The Fusion Method for Lower Bounds
in Circuit Complexity

Avi Wigderson
May 27, 1993

Abstract

This paper coins the term “The Fusion Method” to a recent approach for proving
circuit lower bounds. It describes the method, and surveys its achievements, potential
and challenges.

1 Introduction

In a recent paper, Karchmer [6] suggested an elegant way in which one can view at the same
time both the “approximation method” of Razborov [13] and the “topological approach” of
Sipser [15] for proving circuit lower bounds. In Karchmer’s setting the lower bound prover
shows that a given circuit C' is too small for computing a given function f by contradiction, in
the following way. She tries to combine (or 'fuse’, as we propose calling it) correct accepting
computations of inputs in f~!(1) by C into an incorrect accepting computation of an input
in f71(0).

It turns out that this “Fusion Method” reduces the dynamic computation of f by C into
a static combinatorial cover problem, which provides the lower bound. Moreover, different
restrictions on how we can fuse computations result in different combinatorial problems,
which turn out to capture an amazing variety of complexity classes such as P, NP, NL, &L
and mP.

I believe that the Fusion Method is the most viable approach we have today for proving
lower bounds in a variety of computational models, most notably non-monotone circuits.
My main aim in this paper is to induce people to understand this method (this is easy),
and develop techniques for solving the combinatorial problems it raises (but this is hard!).
For this purpose I summarize essentially all my knowledge and intuition about it, in the
following order.

In Section 2 I give a semi-intuitive, semi-formal account of the Fusion Method. Section 3
is a kind of annotated bibliography, describing the evolution of ideas that led to (my view
of) the Fusion Method. In Section 4 I formally define the notions from Section 2. This is
done in a very general way, that will fit all existing results that use this framework. I then

list all the complexity classes that can be characterized by this method, and the best lower
bounds obtained by it. Section 5 is devoted to a discussion of the interesting features of this
method, and Section 6 contains a list of natural directions for further research. In Section 7
I list three concrete combinatorial/algebraic problems that arise from the Fusion Method.
It is completely selt contained, and the impatient reader can skip everything and go there
directly.

2 Intuition

2.1 Computations

Let f:{0,1}" — {0,1} be a Boolean function on variables X = {z1,23,...2,}, and P a
straight line program that allegedly computes f. Thus P = (¢1,¢2,...9:) with ¢g; € X for
1 <3 < n,and for every 7 > n, g; = gj, 0j g;, for some j;, 72 < j and o, is a binary operation
in OP, the set of operations used by P.

For every z € {0,1}",let P(2) = (91(2), 92(2), ..., 9:(2)) € {0,1} denote the computation
of P on z. (Clearly, not every vector in {0,1}" is a computation of P on some input.) Let
U= f~'(1) €{0,1}" denote the set of “ones” of f. Construct a |U| x ¢ Boolean matrix Py
which for every u € U has a row P(u). The columns of Py are Boolean functions on U. In
fact, the jth column is the restrictions of g; to the domain U. Note that the first n columns
are the variables x;. Furthermore, as we assumed P computes f, P must accept all members
of U and thus the last (tth) column of Py is T, the all 1’s vector in {0, 1}Y.

2.2 Combinations

Let Q@ C {G : {0,1}Y — {0,1}} be some set of functionals on {0,1}Y. We will combine
(fuse) the computations of P using some functional F' € . Applying F' to a column g;
of Py gives a Boolean value, which can be thought of as a truth value to this node in the
program. Applying F' to each of the ¢ columns of Py results in a vector F'(Py) € {0,1},
which, if we are lucky, is a real computation of the program. If we are really lucky, F(Py) is
in fact an accepting computation P(z), of some “zero” z of f (i.e f(z) = 0), which will give
a contradiction. Let us enumerate the requirements on F' that will ensure a contradiction:

1. F defines a “zero” of f: For some z ¢ U and for all 1 <1 < n, F(z;) = z.
2. F'is accepting: F(1) = 1.
3. I’ is consistent: For every n < 7 <t, F(g;,) o; F'(9;,) = F(gj, ©j 9;,)-

How can we arrange a “lucky” combination F'7 The first two conditions are easy to en-
sure, simply by restricting ourselves to F' satisfying them. Namely, we define Qy = {F €
Q| F satisfies (1), (2)} and take F' € Qf. However, condition (3) depends on P, which is not

really given when we are trying to prove a lower bound — in fact only ¢ is given. But the

point is the following: if some P of length ¢ computes f, all these attempts F' must fail to
satisfy (3).

2.3 Lower Bounds and Characterizations

The discussion above motivates the following definition.

Definition (Covering): Say that a triple < g, h,0 > with g,k € {0,1}" — {0,1}, 0 € OP
covers F' if

F(g)o F(h)# F(goh). Let p(f) denote the smallest number of such triples that cover all
of Q¢ (this number depends on the choice of OP and).

Then, we have just proved:

Theorem 1 (Meta-Theorem) p(f) is a lower bound on the length of the shortest program
(over OP) for f.

Why should we bother to restrict our fusing combinations to {2, rather than take all
possible functionals on {0,1}Y? After all, the larger) is, the larger the lower bound p is.
One answer is that this set is huge — triply exponential in n for typical f, and smaller or
simpler universes may be easier to handle.

Another answer has to do with the quality of the lower bound. The meta-theorem above
would not be too interesting if p(f) was small for every f. As we shall see later, for different
types of models, it is possible to choose €} in such a way that the lower bound provided by p
is tight up to a polynomial, and sometimes even up to a constant factor. In some cases we
will obtain a converse to the meta-theorem.

Theorem 2 (Meta-Converse) There is a program (over OP) computing f, which is not
much larger than p(f).

The meta-theorem together with its converse yield a characterization of many complexity
classes (NL, &L, P, mP, NP), in terms of the cover number p, that depends on the choice
of . We conclude with the ideas behind a typical proof of this converse.

Let a cover {< ¢1,h1,01 >,...,< ¢s, hs,0; >} for Qf be given. Unlike a program, these
triplets may be an arbitrary collection of unrelated “gates”, and our task is to “organize”
them into a program.

Now we are given an input z € {0,1}", and we should compute f(z). Our strategy will
be to check if there is a functional F' defining z which is not covered by the given cover. Let
us consider the two cases.

If f(z) =0, then by the definition of a cover, for every F' € (s, one of the “gates” in the
cover will be inconsistent (will violate (3)). On the other hand, if f(z) =1 (i.e. z € U), then
consider the “singleton” F, defined by F,(g) = g(z). © will always contain these “singleton”
F,, and it is easy to see that they are consistent with every possible gate (simply since

F.(goh)=(goh)(z) =g(z)oh(z) = F.(g) o F,(h)). Thus we have:

Lemma 1 (Main Lemma) f(z) = 1 iff 3F € Q, which defines z and is consistent (i.e.
not covered) with the given cover.

The rest is a program (over OP), that attempts to construct such an F' for the given
input z. A key observation is that it is sufficient to specify only the value F' takes on only
few “points” in 2V namely the inputs z;, and the functions g;, h;, g; o; h; from the cover.
The details depend heavily on the model, of course.

3 Historical Annotated Bibliography

3.1 The “Approximation Method”

In 1985, Razborov proved superpolynomial lower bounds on monotone circuit size for the
clique and matching functions ([12, 11]). The technique he introduced became known as the
“approximation method”. Andreev [2] used a varaiant of this method to prove exponential
lower bounds for the other NP functions, and stronger results followed in [1, 17].

Much effort was subsequently put in trying to apply the “approximation method” to non-
monotone circuits, but all attempts failed. In 1989, Razborov [13] explained these failures.
He formalized his “approximation method” and proved that it can never yield even super-
linear bounds on non-monotone circuits. In the second part of the same paper, he proposed
a generalization of his method (which became known as the “generalized approxiamtion
method”). He proved that this method characterizes circuit size (up to a polynomial), and
thus can potentially be used to prove non-monotone lower bounds.

All the ideas described in the previous section are already present in his paper [13].
Indeed, the “generalized approximation method” is the method of combining computations,
(with € as the set of all filters (monotone functionals) over 2¥). However, the description
of the method in [13] takes the perspective of circuit approximation, and some readers may
wonder even now where is approximation taking place in Section 2. The key is to view the
consistency requirement (3) on F' as an approximation of a gate; we approximate the output
of go h by F(go h), even though it should have been F(g) o F/(h). The errors introduced
by this approximation are those F' for which F(go h) # F(g) o F(h) (i.e. those F' covered
by < g,h,0 >). Thus, Razborov [13] reduced the circuit lower bound problem to a covering
problem, in which one looks for the least number of gates that will together eliminate all
errors for every F' € Q).

So far so good. But while the general approximation method was potentially powerful
enough to prove non-monotone circuit lower bounds, no such bounds followed. Although
the task was reduced to solving static set-cover problems, the universe and covering sets in
these problems were frightfully huge — triply exponential.

It was thus extremely fortunate that Razborov wrote another paper [14], showing that the
potential of the general method can materialize. Another message in this paper is that the
method is applicable to other models. In [14], Razborov shows that a somewhat restricted
set-cover problem can be associated with non-deterministic (and non-monotone) branching

programs. In fact, the associated cover number determines exactly the size of this model for
every function. Finally, he considers the Majority function, and proves a super-linear lower
bound for it in this model by lower bounding the related cover number.

3.2 The “Topological Approach”

Since the early 1980’s, Sipser suggested that the gap between polynomial and exponential
complexity in finite circuits is analogous to the gap between countable and uncountable
“circuits” in topology. Thus, we should get intuition and ideas for proving finite lower
bounds by first proving their infinite analogs.

This approach was very successful in studying constant-depth circuits. The proof in [5]
that parity is not in AC? can be thought of as a finite version of Sipser’s proof [15] that no
“countable parity function” is Borel. Similarly, Sipser’s proof [16] that the constant-depth
hierarchy in AC? is strict, was inspired by the classical result (see e.g. [10]) that the Borel
hierarchy is strict.

In his 1984 paper [15], Sipser suggested approaching the NP vs. coNP question by
studying its infinite analog: the classical result of Lebesque (see e.g. [10]) that the analytic
sets are not closed under complement. Sipser provides a new proof of this result, which
can hopefully be “finitized”. He considers the set T' of all countable trees with no infinite
branch. T is easily seen to be co-analytic (in fact it is complete for this class). Assume we
have an analytic (i.e. countable, non-deterministic) circuit P that allegedly computes T,
and assume it correctly accepts all members of T'. Sipser proves that the circuit must accept
some member of T as well, deriving a contradiction, in the following way.

For each member of ¢t € T', fix an accepting witness w;. This fixes the computation of P
on t, namely the values are all wires of P. Now, (using diagonalization), he picks a sequence
of points in T' t1,t,,... which converge to a point t,, € T. The choice is made such that
the associated sequence of accepting computations P(t1), P(t2), ... converges to an accepting
computation for P(t), a contradicition.

In [15], as well as in his survey [16], Sipser asks for a notion of a “finite limit” that will
allow to carry out such an argument for finite computations. The reader should find it easy
to match up the concepts in Sipser’s proof and in Section 2. In particular,) can serve as a
notion of a limit, and the chosen F' as the converging sequence. Of course, diagonalization
should be replaced by proving a lower bound on the cover problem, that will imply F' exists
if the given circuit is too small.

3.3 Unlification

Karchmer [6] was the first to explicitely present the method of fusing computations in essen-
tially the same way described in Section 2, (still for the set of filters over 2V). He observed
that it unifies the approximation method of Razborov and the topological approach of Sipser.
Moreover, he pointed out that the construction of a filter F' € Q0 can be viewed as a fini-

(&3¢

tary version of the ultra filter construction used in model theory (see e.g. [4]) *. This idea
was pushed further by Ben-David, Karchmer and Kushilevitz [3], who showed how standard
ultra-filter arguments in Model Theory [4] can be used to simplify Sipser’s proof [15], as well
as extend it to other sets.

Karchmer’s paper [6] also extends the number of computational models captured by
the Fusion Method. Besides restating Razborov’s result, that choosing) as set of filters
characterizes P, it contains two other results. One is an observation of Karchmer and
Wigderson, that restricting € to the set of self-dual filters (those for which exactly one of S,
S can be in F for any set S C U) characterizes NP.

The second, which is implicitely stated only, is that taking € to be all filters again, but
weakening the way in which a filter F' €) defines an input, results in a characterization of
mP, the class of functions computed by monotone, polynomial-size circuits.

Based on this last result, Karchmer presents Razborov’s proof of the monotone clique
lower bound [12] within the new method. While the combinatorial arguments are identical
to those of [12, 1], the proof is essentailly different, as the construction of the filter #' does
depend on the small circuit that allegedly computes the clique function. This again, like
[14], provides evidence that some cover problems arising from the new method are amenable
to analysis.

3.4 Algebraic Variants

In two recent papers [7, 8], Karchmer and Wigderson suggested taking {2 to be the set of
all linear functionals over 2Y. The rationale was two-fold. First, there are exponentially
fewer linear functionals than monotone functionals, so perhaps the cover problems that arise
would be more comprehensible. Second and more important, the algebraic structure may
allow the application of techniques from linear algebra to attack these cover problems.

Luckily (I am not kidding!) this choice turned out to be meaningful. In [7] we showed
that the cover problem for circuits with polynomial cover number characterize the class (can
you guess?) NP. In [8], we restricted these problems as was done in [14], to discover that here
polynomial cover number characterizes the class (well? no, not NL. This happens for filters
in [14]) &L, the logspace analog of &P. These are the languages recognized by branching
programs of polynomial size that count the number of accepting paths modulo 2.

In [7] we presented several concrete combinatorial algebraic problems, for any of which a
non-trivial lower bound will imply a super-linear lower bound on the size of non-deterministic
(as well as deterministic) circuits. We were not able to prove such bounds. However, in [§]
we succeeded in applying Razborov’s techniques from [14], together with linear algebra, to
prove the first super-linear lower bound on the size of counting (mod 2) branching programs
that compute Majority. The cover problems that arise in this paper suggest an elegant
linear-algebraic model of computation we call Span Programs. This model is independently
interesting, and we show some connections it has with notions in complexity and cryptogra-

lthis was undoubtedly known to both Sipser and Razborov

phy.

4 Definitions and Results

4.1 Different straight-line Programs

We will consider a variety of circuits and branching programs, which use different gates and
computation modes. It will be convenient to describe all of these in terms of straight line
programs.

Four parameters define the computation of the straight line program. A particular choice
for these parameters will be later denoted by A.

e Inputs — the set of input functions

e Gates — the set of allowed operations

e Type — Circuit/Branching program (BP)
e Mode — Deterministic/Non-deterministic

The set of GATES we will consider will be either the Boolean operations {A,V} or the
GF(2) operations {A,@}. We use + to denote either V or &, depending on the choice. A
straight line program over a set GATES of operations and a set INPUTS of input functions
is a sequence of P = (g1, 92,...,¢:) satisfying either:

1. g; € INPUTS
2. gi=g; +gr with j, k <1

3 = A “h J, k <t (circuit computation)
9= IRk J <t and g € INPUTS (Branching program computation)

Let X = {x1,79,...2,} be a set of variables. X = {Z;,T3,...,T,} their negation, and
1 the constant 1 function. Let Y = {y1,y2...} be a set of independent (non-deterministic)
variables. INPUTS will always contain X, and the program P will define a function f :
{0,1}" — {0,1} over X in the standard way. If P is deterministic, INPUTS will not include
Y, and f = g;. For non-deterministic P, INPUTS will contain Y UY, and f(z) = 1 iff Iy
s.t. gi(z,y) = 1.

For a given function f : {0,1}" — {0,1} (and with a fixed choice A of INPUTS, GATES,
TYPE and MODE), we let sa(f) denote the smallest ¢ such that there is a program P of
lenght ¢ computing f. As usual, we say that a language L C {0,1}* is computed in size
s: N — N if for every n, L, = L N {0,1}" satisfies sa(L,) < s(r). The polynomial (non-
uniform) complexity Ca associated with a fixed choice A is the set of all languages computed

in size n°W,

4.2 Cover Problems

For f:{0,1}* — {0,1}, let U = f~*(1), as well as the |U| x n matrix whose rows contain
the vectors in U. Let 2V denote the power set of U, endowed with the structure of either
the Boolean lattice {0,1}Y or the vector space GF(2)V. For aset S CU welet S =U\ S,
and set 1 to be the all 1’s vector of length |U].

Three parameters define the cover problem. A particular choice for these parameters will
be later denoted I'.

o () — the set of fusing functionals.

e Input Definition — the way in which a functional defines an input.

e Cover kind — which pairs of functions are allowed to participate in the cover.
We will consider here three classes) of Boolean functionals on the set 2Y.

o Filters = {F :{0,1}V — {0,1}| foral SCT CU,F(S)=1= F(T)=1}

e Self Dual Filters (SDF) = {F' € Filters|for all S C U, F|(S) # F(S)}?

o Affine={F € GF(2)V|F -1 =1and forg € GF(2)V, F(g9) =< F-U >}

The literals X U X are naturally associated with members of 2V namely z;(u) = u;,
Ti(u) =1, for all w € U.
We distinguish two ways in which a functional F' € Q defines an input z € {0, 1}".

o F weakly defines z if F(z;) = z; for all 1 € [n]
e F strongly defines z if F(z;) = z; and F(7;) = Z; for all ¢ € [n].

Note that if Q is either a Self Dual Filter of Affine, these two definitions are equvialent!

For a fixed © and notion of input definition, we set Qy = {F'| F'defines z with f(z) = 0}.
For g,h € 2V, we say that the pair (g,h) covers F if F(g) A F(h) # F(g A k). The set
{(g1,h1), (g2, h2),...,(gs, he)} is a cover of f if every F' € Qs is covered by some pair (g, h;).
The cover satisfies that for every i € [t], g; € 2V, and we distinguish three kinds depending
on whether the h;, 7 € [t] are restricted to 2V, X U X, and X respectively.

For a fixed choice I' of Q, input definitions and cover kind, we set pr(f) to be the smallest
t for which such a cover of size t exists for f.

Zfor our purposes it is equivalent to demand only that F(S)V F(S) =1

4.3 Theorems

In Table 1 we give the known pairs of choices (A, I') of computational model A and cover
problem I' such that for every function f, pr(f) < sa(f). For all these choices, the reader
should be able to prove the inequality using the intuition in Section 2.

In all cases, we also have an upper bound sa(f) < (pr(f))°, and in some of them, a
stronger bound sa(f) < C - pp(f). The constant C is independent of n, and in fact the
choice €' = 4 is satisfied in all theorems.

The proofs of the upper bounds also follow the intuition given in Section 2, but are

typically somewhat harder as they are more “model dependent”.

Reference [13] [14] [6] [6] [7] (8]

P Inputs XuX XuX XuXuYuyY | X Xu{1juy | Xu{1}
R

O

G | Gates (av | (A AV} ! (n8) (na)
R

A

M Type Circuit BP Circuit Circuit Circuit BP

S
(A) Mode Det Det Nondet Det Nondet Det

C Q Filters Filters SDF Filters Affine Affine

O

v

E Input def strong strong weak weak weak weak

R

S

() Cover kind 2V XuX 2V 2V 2V X

R Ca P NL NP mP NP G®L

E

S

U pr(f) <sa(H) < || (er (M) | C-per(f) C-pr(f) (er()° C-pr(f) (er(£))©
L

T

S Some Lower or (MAJORITY)= pr(CLIQUE)= or (MAJORITY)=

Bounds on pr Q(logloglog™* n) exp(Q(nl/?) Q(logloglog™* n)
Table 1: Summary of Results
Remarks:

1. Similar results can be obtained for arithmetic computation over arbitrary rings R,
considering appropriate functionals over RV (as is done in [8]).

5

Some of the results in the table appear only implicitly (or very implicitly) in the given
references.

Note that to define the non-deterministic and counting classes NL and &L of branching
programs one uses the deterministic mode.

The classes coNP and coNL can easily be defined by taking U = f~1(0).

Discussion

The Fusion Method differs from other lower bound methods in circuit complexity in several
aspects, that we enumerate below.

Static: Almost every existing lower bound is obtained by introducing some progress
measure, and showing that the model cannot make too much progress too fast in
computing the given function. This is present in all top-down and bottom-up proofs.
It is also consistent with our view of computation as a dynamic process. In contrast,
the Fusion Method converts the computation into a static cover problem, considering
the program as a completely unstructured and unordered collection of “abstract gates”.

Versatile: The Fusion Method can in principle be used to prove lower bounds on a va-
riety of computational models; Boolean and Arithmetic, monotone and non-monotone,
deterministic and non-deterministic.

Tight: As the cover number is a lower bound on size, the method is sensitive enough
to provide super-linear lower bounds.

Complete: On the other hand, since (in the examples in the table) the cover number
is polynomially related to size, every super-polynomial lower bound on size can be
proven via this method. This allows for the characterization of complexity classes.

Assymetric: A unique feature of the Fusion Method is that the 'ones’ and ’zeros’ of
the function play entirely different roles; the 'zeros’ are defined by subsets of ones’.

Further Research

Lower Bounds: Clearly the most important task is to prove lower bounds on the
various cover problems, mainly those that apply to non-monotone circuit size. These
often can be presented as concrete and elegant combinatorial/algebraic problems (e.g.
see [7, 8], and the next section). Still, the choice of function f is problematic, and
we may have to consider functions different than our favorite combinatorial and graph
theoretic ones.

10

As we have little experience and techniques to deal with the covering problems sug-
gested by the Fusion Method, it will be of interest to prove new and reprove old lower
bounds even in the weaker (monotone, branching program) models in this framework,
as was done in [6].

e Find New Characterizations: It will be interesting to find cover problems that
characterize other classes, such as L. It is also interesting to characterize P using other

choices of Q (as is possible for NP).

e Explain Existing Characterizations: We have no complete understanding of why
particular choices of €} characterize particular classes. Why does the choice of) as
Filters give the deterministic class P for circuits and the non-deterministic class NL
for branching programs? Why choosing 0=Affine gives the non-deterministic class NP
for circuits and the counting class &L for branching programs? Why do both Affine
and Self Dual Filters define NP7 Can we characterize all choices of {} that will define
a particular class (say NP)? In fact the existing characterizations suggest comparing
complexity classes by comparing the sets 0 defining them, which may be “function
independent”. The NP vs. coNP vs. P question can already be studied in this light.

7 Concrete Open Problems

In this section I present three cover problems that arise from the Fusion Method. The
selection of functions and covers types is somewhat arbitrary, and was intended to provide
some variety.

We need some notation. For a field K and vector space K' over it, denote by 1 the
all 1’s vector in the space (after a fixed choice of basis). For g,h € K' let g - h(€ KY)
denote their component—wise product, and < g, h > (€ K) their inner product. Finally let
[m] ={1,2,---,m}.

1. Here K = R, the reals. Let Ay, Ay, -+, A; be an enumeration of the n x n adjacency
matrices of maximal bipartite graphs having no perfect matching. For a € R’ let

A, = Ele a;A;, and set PER = {a| < a,1 >= 1, permanent(A,) # 0}.

Say that a pair g,h € R covers a € R' if < g, >< h,a >#< (g - h),a >.
Problem: Bound the smallest number of pairs covering PER.

Remark: This number is a lower bound on the arithmetic complexity of the permanent

function.

2. Here K = GF(2). Let Ay, Ay, -+, A; be an enumeration of all nonsingular n x n
matrices over GF(2). For o € GF(2)! set DET = {a| < a,1 >=1, det(A,) = 0}.

A 3-partition Ty, T, T5 of [t] covers a € GF(2)" if for every j € [3] the characteristic
vector 7; of the part 7} satisfies < 7;, 0 >= 1.

11

Problem: Bound the smallest number of 3-partitions covering DET'.

Remark: This number is a lower bound on the Boolean complexity of the determinant
function (and thus also of matrix multiplication).

3. Let x;: {0,1}" — [k], for ¢ € [n], be a collection of n k—colorings of the n-dimensional
cube.

For a triple of distinct vectors X, Y, Z € {0,1}", say that coordinate i € [n] is inter-
esting if not all three vectors agree in this coordinate. Say that y; is proper on this
triple if the three colors x;(X), xi(Y), x:(Z) are distinct. We now define the collection
of colorings good if every for every triple of vectors there is an interesting coordinate 2
for which y; is proper on this triple.

Problem: Bound the smallest number & for which such a good collection exists.

Remarks: This is (indirectly) related to the size of branching programs of the &1
type computing certain linear codes. This problem was suggested by Karchmer and
Wigderson [9]. They noted that Proposition 1 in [8] implies that the number of colors k
has to increase with n. They also proved the tight lower bound k& = Q(n) in the special
case that the colorings x; are monotone (i.e. X < Y imply x;(X) < xi(Y)). This
lower bound holds even if need to properly color only ordered triples (X < Y < 7).
On the other hand, we don’t even know that more than constant number of colors is
needed for ordered triples if we remove the monotonicity condition.

Acknowledgements

[am greatful to M. Karchmer, N. Nisan, A. Razborov and M. Sipser for their comments on
an earlier version of this paper.

References

[1] A. Alon and R. Boppana. The monotone circuit complexity of boolean circuits. Com-

binatorica, 7(1):1-22, 1987.

[2] A.E. Andreev. On a method for obtaining lower bounds for the complexity if individ-
ual monotone functions. Dokl. Akad. Nauk USSR, 282(5):1033-1037, 1985. English
translation in Soviet Math. Dokl. 31(3) (1985) 530-534.

[3] S. Ben-David, M. Karchmer, and E. Kushilevitz, 1992. private communication.
[4] C. C. Chung and H. J. Keisler. Model Theory North—Holland, 1990.

[5] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits and the polynomial time hierarchy.
Math. Syst. Theory, 17:13-27, 1984.

12

[6] M. Karchmer. On proving lower bounds for circuit size. In Proceedings of the 8th Annual
Symposium on Structure in Complexity Theory, 1993.

[7] M. Karchmer and A. Wigderson. Characterizing non-deterministic circuit size. In

Proceedings of the 25th STOC, 1993.

[8] M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8th Annual
Symposium on Structure in Complexity Theory, 1993.

[9] M. Karchmer and A. Wigderson. Private communication.

[10] Y. Moschovakis. Descriptive Set Theory. North-Holland, 1980.

[11] A. Razborov. A lower bound on the monotone network complexity of the logical per-
manent. Mat. Zametki, 37(6):887-900, 1985. English translation in Math. Notes 37(6)
(1985) 485-493.

[12] A. Razborov. Lower bounds on the monotone complexity of some boolean functions.
Dokl. Akad. Nauk USSR, 281(4):798-801, 1985. English translation in Soviet Math.
Dokl. 31 (1985) 354-357.

[13] A. Razborov. On the method of approximation. In Proceedings of the 21st ACM Sym-
posium on Theory of Computing, pages 167-176, 1989.

[14] A. Razborov. Lower bounds on the size of switching-and-rectifier networks for symmetric
Boolean functions (in Russian). Mathematical Notes of the Academy of Sciences of the
USSR, 48(6):79-91, 1990.

[15] M. Sipser. A topological view of some problems in complexity theory. Colloguia Math-
ematica Societatis Janos Bolyai, 44:387-391, 1984.

[16] M. Sipser. The history and status of the P versus NP question. In Proceedings of 24t
STOC, pages 603-618, 1992.

[17] E. Tardos. The gap between monotone and non-monotone circuit complexity is expo-
nential. Combinatorica, 8:141-142, 1988.

13

