1 <t<m}
Note that:

e For all ¢, |S,| =m.

logn+1

e There are m > n polynomials ¢ of degree logn over GF(m).

e For polynomials ¢ # ¢, |S, N Sy| < logn, (because two polynomials of degree d agree
on at most d points).

[]
For our purposes, we need the design to be computable by a polynomial algorithm. Given
a prime number m, it is easy to compute the arithmetic of GF(m), and so, the design is
constructible in time polynomial in n. There are constructions of deterministic polynomial
algorithms, that given a number m construct a prime number m’ such that m’ = O(m).
Using this, we deduce:

Corollary 1.36 There exists a deterministic polynomial algorithm A, which on input (m,n)
(where m < n), outputs sets {S;}i<i<n, which are a (logn,m)-design, with I = O(m?).

1.3.3 Constructing the generator

We will construct the generator using the assumption that there exist a function f that
cannot be approximated by polynomial circuits (definition 1.32). At this point we will use
the Goldreivh-Levin theorem (1.20) to get a boolean function that cannot be approximated
with non-negligible advantage by polynomial circuits.

Lemma 1.37 (A different formulation of theorem 1.20)
For every function f = {f,}, fo : {0,1}" — {0,1}", there exists a function b = {b,},
by : {0,1}" — {0, 1} such that:

1. Given a family of circuits C = {C,} such that:

1
Procpion (Cr(x) = bp(z)) > 3 +e

there exists a family of circuits C' = {C!} such that:

Praentony (Ch(@) = fu(@) 2 ()7

and size(C") is polynomial in size(C),n, L.

17

2. Given a deterministic algorithm A that runs in time t and computes f, there exists an
algorithm B that runs in time t + n°Y and computes b.

Proof: (The proof uses definitions from section 1.2.2)
Given f = {f,} define b = {b,}, in the following way:

~

bn(7) = GL(f($|1..g, $|%+1,..,n)

by is based on fz, but this doesn’t matter since the conclusions are not affected by constants.
The first conclusion is a straight from theorem 1.20, and the observation that a circuit that
computes f with some success probability, computes f with the same success probability. The
second conclusion is also straightforward using the fact that GL is computable in polynomial
time.

[]

Using lemma 1.37, we now have a function b = {b, }, such that for every family of polynomial
circuits C' = {C,,}

PTCEGR{O,I}"(CH(‘/B) = b, (7)) < €,

For some function €, such that lim, _,. €, - n¢ = 0, for all ¢ > 0. We now define a quick
family of generators.

Definition 1.38 (The Nisan-Wigderson generator) For fized § we define the generator G° =
(G2}, G° - 0,1} — {0,1}". The generator first computes a (logn, n?)-design, {Siti<i<n
where for all i, S; C [I] and | = n® (this can be done in time poly(n) using corollary 1.36).
Given an input z € {0,1}", Define:

e b; = bys(z]s,).
o G(x) = (by, .., by).
Theorem 1.39 the family {G°} is a quick family of generators.

Proof: We start by estimating the running time of G°.

. . . O
Claim 1 G° runs in time 27°.

Proof: We need to prove that there is a constant ¢, such that for all §, G° runs in time
2 G uses a polynomial (in n), procedure to construct the design. From there it only
computes b,s, n times. f is computable in exponential time, and using lemma 1.37, so is b.
we conclude that GY runs in time poly(n) +n - 20" for some constant d, (which depends on
f). This is indeed 27°.

[]
To complete the proof we need to prove that G° €,-passes all statistical tests of polynomial
size. For some function €,, such that lim,, ¢4y €, - n° = 0 for all ¢ > 0. Using theorem 1.25,
it is enough to prove that there exist such a function ¢, such that G° €,-passes all prediction
tests of polynomial size.

18

Claim 2 There ezist a function €,, such that lim,_,. en® = 0 for all ¢, and G° €,-passes all
prediction tests of polynomial size.

Proof: If the claim does not hold, then there exist a constant e, and a family of circuits
C = {C,} which are polynomial in n, such that for infinitely many n, there exist 7 such that:

1
PrxeR{og}n‘; (Cn(Gi(fv)h..i—l) = Gi(l“)h) > e (1.7)

We will construct a family of polynomial circuits C" = {C/ }, such that for each n where
1.7 holds, C], will compute bn% with non negligible advantage. It will be convenient for us
to break {0,1}" to two parts (y, z), where y are the bits which appear in S; and z are the
rest of the bits. Since 1.7 is true for random = = (y, z) there exists some 2’, such that the
inequality holds for fixed 2’ and random y. Fixing z = 2/, we view all b;’s as a function only
of y. With this viewpoint for all j # i, b; =b 4 ((y,2')]s;) is a function over logn bits. This
is because for j # i, |S; N S;| < logn. Any function over logn bits can be computed by a

d
circuit of size n, by simply using it’s CNF or DNF representation. On input y € {0,1}"*,
the circuit C" will compute by, ..,b; 1 and activate C, (b, ..,b;_1). Note that i < n, and so
C"; (which computes 7 bits, where each requires size n is of size at most n? + size(C),). So

n2

[}
2.

)
On a uniformly chosen y € {0,1}"*,

C'(y) = C(Galy, #)|r.i1)
Recall that G (y, 2')|; = b 5 (y), and so, C" computes b with non-negligible advantage, which
is a contradiction.

it is polynomial in n

This completes the proof of the theorem.

Remark 1.40 Note that the non-uniformity of the circuit played an important role in the
proof. It enabled C" to “know” 2" in advance. That is to have an accessible hint of polynomial
Size.

Theorem 1.41 (main theorem, Nisan- Wigderson)
If there exist functions that are computable in exponential time and cannot be approxrimated
by polynomial circuits then BPP C Ngsodtime(2").

Proof: We have just proved that the existence of functions that cannot be approximated
by polynomial circuits implies the existence of a quick family of generators. Using corollary
1.2 we get for all .

bptime%(nt, n') C dtime(2”t5(2”

o(t6) cts

+n')) C dtime(2"")
for some constant c. By choosing d(p,t) = £, we get:

bptime (n',n') C dtime(2™")
Since this is true for all ¢, p, (and switching between p and ¢), we get:

BPP C Nysodtime(2")

19

1.3.4 A generator for constant depth circuits

In this section we deviate from the main subject of derandomizing BPP to show another
use of the generator. It should be mentioned that historically, the generator was constructed
for this cause, and only later used to derandomize BPP. An important observation is that
in the proof of theorem 1.39 We used only the following properties:

1. b cannot be approximated by the model of computation we want to fool.
2. The model of computation we want to fool can compute functions over logn bits.

These are very general properties, and in this section we will use the construction to build
a generator that fools constant depth circuits.

Definition 1.42 An unbounded fan-in circuit, is a directed acyclic graph, where each node
is labeled by a gate type (or,and,not). Vertices of in-degree zero, are called inputs, and those
with out-degree zero are called outputs. The inputs are labeled by input bits, or their negation.
The circuit “computes” by successively applying the functions at each gate. The depth of a
circuit is the length of a maximal path from input to output. The size of a circuit is the
number of edges in the graph.

It makes no sense to place a restriction solely on circuit’s depth, since depth 2 circuits, can
compute all functions, by using their DN F' representation. However, it becomes interesting
adding a size restriction.

Definition 1.43 The class ACYy is the class of unbounded fan-in circuits, of constant depth
and size polynomial in the input length.

It seems that AC) circuits are weaker than regular polynomial circuits. An evidence to this
is that we do know to prove that there are functions that cannot be approximated by AC
circuits. One such example is the parity function.

Theorem 1.44 (Hastad)
_1
For any family C = {C,} of unbounded fan-in circuits of depth d, and size 2"

1
_pd=T1

| <2

DN =

| Pracpo3 (Cn(x) = parity,(v)) —

So we have fulfilled the first condition above. For the second one, note that any function
over logn bits can be computed in depth 2, and size n, using it’s DN F' representation. We
could use parity, as a hard boolean function, and use exactly the same arguments as in
1.39 and 1.25, to conclude that the Nisan-Wigderson generator fools ACy circuits. It should
be remarked that in this case, the parameters can be chosen in a better way than in the
previous sections. We don’t go into details, as it is outside the scope of this chapter.

20

Chapter 2

Using a worst case complexity
assumption

2.1 Worst case complexity Vs. Distributional com-
plexity

In the previous chapter we were able to prove that BPP C ﬂ5>0dtime(2"5), Using an as-
sumption that there exist a function that can be computed in exponential time, and cannot
be approximated by polynomial circuits. Note the difference between “to compute”, and “to
approximate”. This is a difference in the way we consider bounded resources computation.
The “Worst case complexity” model, requires that the algorithm performs the task correctly
on every given input. The “Distributional complexity” model requires only that the algo-
rithm succeeds with good probability on a random input, Complexity theory, usually chooses
to speak about “worst case complexity”. Indeed, all the elementary definitions made in the
first section, speak about “worst case complexity”, in particular, our goal (to simulate BPP
by deterministic computation) is stated in “worst case complexity” terms. It would be nice if
we could prove the same conclusion, using an assumption that is on “worst case complexity”
computation. It is surprising that to perform this, we will not need a new generator. The
Nisan-Wigderson generator (described in the previous chapter) will suffice. What we will
do, is prove that:
The existence of functions that cannot be computed by polynomial circuits
implies
The existence of functions that are “somewhat hard” to approximate
implies
The existence of functions that are “very hard” to approximate

This process will use the fact that the first function can be computed in exponential time.
This property will be preserved, and thus the final function will be computable in exponential
time, and unaproximable by polynomial circuits. All that is left is to use the Nisan-Wigderson
generator (theorem 1.41) to conclude that:

Exp\ P/poly # O = BPP C Nsodtime(2")

21

2.2 Randomness Vs. Non-Uniformity

In this section we will show that Non-Uniform computation (circuits), need not throw coins,
in both “worst case complexity” and “distributional complexity” models. This is the reason
why in the previous chapter we did not need to speak about probabilistic circuits.

2.2.1 Distributional Complexity

The result we prove now is very easy, and we used it implicitly in the previous chapter. We
state it now separately, since we are now studying the property-s of distributional complexity
in general.

Lemma 2.1 Whenever there ezist a family of (probabilistic) circuits C' = {C,,}, which re-
ceive (apart from x), a random input r, chosen from an arbitrary distribution D = {D,} on
range R = {R,}, and

PTmER{O,l}”,rEDan (Cn(xa 7”) = f(l‘)) > p

There exist a family of (deterministic) circuits C' = {C}}, such that:
Procpioay(Cp(@) = f(2)) 2 p
and size(C") < size(C).
Proof:
p< PrmeR{O,l}",rEDan(On(xa r) = f(z)) = ET'EDan(PTIER{U;l}n(Cn(x7 r) = f(r)))

< maxreRn(PrmeR{o,l}"(Cn(% r) = f(x)))

Let 7' be the maximal r, fixing r = 7', we get a circuit C] (xz) = C,(z, '), which is of the
same size as C', and achieves the same success probability.

[]
We use the non-uniformity of the circuit, to have it “prepare in advance” a different string
r for every length of input n. To prove such a result for uniform computation, we need an
efficient way to compute r, for ever n, the proof gives no clue, as to how to achieve this.

2.2.2 Worst case complexity

by “probabilistic worst case complexity computation” we simply mean that for every input
x the (probabilistic) procedure answers correctly with probability that is distinguishably
greater than % The probability is not taken over the input =z, it is taken on the random
“coin flipping” of the procedure. We can always assume that all those are done in advance,
and the procedure actually receives two inputs (the real input x, and a random input r). This
is exactly the way we defined probabilistic algorithms, and bptime (definition 1.2). Again,
we prove that coin-flipping is not necessary for circuits. This time the circuit will need to

pay a little in size to achieve the task.

22

Theorem 2.2 (Adelman) Whenever there exist a family of (probabilistic) circuits C' =
{C.,.}, which receive (apart from x), a random input r, chosen from an arbitrary distribution
D ={D,} on range R ={R,}, and for all x of length n:

Prrcp, i (Calr) = f(2)) > 5+

There ezist a family of (deterministic) circuits C' = {C} }, which compute f. and size(C") =
O(size(2C’)n) -

p

Proof: Our first step is to amplify the success probability of the circuit. This is done
(as usual) by taking a lot of independent runs. take ¢ copies of C,, and have the circuit
C!' compute the majority over the outputs. It is standard to conclude (using the Chernoff
inequality) that for all z of length n:

P’rrl,..,rtEDan (C;{(% T1y .0y rt) - f(x)) Z 1 - 27Q(p2t)

Fixing t = @(%), we get that C” is wrong with probability less than 272", Define for every
z € {0,1}", a random indicator variable Z,.

7=} @1

0 otherwise
Set Z =3 Z,, the number of wrong answers over all z in {0, 1}".
E(Z)=E() Z,) =Y E(Z,)=2"2""<1

Since Z takes integer values and it’s expectency is less than 1, there have to be 71, .., r}; such
that Z(r},..,r;) = 0, or in other terms, for all z, C"(z; 7, ..,r;) = f(z). Define the circuit
C'(x) =C"(z;7y, .., 1)

size(C") = size(C") =t - size(C) = O(

[]
This means that as long as we view the world through “polynomial” glasses. deterministic
circuits are as powerful as probabilistic ones. The theorem is often stated (in a weaker form)
the following way:

Corollary 2.3 BPP C P/poly

Proof: given a uniform algorithm that runs in time ¢, one can transform it into a circuit
of size t2. Given a polynomial probabilistic algorithm, simply transform it into a family of
polynomial circuits and apply theorem 2.2

23

2.3 From Worst-case hard to slightly unapproximable

In this section we transform a function that is hard in the worst case to one that is somewhat
hard to approximate. We will require some machinery.

2.3.1 Transforming a boolean function into a polynomial

One of the tools we need to develop, is a construction that transforms every boolean function
into a polynomial of low degree. Let f : {0,1}" — {0,1}, be some function, and F' a field.
Clearly, F' contains {0,1}. For every a € {0,1}", define a polynomial p, € F[X{, .., X,,]:

Pa(T1, .y 2n) = H (1—a; —x;)

1<i<n
p, satisfies:

e For all a € {0,1}", deg(p,) <n
e For all a,b € {0,1}", such that b # a, py(b1,..,b,) =0
e For all a € {0,1}", pa(aq,..,a,) = 1.

Definition 2.4 For a function f : {0,1}" — {0,1}, and a field F, we define a function
f i F™ — F in the following way:

f_(xla"axn) = Z pa(xlv"axn)
{a€{0,1}"|f(a)=1}

From the previous discussion it is clear that:

e deg(f) < n.

e f identifies with f, when all n inputs are in {0, 1}.

Assuming |F| = n°®Y, one can encode it’s elements in binary form, and view f, as a function

from {0, 1}9(len) to {0,1}90¢™) In this case the input sizes defer only slightly. and if one
takes a field with arithmetic that can be computed efficiently, we get the following lemma:

Lemma 2.5 If there exists a family of boolean functions f = {f.}, that is computable in
exponential time, yet cannot be computed by polynomial circuits, then there exist a family of
functions g = {gn}, gn : F™ — F which has the same properties, and also has a representation
as a polynomial of degree at most n.

Proof: We simply take g, = f,, and we have seen that it is indeed a polynomial of degree
at most n. Notice that the size of the input of g, is polynomial in that of f,,. this means
that “polynomial circuits” are of the same size, with respect to both functions. Since g,
contains a “copy” of f,, then it is at least as hard. The polynomial of g, can be computed
in exponential time when one is given an oracle for f,,, and this oracle can be replaced by an
exponential procedure. Evaluating the polynomial on a given input also takes exponential
time. We conclude that g can be computed in exponential time.

24

Remark 2.6 Actually, being a bit more careful we could have g, be a function over O(n)
bits instead of O(nlogn) bits. We can we find a copy of {0,1}'°¢" in F, and view f, as a
function from F* (where k = ﬁ to {0,1}. We would now need to generalize the definition
of P,. We define P,

Ly-yOf *

;= b
Pal,..,ak(xla "7xk) = H : H -

1<i<k be({0,1}l08 "\ {a;}) @ —b

Note that now the p’s are of degree no more than "’ Now we would define f : F¥ — F':

logn*

flxy, ., ap) = > Pa(T1, s Tn)
{ae{0,1}|f(a)=1}

We would get that f is a polynomial of degree no more than %, and counting the number

of bits in the input of f, we see that we reduced it to n. The interpolation part of the proof
can continue as before.

While this remark doesn’t improve the final result we prove in this chapter, It is essential for
one of the improvements of the theorem that we sketch in the next chapters.

2.3.2 Random self reducibility

In this section we start from the assumption:
EXP\ P/poly # O

Or in words, that there exist a function f = {f,}, that is computable in exponential time, and
uncomputable by polynomial circuits. From the point of view of distributional complexity,
the second condition means that for all families of polynomial circuits C' = {C,, }:

Proc o3 (Cn(z) = f(2)) <1

At the end of the section we will conclude that there exists a function g = {g,}, which is
computable in exponential time, and

1

Pracpponpn (Calz) = g(2)) <1 - o

This means that ¢ is somewhat hard in the distributional complexity sense.

Theorem 2.7 If EXP\ P/poly # O, then there exist a family of functions g = {gn}, such
that:

1. Gn {0, 1}O(nlogn) - {0, l}O(logn)
2. g is computable in exponential time.

3. For every family of polynomial circuits C = {C,},

Procpiony (Cn(x) = gn(z)) <1 — =

25

Proof: We already know from 2.5 that EX P\ P/poly # @, implies that there exist a family
of functions that can be computed in exponential time, cannot be computed by polynomial
circuits, and take the form of g, : F* — F, where F is a field with n®®" elements. Moreover,
gn is a polynomial of degree at most n. So such g satisfies the first two conditions. We will
now prove that if there exist a family of polynomial circuits C' = {C,}, such that:

1

Prycpionn(Cn(z) = gn(x)) > 1 — 3

Then there exists a family of polynomial circuits C' = {C}, which compute g, for every
input. For z, 3 € F" define a polynomial in one variable over F'

pm,ﬂ(t) - gn(aj +t- ﬁ)
Note that:
e For all x, 3, deg(p.5) < n.

e For all z, 3, p, 5(0) = g,(2).

Recall that there is a unique polynomial of degree n that passes through given n + 1 points,
and moreover that one can compute this polynomial efficiently, given n + 1 points. We
construct a probabilistic circuit C':
On input z:
Pick a uniformly chosen 3 € F™.
Take n + 1 distinct values in F', t1,..,t,.1.
Activate C' on x + t; - 3, we will denote the ¢'th output by d;.
Compute the polynomial ¢ that passes through t;,d;;;;,, output ¢(0)
First of all note that C’ is of size poly(n) + n - size(C') which is polynomial in n. Secondly,
the functions hy(y) = y + 3, ha(y) = t - B are permutations over F™ for all 4. This means
that when [is chosen uniformly, ¢; - 3, is uniformly distributed for all 1 < ¢ < n + 1. This
means that for all ¢:

Pro(Cle 41+ 6) = gale + - 6)) > 1 - -
We conclude that:
1

Pry(Ei:Cla=ti-§) # gula+4-0) < 5= = 5

This means that with probability %, all the d;’s equal p(t;). When this happens ¢ = p, g,
and so ¢(0) = gn(z). So we have managed to build a circuit that is correct with good
probability on every input. (The process of reducing the problem of solving a function on
every input (with good probability) to this of solving it over a randomly chosen input, is
called: “Random self reducibility”). We now transform this circuit to a deterministic one
that is correct on every every input by using theorem 2.2.

[]
We have constructed a function that is somewhat inaproximable by polynomial circuits. As
far as we know there may be a polynomial circuit that computes the function on a very
large fraction of the inputs. The next section is devoted to “amplifying” the hardness of the
function, making the success probability of every polynomial circuit negligible.

26

2.4 Hardness Amplification

2.4.1 The concept

At this point we have a function ¢ = {g,}, that is computable in exponential time, yet for
every family of polynomial circuits

1
Pracponn (Ca(2) = gn(r)) <1 = o

3n

We would like to have a function on which we can apply the Nisan-Wigderson generator.
For such a function we need the success probability to negligible, (meaning smaller than
every polynomial). Remember, that we have at our disposal a very powerful tool, namely
the Goldreich-Levin theorem (1.20), which enables us to make a non-boolean hard function
into a boolean one with the same hardness. So the fact that g is not boolean is not a real
obstacle. Our basic idea is very simple, let’s ask the circuit to compute the function ¢g on a
lot of independently chosen random inputs. It seems that taking n?, such inputs will reduce
the success probability of circuits to (1 — %)”2 = ¢~ which is negligible. However, the
situation here is much more complicated than the case of amplifying the success probability
of probabilistic algorithms. The problem is that unlike the case of amplifying the success
probability of probabilistic algorithms, the circuit C', may query all the inputs when trying
to solve the first instance. While this doesn’t seem helpful, it makes the runs dependent,
and we can no longer multiply probabilities. Indeed, in some sense we know that a proof
that works in this manner will not be able to reduce the success probability to exponentially
small, as expected. However, for us it safises that the probability goes to zero multiplied by
any polynomial, which we can achieve in such methods. It should be noted that hardness
amplification, is an interesting field which has many other uses. Our failure to prove better
results may not stop us from getting a good generator, but is quite surprising, since the
question seems very basic. Current amplifications are also not optimal, in respect to the
tradeoff between sizes of the circuits. Suppose that we know that every circuit of size s
cannot compute the the function f, with success probability better than p. we already
commented that taking k, independent inputs, we are not able to prove that the success
probability drops to p¥. What we can prove is that it drops to p* + ¢, for every circuit of
size s’ = s(%)o(l), note that s’ << s, this means that we are able to bound the success
probability of a smaller circuit. Not only does the circuit need to solve a lot of instances, it
also has to be much smaller than the original circuit! However, as mentioned before, from
the point of view of derandomizing BP P this unsatifayable results are enough.

2.4.2 Xor lemmas and Product theorems

The basic situation is simple. We have a function f, such that we know that for every circuit
C of size s:

PerR{O,l}”(C(I) =f(z)) <p

We can now try to “amplify the hardness” in several ways:

27

Definition 2.8 For every function f : {0,1}" — {0,1}, and k, define the following func-
tions:

1. fo ({0,13")" — {0, 1},
F* (1) = f(21)D, .., Df (1)
2. foF ({0, 11")F — {0, 1}
fO@1,) = (f(@1), -, f @)
3. fEH0 ({0, 13)* x {0, 1} — {0, 1}

fGL(k)(xla o Tk Y1, -05 yk) = GL(f(xl)a sy f(xk)a Y1y -+ yk) = eazyl:lf(ajz)

In the first function, the circuit is required to compute the xor of the values of k instances
of f. At the second it is required to just output the values of &k instances of f. The third is
a bit strange, additional inputs are added according to which, the instances for the xor are
selected. All three formulations are based on the same intuition, if one instance is a bit hard,
the function for k instances, seems very hard. The claim that f®* is hard is called: a “xor
lemma”. The claim that f®* is hard is called a “product theorem”. Historically, xor lemmas
appeared before product theorems. xor lemmas, are a bit better, as the target function is
boolean. But since we have the Goldreich-Levin theorem, we can deduce the existence of
a hard boolean function, from the existence of a hard non boolean one. Taking a better
look, this claim can be phrased non-formally in the following way: If there exists a small
circuit for f&*) which has a non-negligible advantage over %, then there exists a small
circuit for f®* which has non-negligible success probability. (for exact parameters, check
theorem 1.20). If you have small circuits for f®* for all k, then you certainly can build
a relatively small circuit for f&“*). We conclude that proving a direct product theorem,
already proves a xor lemma. (again, the parameters work out alright for our uses). The
other side is more intuitive but not trivial. now, we have a small circuit that computes f®¥,
with non negligible success probability, and you want to construct a small circuit which has
non-negligible advantage when computing f®. The trivial idea, of taking the xor of the
outputs, does not work. It may very well be, that the xor of he values the circuit output is
fixed, and so have no advantage over i. Instead, one shows that there exists a small circuit
which has non-negligible advantage for f¢“*) This is true, since the randomness in the
choice of the y’s makes the answer of the circuit uniform, when it gives a bad answer. So
in the (relatively rare) event, that the original circuit computed f®* correctly, this induces
an advantage over % Now, one can construct a small circuit for f® g, since the size of the
subset over which the xor takes place, is very rarely considerably greater than g

So, we have shown that all three variants have roughly, the same hardness. In most of the
original papers, the amplification was achieved using a xor lemma. In light of this discussion,
this hardly matters, and since proving product theorems, seems a more general question, we
go about proving one in the next section.

28

2.4.3 Proof of product theorem

We start by proving a product theorem for k = 2, (that is for two instances).

Theorem 2.9 Let fi, fo be two functions, over domains X,Y respectively. Let Dy, Dy be
probability distributions over XY . suppose that:

1. For all circuits C' of size s1:
PrmGDlX(O(x) = fl(x)) S M
2. For all circuits C' of size so:

PTy€D2Y(C(y) = fa(y)) < p2

Then for every € > 0, and circuit C' of size s = min(O(_ﬁé‘;E), So):

PerDlX,yEDQY(C(xvy) = (f1(l'), f2(y))) S pip2t+e

Proof: Let C' be a circuit of size s, which attempts to compute both functions. Informally,
the proof can be described as follows: The success probability of C' can be written as the
probability that it is right on the first coordinate given that it is right on the second one,
times the probability that it is right on the second coordinate. The second term is bounded
by p2. To bound the first term, we construct a circuit for the z’s that samples y from the
conditioned event, and activates C' on z,y. This bounds the first term by p;. There are two
difficulties:

1. Conditioning changes the distribution of the z’s. This is overcome by fixing z, before
conditioning, and then taking the expectation over the x’s.

2. For some z’s, the probability over y’s that C succeeds in the second coordinate, may
be small, and we will not be able to sample such a y. This is overcome by noticing
that though the proportion of those x’s may be very large, their contribution to the
success probability of C' is small.

We denote the i’th output of C' when given z,y, by C;(z,y). We will evaluate the success
probability of C":

Pracp, xyep,v(C(z,y) = (f1(2), f2(y)))
= xEDlX(PTyEDQY(C(xay) = (fl(x)an(y))))
= xEDlX(PTyEDQY(CI(xvy) = f1($)|02(1',y) = f2(y)) : PryEDQY(CQ(xvy) = fQ(y)))

(The last equality is correct even if the probability of the conditioned event is zero, in this
case the conditional probability is defined to be zero). define:

A= {z|Pryc,, v(Ca(z,y) = foly)) > 5}

[NNe

29

We separate the expectation, according to the different kind of x’s.

= PerDlX(A)ECEGDIA(PTyEDQY(CI(xvy) = f1($)|02(1',y) = f2(y))Pry€D2Y(CQ(x7y) = f2((2yi)))

+Prx€D1X(AC)ExED1AC(PTyEDQY(Cl(xay) = f1($)|02(1',y) = f2(y))Pry€D2Y(02(xay) = f2(y)))

(2.2)
To bound (2.2) we note that or each ¢ A, the term inside the expectation is bounded by
5, and therefore (2.2) is bounded by . We now proceed and bound (2.1). For all z € X,
(and therefore for all € A):

Pryep,y(Ca(2,y) = f2(y)) < ps

This is because for all z, the circuit C,(y) = C(x,y), is of size s < sy Applying this to (2.1),
we get:

S p2P7nm€D1X(A) . EwEDlA(PryEDZY(CI(xay) = f1($)|02($,y) = f2(y))) (23)
Claim 3

EweDlA(PryEIbY(Cl(x’y) = f1($)|02($,y) = f2(y))) < m + %

Proof: Consider the following (probabilistic) circuit C":

On input z € A:

Choose 41, ..,y €p, Y

“Compute” fo(y;) for all 1 < i <t, and compare it to the output of Cy(z,y;).
denote:

If S, = @, output: “don’t know”.
Otherwise picks y' € S, and outputs C(z,y').

(The circuit can “compute” fo over it’s randomly picked y's, since a probabilistic circuit is
merely a distribution over deterministic ones. From the point of view of each circuit, y is
just a constant, and so is fo(y)). Since z is in A we know that:

Pryc,, v(Ca(z,y) = f(y)) >

[NNINe

This means that:

Pryl,--,yt(sﬂv =0)<(1- %)t <

NSRS Y

for t = O(=2¢). When S, # O, the distributions
i y, €r Sm

e ycp, Y|Ci(z,y) = fo(y)

30

are identical. We conclude that for all x € A:
€

Pri(Ci(2) = fi(2)) 2 Pryep,y (Ci(w,y) = [i(@)|Ca(w,y) = fo(y)) — 5

(Where 7 is the “random coins” used by C’). This is also true taking expectation over z:

Eyep, a(Pre(Cr(z) = f1(7))) = Eyep, a(Pryep, v (Ci(x,y) = fi(2)|Ca(x,y) = fa(y))) — %
(2.4)
Note that:
Evep, a(Pre(C'(x) = fi(2))) = Prac, a,(C'(2) = fi(2))
We can fix r to some value 7', which achieves the same success probability. This fixing does
not change the size of the circuit. So we can continue, and get:

Proc, x(Cr(x) = fi(x))

PrmeDIX(A)
Where the last inequality is simply using properties of conditional probabilities. However,
since size(Cl) = O(size(C)—2%<) < sy, it cannot have success probability greater than p.
The claim follows by putting everything together.

<P7"meDA((7) = fi(z)) <

Using the bounds we have on (2.1) and (2.2), we have that:

PerDIX,y€D2Y(O(xay) = (fi(x), f2(y))) < (pr + 5)p2 + 5 “ < Dip2 T €

2) 2~

[]
The proof for arbitrary k, follows by induction. At each stage the k inputs may be split to
two parts, defining two functions fi, fo over the two groups of variables. If this is done with

patience and care, one gets the following theorem:

Theorem 2.10 Let f be a function over domain X. Let D be a probability distribution over
X. Suppose that for all circuits C of size s:

Proe,x(C(z) = f(x)) <p

then for every e > 0, set k = O(%i—) For all circuits C' of size sO(—

Prxl,..,xkeDkX’“ (C(xla "7xk) = (f(xl)a S f(l'k))) <e

For our purposes we will need the following version:

loge)

Theorem 2.11 Let f be a function over {0,1}", Suppose that for every circuit C' of size
polynomial in n:

Pr, 2(Clr) = f(z) <1 ——

oo (C(@) = [2) <1 —

(Where p is a polynomial). Then there exists a function g : {0,1}** — {0,1}*, where
k = poly(n), such that g is unapprozimable by polynomial circuits.
Proof: We simply take k = np(n), and have g = f®*. Using the previous theorem, we know
that if there exists a circuit C' that computes g with success probability e(n) = #, then there

exists a Circuit D of size size(C)n®logn, that computes f with success probability better
than 1 — (7 This is a contradiction. °

31

2.5 The main theorem
In this section we simply put everything together.
Theorem 2.12 Babai-Fortnow-Nisan- Wigderson
Ezp\ P/Poly # ® = BPP C ﬂ5>0dtime(2”5)

Proof: We have already proved (2.7) that if EXP \ P/poly # O, then there exist a family
of functions f = {f,}, such that:

1. fn . {0, I}O(nlogn) - {0, 1}0(10gn)
2. f is computable in exponential time.

3. For every family of polynomial circuits C' = {C,, },

1

PTxER{O,l}”(On(x) = fn(x)) <1- S_n

We now use theorem 2.11 to construct a function ¢ that is extremely hard from f which
is only mildly hard. Note that any polynomial in nlogn is bounded by some polynomial
in n, and so we get that there exists a function g : {0, 1}Po%() — {0 1}po(™) Which is
unapproximable. ¢ can be computed in exponential time. This is because computing g
amounts to a polynomial number of computations of f. At this point we can use theorem
1.41. °

32

