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Foreword

These notes reflect a series of lectures given by Ben Green and Avi Wigderson at the 22nd McGill Invitational
Workshop on Computational Complexity. The workshop was held at the Bellairs Research Institute in
Holetown, Barbados in February, 2010.

The two lecturers alternated presentations, coving related, but disjoint material. Odd numbered lectures,
given by Ben Green, focused on topics in additive combinatorics; even numbered lectures, given by Avi
Wigderson, focused on applications of the theory of representations of groups to theoretical computer science.
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Chapter 1

Additive Combinatorics

A series of 5 lectures by Ben Green.
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LECTURE 1
Lecturer: Ben Green Scribe: Alexander Russell

1.1 Introduction: Approximate structure

We will study approximate algebraic structure: approximate groups, homomorphisms, polynomials, etc. We
can roughly divide our study into three tasks: finding good definitions for such objects, determining what
can be said about them, and exploring their applications. The theory can be divided into two regimes: the
99% regime (studying structures that “very close” to their genuine counterparts) and the 1% regime (studying
structures that may only weakly resemble their genuine counterparts).

Notation Let A and B be two subsets of a universal group G. We write
A ⋅ B = {ab ∶ a ∈ A, b ∈ B} ,

A−1 = {a−1 ∶ a ∈ A} .

(In abelian groups, we express such sets additively: A + B and −A.)
Theorem 1.1.1 (Freiman). Suppose A ⊂ F n2 , the vector space of dimension n over F2. If |A+A| ≤

3
2 |A| then

A is a subspace.

Remark 1.1.2. The condition that |A + A| < 3
2
|A| is a notion of approximate subgroup.

Proof. Suppose that x, y ∈ A. The cosets x + A and y + A are both subsets of A + A. As |A + A| < 3
2 |A| isfollows that |x+A∩y+A| > |A|∕2. Hence there are more than |A|∕2 pairs (a1, a2) for which x+a1 = y+a2;

in this case x + y = a1 + a2. Now, if x′, y′ are two further elements we likewise have more than |A|∕2 pairs
a′1, a

′
2 ∈ A for which x′ + y′ = a′1 + a′2. It follows that there is a pair (a1, a2), for which x + y = a1 + a2, anda pair (a′1, a′2), for which x′ + y′ = a′1 + a′2, so that a2 = a′1. We conclude that

(x + y) + (x′ + y′) = (a1 + a2) + (a′1 + a
′
2) = a1 + a

′
2 ∈ A + A ,

as desired.
Remark 1.1.3.

1. This same argument implies that if |A + A| ≤ (1 + �)|A| with � < 1∕2 then there is a subgroupH (in
fact equal to A + A) and an element x ∈ G so that

|

|

A △ (H + x)|
|

= O(�) ⋅min(|A|, |H|) .

2. The theorem is true for nonabelian groups as well.
3. Amore complicated argument can extend the values of � for which the implication is true to�−1 ≈ .618

(where � is the golden ratio).
It is unknown if the statement is true for all � < 2. In particular, the following problem is open.
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Question 1.1.4. Is there a function f ∶ [0, 1] → ℝ+ so that for any set A of a group G for which |A + A| ≤
(2 − �)|A| there is a subgroupH and an element x ∈ G so that

|A ∩Hx| > f (�) max(|A|, |H|) ?

Remark 1.1.5. The range for which this applies is no larger than [0, 2). If A is an arithmetic progression in
ℤ then |A + A| < 2|A|. However, subgroups in ℤ are either infinite or have cardinality 1.
The question is known for abelian groups; this is Kneser’s theorem.

1.2 The Blum-Luby-Rubinfeld test; approximate homomorphisms

Theorem 1.2.1. Let � ∶ F n2 → F2 be a Boolean function. Suppose that

ℙx,y[�(x + y) = �(x) + �(y)] ≥ 1 − � .

Then there is a homomorphism �′ ∶ F n2 → F2 so that

ℙx[�(x) = �′(x)] ≥ 1 − O(�1∕2) .

With a more careful analysis it is possible to achieve the bound 1 − O(�) above.
Proof sketch. Define

�̃(ℎ) = maj{�(x + ℎ) − �(x) ∶ x ∈ F n2 } ,

where majS denotes the element x appearing with highest multiplicity in the multiset S.
Step 1. There is always an element z that forms the overwhelming majority of {�(x+ ℎ) −�(x) ∶ x ∈ F n2 }.

Proof. Observe that
ℙx,y[�(x + ℎ) + �(y) = �(x + y + ℎ)] = ℙx,y[�(y + ℎ) + �(x) = �(x + ℎ + y)] ≥ 1 − �

and hence both events occur with probability at least 1 − 2�. In this case, subtracting the two equations
yields

�(x + ℎ) − �(x) = �(y + ℎ) − �(y) ,

as desired. Note, however, that if the most likely element of {�(x + ℎ) − �(x) ∶ x ∈ F n2 } appearswith probability 1 − � we must have
ℙx,y[�(x + ℎ) − �(x) = �(y + ℎ) − �(y)] ≤ (1 − �)2 + �2

and thus 1 − 2� + 2�2 ≥ 1 − 2�. Hence the most likely element appears with probability 1 − 2�. (As
� → 0, this yields � = (1 + o(1))�.)

Step 2. �̃ is linear: �̃(ℎ + k) = �̃(ℎ) + �̃(k).
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Proof. For most triples x, y, z
�̃(ℎ + k) = �(x + ℎ + k) − �(x) ;

�̃(ℎ) = �(y + ℎ) − �(y) ;
�̃(k) = �(z + k) − �(z) .

In particular, applying the result of step 1, this occurs with probability at least 1 − 6�. In fact, the same
can be said if we merely select x at random, and assign z = x and y = x + k. In this case, we conclude

�̃(ℎ + k) = �̃(ℎ) + �̃(k) .

N.b. If � is an approximate homomorphism then (�(x), x) is an approximate group.
Step 3. For most ℎ, �(ℎ) = �̃(ℎ).

Proof. For most x, ℎ
�̃(ℎ) = �(x + ℎ) − �(x) and �(ℎ) = �(x + ℎ) − �(x).

(Note that the first event occurs with probability at least 1 − 2� even conditioned on a particular choice
of x; the second event occurs with probability 1 − �. Thus both occur with probability 1 − 3�.) Now
apply Markov’s inequality.

Remark 1.2.2. Let A = {(x, �(x)) ∶ x ∈ F n2 } be the graph of �. Then the BLR condition is equivalent to
ℙ[a1 + a2 ∈ A ∶ a1, a2 ∈ A] ≥ 1 − � ,

an alternate notion of approximate subgroup.

1.3 Multiplicative energy

Definition 1.3.1. Let A be a subset of a group G. We define the multiplicative energy of A to be the quantity
E(A) = |{(a1, a2, b1, b2) ∶ a1a

−1
2 = b1b−12 , ai ∈ A, bi ∈ A}| .

Remark 1.3.2. Observe that E(A) ≤ |A|3 and that if U ∶ A→ ℝ is the uniform distribution on A, E(A) is
proportional to the collision probability of U ∗ U .

The condition that E(A) < |A|3 is another notion of approximate subgroup.
Theorem 1.3.3 (Fournier [10]). If E(A) ≥ (1 − �)|A|3 then there is a subgroup H and an element x ∈ G
such that

|A ∩Hx| ≥ (1 − O(�1∕4)) max(|A|, |H|) .
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Remark 1.3.4. By bootstrapping, you can achieve O(�) error (rather than O(�1∕4)). This implies the BLR
result, even for general groups.

Fournier was interesting in constructing tight cases for Young’s inequality:
Theorem 1.3.5. If 1 + 1

r
= 1

p
+ 1

q
then ‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

A particularly insteresting case in additive combinatorics occurs when r = 1∕2 and p = q = 4∕3. As a
consequence of the theorem above, Fournier established:
Theorem 1.3.6 (Fournier). Let G be a group with no compact open subgroups. Then there exists a constant
c < 1 so that

‖f ∗ g‖2 ≤ c‖f‖ 4
3
‖g‖ 4

3
.

Remark 1.3.7. This constant c over ℝ is c = 4
√

16∕27 and is attained for Gaussian distributions f = g =
e−x2∕2.
Definition 1.3.8. Let A be a finite set and � > 0 a parameter. Then

Sym1−� = {x ∶ |A ∩ Ax| ≥ (1 − �)|A|} .

When x ∈ Sym1−�(A), the element x has (1 − �)|A| representations of the form a−11 a2.
Remark 1.3.9.

1. Sym1−�(A) is symmetric: x ∈ Sym1−�(A)⇔ x−1 ∈ Sym1−�(A).
2. Sym possesses “weak additive closure”: Sym1−�1(A) ⋅ Sym1−�2(A) ⊂ Sym1−�1−�2(A).

Proof. Let x ∈ Sym1−�1(A) and y ∈ Sym1−�2(A). Then x has (1 − �1)|A| representations of the form
a1a−12 ; likewise, y has (1 − �2)|A| representations of the form b1b−12 . In at least (1 − �1 − �2) of these
pairs of representations, we have a2 = b1 and thus xy = a1a−12 b1b−12 = a1b−12 .

Claim 1.3.10. Suppose that E(A) ≥ (1 − �)|A|3. Then |Sym1−�(A)| ≥ (1 − �∕�)|A|.

N.b. |Sym1−�(A)| could exceed |A|, but is always (1 + O(�))|A|.
Proof. Write r(x) = |{(a1, a2) ∈ A × A ∶ a1a−12 = x}|. Then Sym1−�(A) = {x ∶ r(x) ≥ (1 − �)|A|} and
E(A) =

∑

x r(x)2. Define S = Sym1−�(A) = {x ∶ r(x) ≥ (1 − �)|A|} and � so that ∑x∈S r(x) = �|A|2.
Then

E(A) ≤ |A| ⋅
∑

x∈S
r(x) + (1 − �)|A|

∑

x∉S
r(x)

= �|A|3 + (1 − �)(1 − �)|A|3 ,

since∑x r(x) = |A|2.
As E(A) ≥ (1 − �)|A|3 by hypothesis, we conclude that

(1 − �) ≤ � + (1 − �)(1 − �) ⇒ −� ≤ −� + �� ⇒ � ≥ 1 − �∕� .

Thus |S| ≥ ∑

x∈S r(x)∕|A| = �|A| ≥ (1 − �∕�)|A|.

9



Proof of Theorem 1.3.3. Suppose � is small; in this case, E(A) ≈ |A|3 and, by the preceding argument,
|Sym1−�(A)| ≈ |Sym1−2�(A)| ≈ |Sym1−4�(A)| ≈ |Sym1−5�(A)| ≈ |A| .

for � = 10−4�1∕2. With such �, the symbol≈ above denotes equality up to a multiplicative factor of 1−O(�1∕2).
We shall establish that Sym1−2�(A) = Sym1−4�(A) so that, by “weak additive closure,”

Sym1−2�(A) ⋅ Sym1−2�(A) ⊂ Sym1−4�(A) = Sym1−2�(A)

and Sym1−2�(A) must be a subgroup. It follows that A has large intersection with a left coset of Sym1−2�(A)To establish that Sym1−2�(A) = Sym1−4�(A), consider an element x ∈ Sym1−4�(A). The sets Sym1−�(A)and Sym1−4�(A) both lie in Sym1−5�(A) but
|Sym1−�(A)| ≈ |xSym1−�(A)| ≈ |Sym1−5�(A)|

and hence xSym1−�(A) and Sym1−�(A) have a nonempty intersection. It follows that x ∈ Sym1−�(A) ⋅
Sym1−�(A) ⊂ Sym1−2�(A).

1.3.1 Cooperman’s algorithm

Cooperman’s algorithm is a procedure for generating a nearly random element of a black box group (given
generators for the group).
Example 1.3.11. Let S1 and S2 be two elements of GL(Fq). Note multiplication in GL(Fq) can be carried out
efficiently. Cooperman’s algorithm efficiently generates a nearly uniform sample from ⟨S1, S2⟩, the subgroup
generated by S1 and S2.
Algorithm 1.3.12. Let s1,… , sk be a sequence of generators for the group G. Define the sequence g1, g2,…
so that, for i = 1,… , k, gi = si and, for i > k, gi is a random element of the “cube”

Σ(g1,… , gn−1) = {g
�1
1 ⋯ g�n−1n−1 ∶ �i ∈ {0, 1}} ,

determined by selecting each �i independently and uniformly at random from {0, 1}.
Theorem 1.3.13 (Cooperman). For s = 2k + C1 log |G|, the distribution of gs is within 0.01 of uniform.
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LECTURE 3
Lecturer: Ben Green Scribe: Ricard Gavaldà

1.4 Correctness of Cooperman’s algorithm

In this lecture we will show that Cooperman’s algorithm performs as claimed, that is, given a set of generators
of a black-box group G, it generates a random element of |G| in O(log |G|) iterations.

Recall that Cooperman’s algorithm is given as input a set of generators s1, . . . , sk for an otherwise unknown
black-box group G. It then generates a sequence of g1, g2, . . . of elements of G, as follows:

• g1, . . .g2k are simply s1, . . . , sk and their inverses, taken in some order
• for i ≥ 2k, gi+1 is a random element taken from the Boolean cube of g1, . . .gi, that is,

∑

(g1,… , gi) = { g
�1
1 ⋅ ⋯ ⋅ g�ii ∶ �i ∈ {0, 1} }.

We devote most of this lecture to proving:
Theorem 1.4.1 ([7]). For some constant c, if t ≥ 2k + c log |G| then the distribution of gt is 0.01 away from
the uniform in l1.

We will start by discussing probabilities, and probability measures over groups.
Definition 1.4.2. A function � ∶ G → ℝ≥0 is called a probability measure if Ex �(x) = 1. Here Ex denotes
the expected value, i.e.,

Ex f (x) = Ex∈G f (x) =
1
|G|

∑

x∈G
f (x) .

See that, by this definition, we are taking the uniform distribution over G from now on for expected values.
WriteM(G) for the space of probability measures over G.

A particular probability measure that we will use often is that which is uniform on a support set A ⊆ G:

MA(x) =

{

|G|∕|A| if x ∈ A,
0 otherwise.

Particular cases are �g(x) =M{g} for any g ∈ G, andMG, the uniform distribution on G.
We will often want to convolute probability measures. Let �1, �2 ∈M(G). The convolution of �1 and �2,

written �1 ⋆ �2, is defined by
(�1 ⋆ �2)(x) = Ey �1(y)�2(y−1x) .

It is easy to check that �1 ⋆ �2 ∈ M(G). Note that if �1 = MA and �2 = MB, �1 ⋆ �2 is supported (not
necessarily uniformly) on AB = {ab ∶ a ∈ A, b ∈ B}.

A random walk is really the composition of a probability measure with itself. Take an initial set S =
{s1,… , sk}, and then

�(x) = 1
2k

(

�s1 + �s−11 +⋯ + �sk + �s−1k
)

.
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Then
� ⋆ � ⋆⋯ ⋆ �
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

t

⋆�id

has the distribution of the random walk starting at the group identity and, for t times, choosing a random s±1iand multiplying. Or, in other words, it is a length-t random walk on the Cayley graph Cay(G;S).
Two more definitions:
• We write �̃(x) = �(x−1).
• For p ≥ 1, we write ‖�‖p = (Ex �(x)p)1∕p for the lp-norm of �.

Note that ‖�‖1 = 1 for every probability measure �, and that we often write ‖�‖ for ‖�‖2, since we will use it
most often. Observe also that ‖�g‖ =

√

|G| and ‖MG‖ = 1. In general, the more concentrated � is, the larger
‖�‖2 becomes, and conversely, when ‖�‖ is small, � is close to the uniform. Precisely, if ‖�‖ < 1 + � then

‖� −MG‖
2 = ⟨� −MG, � −MG⟩ = ‖�‖2 − 1 ≤ 3�

hence ‖� −MG‖ = O(�1∕2).
The following lemma says that, at any given step of the random walk in Cooperman’s algorithm, either

we are already close to the uniform, or we get significantly closer to uniform at this step:
Lemma 1.4.3 (l2-flattening Lemma). Let g1,… , gi ∈ G generate G. Let gi+1 be sampled at random from
the cube 1

M∑

(g1,…,gi)(=M{1,g1} ⋆⋯ ⋆M{1,gi}) .

Then
‖M∑

(g1,…,gi+1)‖ ≤ ‖M∑

(g1,…,gi)‖

and either

(i) ‖M∑

(g1,…,gi)‖ ≤ 1.001 or

(ii) with probability ≥ c1, ‖M∑

(g1,…,gi+1)‖ ≤ (1 − c2) ⋅ ‖M∑

(g1,…,gi)‖,

for constants c1 and c2.

Before we prove the lemma, let us deduce Cooperman’s theorem from it. The following is clear:
Lemma 1.4.4. Let c1 be as in the flattening lemma, part (ii), c3 some constant, and c4 sufficiently larger than
c3. Run Cooperman’s algorithm for t = 2k + c4 log |G| steps. The probability that (i) in the flattening lemma
is never reached and that (ii) happens less than c3 log |G| times is less than

∑

j≤c3 log |G|

(

c4 log |G|
j

)

(c1)j(1 − c1)c4 log |G|−j .

1Observe that the subscript∑(g1,… , gi) ofM should not be taken as a set, but a multiset. That is, each gi is given mass according
to its multiplicity.
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By standard tail estimates for the binomial distribution (i.e., Chernoff) the latter quantity is less than
|G|−10 if c4 is large enough with respect to c1 and c3. Therefore, even assuming that we started from a most
concentrated distribution (of norm√

|G|), with probability greater than 1 − |G|−10 we have
‖M∑

(g1,…,gt)‖ ≤ (1 − c2)c3 log |G|
√

|G| ≤ 1.001

if c3 is chosen somewhat large w.r.t. c2. With this probability, Cooperman’s algorithm outputs some g ∈ G
from a measure with l2-norm less than 1.001. The rare events (occurring with probability less than |G|−10) in
which this does not occur contribute in the worst case distributions whose l2-norm can be at most√|G|, so
their effect on the expected value is negligible. Overall, then Cooperman’s algorithm produces a probability
distribution �t with ‖�t‖2 ≤ 1.002.

We will deduce the l2-flattening lemma from another lemma, which says that we get some l2-flattening
at one step from � if � is not totally concentrated on any one coset.
Lemma 1.4.5. Let � ∈M(G) be a probability measure with the property that �(Hx) < 0.99 for every coset
Hx of a proper subgroupH ≤ G. Let g be sampled at random from �. Then either (i) ‖�‖ < 1.001 or (ii)
with probability at least c, ‖� ⋆M{id,g}‖ < (1 − c)‖�‖.

Again, before proving this lemma, let us first deduce the l2-flattening lemma from it. Note that
M∑

(g1,…,gi+1) = M∑

(g1,…,gi) ⋆ Mid,gi+1 . So we only need to show the nonconcentration property, i.e. that
M∑

(g1,…,gi+1)(Hx) < 0.99; we will in fact show that it is at most 1∕2. The argument is due to Babai and
Erdős [2].

Since g1,… , gi generate G andH is a proper subgroup, there is a minimal j such that gj ∉ H . Consider
an element w = g�11 … g�ii of the cube∑(g1… gi), and split it as

w = w1 g
�j
j w2, with w1 = g�11 … g�

j−1

j−1 , w2 = g
�j+1
j+1 … g�ii .

Because w1 ∈ H , we have that w ∈ Hx if and only if g�jj w2 ∈ Hx. If w2 ∉ Hx, then g�jj w2 ∉ Hx
for �j = 0. If w2 ∈ Hx, then gjw2 ∉ Hx, otherwise we have gj ∈ H which is not true, and therefore
g�jj w2 ∉ Hx for �j = 1. Since �j is a random bit, we haveM∑

(g1,…,gi+1)(Hx) ≤ 1∕2 as claimed.
Let us prove Lemma 1.4.4. Recall that E(A) denotes the multiplicative energy of A,

E(A) = #{(a1, a2, a3, a4) ∶ a1a
−1
2 = a3a−14 }

and that Fournier’s theorem asserts:
Theorem 1.4.6 ([10]). Let A ∈ G be a set with E(A) ≥ (1 − �)|A|3. Then there is a subgroup H and an
element x with |A△Hx| ≤ O(�1∕2) min(|A|, |H|).

(We could in fact replace min(|A|, |H|) with, say, |A| because we are precisely saying that |A| and |H|

are very close.)
Since we are dealing with probability measures, let us state a measure version of this theorem:

Theorem 1.4.7. Let � ∈ M(G) be such that ‖� ⋆ �̃‖ ≥ (1 − �)‖�‖. Then there is a subgroup H and an
element x with ‖� −MHx‖ ≤ O(�1∕2) |A|.
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Observe for clarity that if � =MA then E(A)∕|A|3 = ‖� ⋆ �̃‖2∕‖�‖2; the proof is left as an exercise. So
claiming that the right-hand-side of this equality is large is the same as claiming thatA has large multiplicative
energy.

We will omit the proof of this theorem, but mention two possible approaches to the proof. Dixon’s
approach was essentially to redo Fournier’s proof with measures. Fournier’s way was to reduce the measure
version to the set version. The idea is that as there are few repeated products, there are very few multiplicities,
and so � is close toMA for some set A.

Let us now finally prove the lemma. We will show that if neither (i) nor (ii) hold then
‖� ⋆ �̃‖ ≥ (1 − �)‖�‖

which implies (by the measure version of Fournier’s theorem) that
‖� −MHx‖ < 0.001‖�‖

from which we can deduce (exercise) that �(Hx) ≥ 0.99. The following holds in general:
‖� − � ⋆ �̃‖ = ‖E[�̃(g)(� − � ⋆ �g)‖ ≤ Eg‖� − � ⋆ �g‖. (1)

It is easy to check that � ⋆ (�id + �g)(= 2� ∗ Mid,g) and � ⋆ (�id − �g)(= � − � ∗ �g) are orthogonal (have
zero inner product) and their sum is 2�. Then by Pythagoras

‖� − � ⋆ �g‖2 = 4‖�‖2 − 4‖� ⋆Mid,g‖
2.

Plugging this into (1) and assuming (ii) and (i) do not hold we obtain
‖� − � ⋆ �̃‖ ≤ 2

√

1 − (1 − c)2 ‖�‖ < 0.001‖�‖

if c is small enough. This concludes all pending proofs, and Cooperman’s algorithm is correct.
We will move now to the world of “1% additive combinatorics.” From now on, K ≥ 2 will be some fixed

parameter, with 1∕K measuring the degree to which approximate objects resemble exact objects. We will
then be concerned with questions such as:

• If A is a finite set, what can we say if |A ⋅ A| ≤ K|A|? This resembles Freiman’s theorem in the 99%
world, but is much harder and unsolved in general. We will ask it on F n2 , ℤ, and GLn(ℂ).

• Suppose that ' ∶ G → H satisfies
ℙ['(xy) = '(x)'(y)] ≥ 1∕2.

What can we say about '? Is it close to a homomorphism?
The plan for the rest of the lectures is as follows: In Lecture 5, we will deal with the basic theory of

these objects. We will cover subset estimates and the Balog-Szemerédi-Gowers theorem, all over F n2 . InLecture 7 we will move to other groups, and cover analogs of Freiman’s theorem. In Lecture 9 we will cover
applications, and in particular, an application to the construction of expanders.

Here Avi observes that what Ben calls “the 99% world” and “the 1% world” are typically called “unique
decoding” and “list decoding” in computer science terms. This is because when an approximate object is
99%-close to some exact object, it in fact is close to a unique one, while a 1%-approximate object may be
correlated to several exact ones.
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LECTURE 5
Lecturer: Ben Green Scribe: Yara Elias

1.5 Notation

Definition 1.5.1. Let A and B be two sets of an abelian group G. Define
A + B = {a + b ∶ a ∈ A, b ∈ B} ,
A − B = {a − b ∶ a ∈ A, b ∈ B} ,
A ⋅ B = {a.b ∶ a ∈ A, b ∈ B} ,
A × B = {(a, b) ∶ a ∈ A, b ∈ B} ,
kA = {a1 + a2 +⋯ + ak ∶ a1, a2,… , ak ∈ A} .

Take A⊆ F n2 . The aim is to see whenA+A has structure (|A+A| is small) and what it implies. We will see
first that bounds on |2A| imply bounds on |kA|, and that structure in A+A implies (is equivalent) that A lies
in some “small” subgroup using a result of Ruzsa. Then, we will look at a result of Balog-Szemerédi-Gowers
stating that “large” additive energy in A forces the existence of a “large” subset A′ in A such that 2A′ has
structure.

1.6 Ruzsa’s theorem

Lemma 1.6.1. Ruzsa’s triangle inequality. Suppose U, V ,W ⊆ F n2 . Then

|U | ⋅ |V −W | ≤ |U − V | ⋅ |U −W | .

Proof. Define an injection  ∶ Ux(V − W ) → (U − V )x(U − W ). That obviously suffices. To do
this, fix for each d in V − W a choice of v(d) in V and w(d) in W with d = v(d) − w(d). Define
 (u, d) = (u− v(d), u−w(d)). Observe that if the right hand side is known, we can recover u and d: Suppose
 (u′, d′) =  (u, d). By substraction, d′ = (u′ − w(d′)) − (u′ − v(d′)) = (u − w(d)) − (u − v(d)) = d.
u = (u − v(d)) + v(d) = (u − v(d′)) + v(d′) = u′.
Remark 1.6.2. This is called the triangle inequality since if we define

dRuzsa(A,B) = log
|A − B|

|A|
1
2
|B|

1
2

,

then the inequality is equivalent to
dRuzsa(A,C) ≤ dRuzsa(A,B) + dRuzsa(B,C) .

Note however that dRuzsa is not a distance since dRuzsa(A,A) is not always 0 and dRuzsa(A,B) may be 0 even
when A ≠ B.
Corollary 1.6.3. Let k ≥ 3. Suppose A ⊆ F n2 and |3A| ≤ K|A|. Then, for any k ≥ 3 , |kA| ≤ Kk−2

|A|.
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Proof. Induction using Ruzsa’s inequality. For k = 3, the inequality is the same as the hypothesis. In
characteristic 2, Ruzsa’s inequality can be written as: |U | ⋅ |V +W | ≤ |U + V | ⋅ |U +W |. TakeW = 2A;
V = (k − 1)A and U = A. Then, |A||(k + 1)A| ≤ |kA||3A| ≤ (Kk−2

|A|)(K|A|). Thus |(k + 1)A| ≤
Kk+1−2

|A|.
Proposition 1.6.4. Suppose |2A| = |A + A| ≤ K|A|. Then |4A| ≤ CKc

|A|.

Proof. Find a large set S such that 2A + S is small then, applying Ruzsa with U = S and V = W = 2A, we
get |4A| ≥ |2A + S|2∕|S|. Define

r(x) = |{(a1, a2) ∈ AxA ∶ a1 + a2 = x}| .

Take S = {x ∶ r(x) ≥ |A|∕2k}. Claim: |S| ≥ |A|∕(2k). Indeed,
∑

x∉S
r(x) ≤ |A|

2k
k|A| =

|A|2

2
.

Hence, ∑x∈S r(x) ≥ |A|2∕2 since ∑x r(x) = |A|2. So |S| ≥ |A|∕2 since r(x) ≤ |A|. Then every element
a1+a2+s, a1, a2 in A, s in S can be written in at least |A|∕2k ways as a1+a2+a′1+a′2 = (a1+a′1)+(a2+a′2)that is to say in ≥ |A|∕2k ways as sum of 2 elements of A + A. Note that the a1 + a′1 are distinct since wehave at least as many distinct a′1; this is also true for the a2 + a′2. Hence,

|2A + S||A|
2k

≤ |A + A|2, |2A + S| ≤ 2k3|A|

(using the hypothesis), and |4A| ≤ 8k6|A| (using Ruzsa as first indicated).
Remark 1.6.5. This is not true in non abelian case. Let A = H ∪ {x} (non abelian). Then A ⋅ A =
H ∪ xH ∪Hx ∪ {x2}. |A ⋅ A| ≤ 3|A| − 2. Thus A ⋅ A ⋅ A containsH ⋅H and there is no reason why this
should be small.
Fact 1.6.6. If A ⊆ abelian group such that |A + A| ≤ k|A|, then |mA − lA| ≤ km+l|A|.
Theorem 1.6.7 (Ruzsa). Suppose A ⊆ F n2 is a finite set with |A + A| ≤ k|A|. Then there is a subspace
H ≤ F∞2 containing A with |H| ≤ F (k)|A|. We’ll get F (k) = exp(kc).

Remark 1.6.8. If, by contrast,A is a subset of some subgroupH wih |A| ≥ �|H| then |A+A| ≤ |H| ≤ |A|∕�.
Thus, in some sense, Ruzsa’s theorem gives a complete classification of sets with small doubling in ≤ F∞2 .
Proof. Let X be a subset of 3A for which the translates A + x, x ∈ X are all disjoint and which is maximal
with respect to this property. Observe that the disjoint union⋃x∈X(A + x) ⊆ 4A. Hence, |X||A| ≤ 8k6|A|
implies |X| ≤ 8k6. Now suppose y ∈ 3A. By maximality, (A + y) ∩ (A + x) ≠ ∅ for some x ∈ X. Hence
y ∈ 2A+X (characteristic 2). That is 3A ⊆ 2A+X. So, 4A ⊆adding A 3A+X ⊆ 2A+2X and 5A ⊆ 2A+3X.
We conclude that ⟨A⟩, the subgroup of F∞2 generated by A, is contained in 2A + ⟨X⟩. This implies that
|⟨A⟩| ≤ |2A| ⋅ |⟨X⟩| ≤ k|A|8k6.
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1.7 Balog-Szemerédi-Gowers

Recall the definition of additive energy.
Definition 1.7.1. A ≤ F∞2 . E(A) = |{(a1, a2, a3, a4) ∈ A × A × A × A ∶ a1 + a2 = a3 + a4}|.
Elementary observations:
Fact 1.7.2. E(A) ≤ |A|3 since a1, a2, a3 fixed imply a4.
Fact 1.7.3. Suppose |A + A| ≤ k|A|, then E(A) ≥ |A|3∕k.
Proof. Write r(x) = |{(a1, a2) ∈ AxA ∶ a1 + a2 = x}|. Then∑ r(x) = |A|2 and∑ r(x)2 = E(A). Note that
| supp(r(x))| = |A + A| ≤ k|A| where supp(r(x)) = {x ∶ r(x) ≠ 0}. Thus

|A|4 =
(

∑

r(x)
)2

≤C−S
∑

x∈supp(r)
1
∑

x
r(x)2 ≤ k|A|E(A) .

(The first inequality follows by Cauchy-Schwarz.)
Remark 1.7.4. The converse is not true: Take A= B1 ∪ B2 where B1 and B2 are skew subgroups with large
additive energy but a big doubling.
Theorem 1.7.5 (Balog-Szemerédi-Gowers). Let k ≥ 2 and suppose E(A) ≥ |A|3

k
. Then, ∃A′ ⊆ A with

|A′| ≥ K−c
|A|, and |A′ + A′| ≤ Kc

|A′|.

Definition 1.7.6 (Bipartite graph). A graph whose vertices can be divided into two disjoint sets U and V
such that every edge connects a vertex in U to one in V .
Proposition 1.7.7. Let 0 < � < 1∕2. Take a bipartite graph on vertex set V ∪W with |V | = |W | = n and
�n2 edges. Then there are sets V ′ ⊆ V andW ′ ⊆ W with cardinalities satisfying

|V ′
|

|V |
,
|W ′

|

|W |

≥ �c

such that between any vertices x ∈ V ′ and y ∈ W ′, there are ≥ �cn2 paths of length 3 between x and y.

We’ll deduce it from:
Lemma 1.7.8 (Paths of length 2). Adopt the same assumptions as above and let 0 < � < 1. Then there is
a set V ′ ⊆ V with |V ′

| ≥ �n∕2 such that for at least a fraction 1 − � of pairs x, y ∈ V ′, there are at least
��2n∕2 paths of length 2 between x and y.

Remark 1.7.9. This not true when � = 0.
Proof. Let E denote the edges in G. Then

Ew∈W Ev∈V 1vw∈E ≥ � and hence Ew∈W Ev,v′∈V 1vw∈E1v′w∈E ≥ �2

(squaring and using Cauchy–Schwarz). LetN(v) denote the set of vertices in the neighberhood of v. Then
Ev,v′∈V |N(v) ∩N(v′)| ≥ �2n .
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Here, as above, we write Ew∈W for 1
n
∑

w∈W . Say that v, v′ are antisocial if |N(v) ∩N(v′)| ≤ ��2n∕2 and
let S denote the set of antisocial pairs. Combining the last two inequalities,

Ev,v′∈V (� − 1(v,v′)∈S)|N(v) ∩N(v′)| ≥
��2 ∗ n
2

and hence
Ev,v′∈V (� − 1(v,v′)∈S)

∑

w∈W
1v∈N(w)1v′∈N(w) ≥

��2n
2

.

Pulling the sum over w to the outside and pigeonholing, there is at least one w ∈ W such that

Ev,v′∈V (� − 1(v,v′)∈S) ∗ 1v,v′∈N(w) ≥
� ∗ �2n
2

.

What does this mean? Take V ′ = N(w); the fact that the last equation is ≥ 0 already says that at most � of
the pairs (v, v′) ∈ V are antisocial:

(� − 1)� (antisocial) + �(1 − �) (not antisocial) = 0 .
That is to say for at least 1 − � of the pairs v, v′ ∈ V ′, v and v′ have at least ��2n2 common neighbors. The last
equation (divided by �) implies

Ev,v′∈V 1v,v′∈V ′ ≥
�2

2
.

This implies that |V ′
| ≥ �|V |

√

2
.

Proof sketch of Proposition 1.7.7. Assume all vertices in V have degree at least �n∕2. Apply the lemma
giving V ′ such that almost all pairs x, y ∈ V ′ are social. Work a little more to get everyone in V ′′ sociable
with almost everyone else. FindW ′ such that every y ∈ W ′ is joined to many vertices in V ′′.

1.7.1 Proof of the Balog-Szemerédi-Gowers theorem

We’ll prove the following: If A,B are subsets of an abelian group with |A| = |B| = n and |{a1 + b1 =
a2 + b2}| ≥

n3

k
then ∃A′ ⊆ A,B′ ⊆ B so that

|A′|
|A|

,
|B′|
|B|

≥ k−c and |A′ − B′| ≤ kcn .

Remark 1.7.10. Why does this imply the first version? We get A′, A′′ with |A′ + A′′| ≤ kcn. By averaging,
there is x: |A′ ∩ (A′′ + x)| ≥ k−c ∗ n. Take A′′′ = A′ ∩ (A′′ + x) and we have |A′′′ + A′′′| ≤ kc′′n.
Proof. Idea: Apply proposition on paths of length 3 to the “popular sum graph” of A and B. Take a bipartite
graph on vertex sets A, B. Join a to b (and say a + b is popular) if

r(x) = |{(a′, b′) ∈ AxB ∶ a′ + b′ = x}| ≥ n
2k
.

We showed earlier that this graph has many edges. Let A′, B′ be as in the path of length 3 proposition. Then
if a′ ∈ A′ and b′ ∈ B′, there are many b1, a1such that a′ + b1, b1 + a1, and a1 + b′ are all popular sums.
But then a′ + b′ = (a′ + b1) + (b1 + a1) + (a1 + b′). So one can write a′ + b′ as a sum of 3 popular sums
x1, x2, x3 in ≥ k−cn2 ways. But the number of popular sums is manifestly ≤ 2kn (otherwise we would have
≥ 2knn

2k = n2 elements in A × B). Therefore |A′ + B′|k−cn2 ≤ (2kn)3 which implies |A′ + B′| ≤ kc′n.
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LECTURE 7
Lecturer: Ben Green Scribe: Pierre McKenzie

The following is known:
Theorem 1.7.11 (Green-Tao-Konyagin). If A ⊆ FK2 and |A + A| ≤ K|A| then A ⊆ H , for a subspaceH of
size at most 22KKc

|A| and for some constant c.

This motivates the following conjecture:
Conjecture 1.7.12 (Polynomial Freiman-Ruzsa conjecture). Under the hypotheses of the Green-Tao-Konyagin
theorem, A ⊆ ∪Mi=1(H + xi) withH a subspace of size ≤ |A| andM = KO(1).

Today’s lecture deals with approximate homomorphisms, which one might more appropriately call
approximate affine functions. Today we will use the following one of many possible (often equivalent) notions
of approximate homomorphisms:
Definition 1.7.13 (K-approximate homomorphism). The function ' ∶ F n2 → F n′2 is a K-approximate
homomorphism if for every x, y ∈ F n2 ,

'(x + y) = '(x) + '(y) + sx,y ,

where sx,y ∈ S and S is an “error set” with |S| ≤ K .
Suppose that ' ∶ F n2 → F n′2 is a K-approximate homomorphism with error set S. Can we express ' as

 + " where  ∶ F n2 → F n′2 is linear and " ∶ F n2 → F n′2 is somehow small? A trivial upper bound on such an
| im "| is 2K . This trivial bound is obtained by setting  (g) = '(g) for each g in a generating set for F n2 and
extending  to a linear homomorphism. Since  (x) − '(x) belongs to the linear span of S for each x ∈ F n2 ,an " with |{"(x) ∶ x ∈ F n2 }| ≤ 2

|S| ≤ 2K does the job.
Conjecture 1.7.14. An " exists with | im "| ≤ KO(1).

This conjecture can be shown equivalent to the Polynomial Freiman-Ruzsa Conjecture 1.7.12. We will
prove the following weaker form of it, obtained very recently by Schoer.
Theorem 1.7.15 (Schoer 2010). Given a K-approximate homomorphism ' ∶ F n2 → F n′2 , there is a linear
homomorphism  ∶ F n2 → F n′2 and a function " ∶ F n2 → F n′2 such that '(x) =  (x) + "(x) for all x ∈ F n2 and
| im "| ≤ 22c

√

logK for some c (hence | im "| < 2Ko(1) , significantly improving on the trivial 2K bound).

We will do most of the proof today, and finish it tomorrow. Here is an outline of the proof:
Step 0. By applying Cauchy-Schwartz (left as an exercise), we obtain that

ℙ['(x1) + '(x2) = '(x3) + '(x4) ∶ x1 + x2 = x3 + x4] ≥ K−2 .

Step 1. (Ruzsa) There is a set A ⊆ F n2 , |A| ≥ K−cN , such that ' is a Freiman 16-homomorphism on A, that
is to say: for any ai, a′i ∈ A, if

a1 +⋯ + a16 = a′1 +⋯ a′16
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then

'(a1) +⋯ + '(a16) = '(a′1) +⋯'(a′16) .

HereN = 2n and c is a new constant; note that constants such as c here will generally depend on each
other, but we will often skim over these chains of dependencies.
Observe that ' gives a well-defined map '̃ on B = 8A by defining

'̃(a1 +⋯ + a8) = '(a1) +⋯ + '(a8) .

(Just add 8a1 to both sides of an equality a1 +⋯ + a8 = a′1 +⋯ + a′8 and deduce from ' being a
16-homomorphism that '(a1) + ⋯ + '(a8) = '(a′1) + ⋯'(a′8)). In fact, if b1, b2, b′1, b′2 ∈ B and
b1 + b2 = b′1 + b

′
2 then '̃(b1) + '̃(b2) = '̃(b′1) + '̃(b

′
2). Schoer’s ingredient to the proof is that 8A

contains a subspace of co-dimension 2c√logK = Ko(1). (A 1937 theorem of Bogolyubov’s shows that
4A contains a subspace of co-dimension Kc′ .)

Step 2. From here it is “relatively easy,” later upgraded to “not too hard,” to conclude, since '̃ is already
known to be linear on a large set.

So let us spell out Step 1.
Note that

ℙ['(x1) + '(x2) = '(x3) + '(x4) ∶ x1 + x2 = x3 + x4] ≥ K−c

is equivalent to
E(Γ) ≥ K−c

|Γ|3

where Γ = {(x, '(x)) ∶ x ∈ F n2 } ⊆ F n+n′2 .We can thus apply the Balog-Szemerédi-Gowers theorem proved
in the last lecture to Γ, to obtain Γ′ ⊆ Γ with |Γ′| ≥ K−c

|Γ| and |2Γ′| ≤ Kc
|Γ′|. Note that (x1, y1) ≠ (x2, y2)

for (x1, y1), (x2, y2) ∈ Γ′ implies x1 ≠ x2 by definition of Γ. So denote Γ′ by ΓA for the set A ⊆ F n2 ,
|A| = |ΓA| ≥ K−cN , such that Γ′ is the graph of the restriction '|A of ' on A.

Now look at 32ΓA ⊆ F n2 × F n′2 . By sumset estimates,
33ΓA ≤ KO(1)N .

Note that 33ΓA contains ΓA + (0, S) where S = (32ΓA)0 is the fibre of 32ΓA above 0, that is, S = {s ∶
(0, s) ∈ 32ΓA}. (The fiber of a set of pairs above an element a is just the set of elements b such that (a, b) is a
pair in the set.) Note that S is precisely the set of values taken by

'(a1) +⋯ + '(a16) − '(a′1) −⋯ − '(a′16)

as a1,… , a16, a′1,… , a′16 range over A with
a1 +⋯ + a16 = a′1 +⋯ a′16 .

Now |S| ≤ Kc because the map ((x, '(x)), s) → (x, s + '(x)) is an injection from ΓA × S to ΓA + (0, S), so
that K−cN|S| ≤ |ΓA||S| ≤ |ΓA + (0, S)| ≤ |33ΓA| ≤ Kc′′N.
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So now we have a set A ⊆ F n2 , |A| ≥ K−cN , and a set S ⊆ F n′2 , |S| ≤ Kc , such that
a1,… , a16 = a′1,… , a′16

⇓

'(a1) +⋯ + '(a16) − '(a′1) −⋯ − '(a′16) ∈ S.

A discussion broke out at this point to the effect that the existence of such an S could have been deduced
directly from the hypotheses of Theorem 1.7.15 without the need to first weaken the hypothesis (in step 0)
and then appeal to the Balog-Szemerédi-Gowers theorem.

By the probabilistic method, let v1,… , vm ∈ F n′2 withm = 1+log2 |S| be such thatS∩v⟂1 ∩⋯∩v⟂m = {0}.Take A′ to be any set of the form
{x ∈ A ∶ ⟨'(x), v1⟩ = b1,⋯ , ⟨'(x), vm⟩ = bm} .

By pigeonholing, there is a choice of b1,… , bm such that
|A′| ≥ 2−m|A| ≥ K−c′N .

Note that a1,… , a16, a′1,… , a′16 ∈ A
′ and a1 +⋯ + a16 = a′1 +⋯ + a′16 imply

'(a1) +⋯ + '(a16) − '(a′1) −⋯ − '(a′16) ∈ S ∩ v
⟂
1 ∩⋯ ∩ v⟂m = {0}.

Schoer’s contribution was to find X, Y ⊆ 2A with a large value of  , in the terminology of Proposi-
tion 1.7.16 below. This will be explained in the next lecture. The rest of this lecture is devoted to proving
Proposition 1.7.16.
Proposition 1.7.16 (Bogoluykov, Chang, Ruzsa). Suppose X, Y ⊆ F n2 , |X| = �N , |Y | = �N and

E(X, Y ) ≥ |X|

2
|Y |

where E(X, Y ) = |{(x, x′, y, y′) ∈ X ×X × Y × Y ∶ x + y = x′ + y′}|. Then 2X + 2Y contains a subspace
of size ≥ �c∕N .

Recall the Fourier transform, specialized to the setting f ∶ F n2 → ℂ:
f̂ ∶ F n2 → ℂ

r → Ex f (x)(−1)r
T x.

Lemma 1.7.17 (Chang). Suppose A ⊆ F n2 , |A| = �N . Let

R = {r ∈ F n2 ∶ |1̂A(r)| ≥ ��} .

Then dim(⟨R⟩) ≤ 8�−2 log( 1
�
).

Note that Parseval’s identity applied to A taken from Chang’s lemma yields
Σr|1̂A(r)|2 = Ex 1A(x)2 = � .

This yields |R| ≤ �−2�−1 which is much weaker than the bound claimed in Chang’s lemma.
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Proof of Lemma 1.7.17 (Chang’s lemma). Take independent elements r1,… , rd ∈ R, d = dim(R). We
know |1̂A(ri)| ≥ ��. By translating A by ri if necessary, we can assume

1̂A(ri) ≥ ��. (1.1)
For each ! = (!1, !2,… , !d) ∈ {0, 1}d write �! for the average of 1A on the set

{x ∶ rT1 x = !1,… , rTd x = !d} .

Expanding the 1̂A in (1.1) yields the following equivalent statement:
E!(−1)!i�! ≥ �� for 1 ≤ i ≤ d .

We will maximize � in the system of 2d linear equations
E!(�!) = �, 0 ≤ �! ≤ 1, for ! = (!1, !2,… , !d) ∈ {0, 1}d .

Consider
x! = max

(

0,
2⟨!⟩
d�

− 1
)

where ⟨!⟩ = (−1)!1 +⋯ + (−1)!d . Observe that

E!(1 −
⟨!⟩
d�

)�! =
1
d�

d
∑

i=1
(� − (−1)!i)�! (1.2)

= 1
d�

d
∑

i=1
(�� − 1̂A(ri)) ≤ 0 . (1.3)

Then
� = E! �! ≤ E!(2 −

2⟨!⟩
d�

+ x!)�w (1.4)
≤ E! x!�! by (1.3) (1.5)
≤ E! x! (1.6)
≈ ℙ[⟨!⟩ ≥ d�∕2] . (1.7)

But we can compute that E! x! ≤ e−�2d∕8 from (1.7) using Chernoff bounds. See Section 1.8 for an alternate
proof of Chang’s lemma due to Bourgain.
Proof of Proposition 1.7.16. Write f = 1X ∗ 1X ∗ 1Y ∗ 1Y . If f (t) > 0, then t ∈ 2X + 2Y . By Fourier
inversion, f (x) = Σrf̂ (r)(−1)r

T x. Since the Fourier transform of a convolution is the convolution of the
Fourier transforms, f̂ = 1̂2X 1̂

2
Y . Hence

f (t) =
∑

r
|1̂X(r)|2|1̂Y (r)|2(−1)r

T t .

Let e = 1∕2∕2 and define R = {r ∶ |1̂X(r)| ≥ ��}.
Claim: 1X ∗ 1X ∗ 1Y ∗ 1Y (t) > 0 if t ∈ R⟂, a subspace. At this point the result follows from Chang’s lemma
and a computation.
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To see the claim, if t ∈ ⟨R⟩⟂, we have rT t = 0 for r ∈ ⟨R⟩, so
f (t) ≥

∑

r∈⟨R⟩
|1̂X(r)|2|1̂Y (r)|2 −

∑

r∉⟨R⟩
|1̂X(r)|2|1̂Y (r)|2 (1.8)

by assuming −1 for rT t as worst case in the negative term. Then by adding and subtracting Σr∉⟨R⟩,

≥
∑

r
|1̂X(r)|2|1̂Y (r)|2 − 2

∑

r∉⟨R⟩
|1̂X(r)|2|1̂Y (r)|2. (1.9)

But the∑r equals ||1X ∗ 1Y ||2 and this is E(X,Y )
N3 by Parseval.

Now
∑

r∉⟨R⟩
|1̂X(r)|2|1̂Y (r)|2 ≤ �2�2Σr|1̂Y (r)|2 (1.10)

= �2�2� by Parseval (1.11)
=

4
�2� (1.12)

=

4
|X|

2
|Y |

N3
. (1.13)

Hence the right-hand side of (1.8) ≥  |X|

2
|Y |

N3 − 2
4
 |X|

2
|Y |

N3 ≥ 1
2
 |X|

2
|Y |

N3 ≥ 0, proving the claim.

1.8 An alternate proof of Chang’s lemma

Ryan O’Donnell recalled the following, alternate proof of Chang’s lemma due to Bourgain.
Theorem 1.8.1 (Chang’s Lemma, restated). Let f ∶ F n2 → [0, 1] satisfy E[f (x)] = � < 1∕2 and f̂ (ri) ≥ ��
for a family {r1,… , rd} of linearly independent characters. Then d = O(ln(

1
�
)∕�2).

Proof. Let g ∶ F n2 → ℝ be the function g(x) = ∑d
i=1(−1)

rTi x. Then

E[f (x)g(x)] =
d
∑

i=1
f̂ (ri) ≥ ��d .

Considering that r1,… , rd are linearly independent, the random variables r1(x),… , rd(x) determined by
selecting x uniformly at random in F n2 are independent. To upper bound the quantity above, choose a threshold
t > 0 so that

ℙ[
∑

i
ri(x) ≥ t] ≥ �

and let A = {x ∶
∑

i ri(x) ≥ t}. Since E[f ] = �, we must have
E[f (x)g(x)] ≤ E[g(x)1A] .

As g(x) is nearly Gaussian, with expectation zero and variance d, we may take the threshold t above to be
c
√

ln 1∕�
√

d and it follows that d = O(ln( 1
�
)∕�).
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LECTURE 9
Lecturer: Ben Green Scribe: Shachar Lovett
The plan for the talk today is:

1. Finish Schoen’s argument.
2. Approximate subgroups of SL2(p).

1.9 Completion of Schoen’s argument

Recall from previous talk: we have a function � ∶ F n2 → F n′2 such that
�(x + y) = �(x) + �(y) + sx,y ,

where sx,y ∈ S and |S| = K . Schoen showed that that �(x) = l(x) + �(x) where l(x) is linear and
|Im(�)| ≤ 22c

√

log k
.

We showed that there exists A ⊂ F n2 such that � restricted to A is a Freiman 16-homomorphism, i.e.
for any a1,⋯ , a16, a′1,⋯ , a′16 ∈ A such that a1 +⋯ + a16 = a′1 +⋯ + a′16 we have �(a1) +⋯ + �(a16) =
�(a′1)+⋯+�(a′16). This implies that we can define � uniquely on 8A, and moreover, � is a 2-homomorphism
on 8A. Hence our goal will to be to find a large linear subspace V ⊂ 8A. This will imply that � is linear on
V .

LetN = 2n. We have seen the following proposition of Bogoliubov:
Proposition 1.9.1. If X, Y ⊂ F n2 , |X| = �N , |Y | = �N and E(X, Y ) = |X|

2
|Y |. Then 2X + 2Y contains

a linear subspace of size at least �c∕N .

The task at hand is thus: given A such that |A + A| ≤ K|A|, find X, Y ⊂ 2A with large E(X, Y ). We
will now describe Schoen’s new idea. It was also discovered (in other contexts) by Tom Sanders. We recall
the definition of Sym.
Definition 1.9.2 (Sym-set). Let A ⊂ F n2 . Sym�(A) is defined as

Sym�(A) = {x ∶ |A ∩ (A + x)| ≥ �|A|}
= {x ∶ x = a − a′ in at least �|A| ways} .

We will need some basic facts about Sym.
Fact 1.9.3. Let Sym be defined as above.
(1) If |A + A| ≤ K|A| then Sym1∕2K (A) ≥ |A|∕2.

Proof. This is a simple averaging argument. Let r(x) = |{a, a′ ∈ A ∶ a + a′ = x}|. Then
Sym1∕2K (A) = {x ∶ r(x) ≥ 1∕2K}. We have r(x) ≤ A,∑x r(x) = |A|2 and

∑

x∉Sym1∕2K (A)
r(x) ≤ |A + A| ⋅ |A|∕2K ≤ |A|2

2
.

Hence∑x∈Sym1∕2K (A)
r(x) ≥ |A|2∕2 and |Sym1∕2K (A)| ≥ |A|∕2.
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(2) E(A,Sym�(A)) ≥ �2|Sym�(A)|2|A|.

Proof. Write t(a) for the number of s ∈ Sym�(A) such that a + s ∈ A. Then
∑

a∈A
t(a) ≥ �|Sym�(A)||A| .

Hence
E(A,Sym�(A)) =

∑

a
t(a)2 ≥

∑

a∈A
t(a)2 ≥ 1

|A|
∑

a∈A
t(a) = �2|Sym�(A)|2|A| ,

where the last inequality follows by Cauchy-Schwarz.

Before proving Schoen’s theorem, note that if A was a random subset of F n2 of density 1∕K then A ∩
(A+ x) ≈ K−2N ≈ K−1

|A|, hence Sym�(A) = {0} for � ≫ 1∕K . But, 2A = F n2 hence Sym0.99(2A) is huge.This is the advantage of summing several copies of A.
Lemma 1.9.4 (Schoen). Suppose A ⊂ F n2 such that |A + A| ≤ K|A|. Then for any � > 0 there exists a set
A′ ⊂ 2A, |A′| ≥ |A| such that

|Sym�(A′)| ≥ (2K)1−2
logK
log 1∕�

|A| .

Note that if � = K−0.01 that Sym�(A′) ≥ K−c
|A| for c = 2100, hence we get large symsets even for

polynomial small �.
Proof. Set t = ⌈logK∕log(1∕�)⌉. We will construct a sequence of sets B0 ⊇ B1 ⊇… ⊇ Bt. Define B0 = A.
We will denote |Bi| = �i|A|, and we will see that

�i ≥ (2K)1−2
i
. (1.14)

Define Bi+1 to be the set among the set of intersections {Bi ∩ (Bi + x) ∶ x ∈ Sym�i∕2K (Bi)} for which
|A + Bi+1| is minimal. Note that the set of intersections is nonempty as always 0 is in the symset. We will
in fact prove later that the symset is quite large. Note that (1.14) follows from the definition since for any
x ∈ Sym�i∕2K (Bi) we have |Bi ∩ (Bi + x)| ≥ �i∕2K ⋅ |Bi| = �2i ∕2K ⋅ |A|.

Consider the sequence of sets A + B0, A + B1,… , A + Bt. For any 0 ≤ i ≤ t we have A ⊆ A + Bi ⊆ 2A,
and by assumption |2A| ≤ K|A|. Hence by the pigeonhole principle and the choice of t there must exist a
pair of sets such that

|A + Bi| ≥ �|A + Bi+1|.

Define A′ = A + Bi. We now observe that for x ∈ Sym�i∕2K (Bi) we have
|A′ ∩ (A′ + x)| = |(A + Bi) ∩ (A + Bi + x)|

≥ |A + (Bi ∩ (Bi + x))|
≥ |A + Bi+1| (by minimality of Bi+1)
≥ �|A + Bi| = �|A′| (by the pigeonhole principle).

Hence we conclude that Sym�i∕2K (Bi) ⊆ Sym�(A′), and hence |Sym�(A′)| ≥ |Bi|∕2 ≥ �i∕2|A|.
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1.10 Approximate homomorphisms which are far from genuine homomor-
phisms

We have seen thus far that approximate homomorphisms and subgroups of F n2 are in fact close to genuine
homomorphisms/subgroups. We will later see this is also the case in SL2(p). One might wonder if this is the
general case for all groups. The next example shows this is not true in general (it is true for F n2 because it
has high torsion, and for SL2(p) because it is a quasi-random group, i.e. its doesn’t have small irreducible
representations).
Example 1.10.1. Let G = ℤ∕Nℤ = {1, 2,… , N}. Define the following set

A = {1 ≤ n ≤ N ∶ −0.1 ≤ [n
√

2] ≤ 0.1}

where [x] for a real number x denotes its fractional part, which is between −0.5 and 0.5. Define a function
� ∶ A→ ℝ∕ℤ by

�(n) =
√

3[n
√

2].

It is simple to see that for a1, a2 ∈ A we have �(a1 + a2) = �(a1) + �(a2), since if x, y ∈ ℝ are such that
{x}, {y} ∈ [−0.1, 0.1] then {x + y} = {x} + {y}. On the other hand, if  ∶ ℤ∕Nℤ → ℝ∕ℤ is a genuine
homomorphism one can verify that ℙ[�(x) =  (x)] ≲ N−1∕2.

1.11 Approximate subgroups of SL2(p)

We recall that SL2(p) is the group of 2 × 2 matrices over Fp with determinant 1. We denote G = SL2(p) for
the reminder of this section. We will prove the following theorem.
Theorem 1.11.1 (Helfgott). Suppose A ⊂ G such that A generates G. Let K ≥ 2. Then one of the following
holds:

(1) A is very small: |A| ≤ KC .

(2) A is very large: |A| ≥ K−C
|G|.

(3) A is not an approximate subgroup: |A ⋅ A ⋅ A| ≥ K|A|.

Helfgott’s theorem can be interpreted as follows: approximate subgroups which generate SL2(p) are
basically {1} or SL2(p). There are generalizations of Helfgott’s theorem to SLn(p) and to more general lie
groups by Breuillard, Green, and Tao [5] and by Pyber and Szabo [16].

One can deduce from Helfgott’s theorem the following corollary. Recall that a function � ∶ G → ℝ is a
probability measure if � ≥ 0 and∑x �(x) = 1. The definition of the l2 norm is ‖�‖ = (Ex∈G �(x)2)1∕2. Note
that for delta functions ‖�g‖ =

√

|G|.
Corollary 1.11.2. Suppose � ∶ G → ℝ is a probability measure with ‖�‖ < |G|1∕2−�. Then one of the
following holds (for appropriate constants c(�) and �′)

(1) ‖ � ∗ … ∗ �
⏟⏞⏞⏟⏞⏞⏟
c(�) times

‖ ≤ |G|−�.

(2) �(H) ≥ |G|−�′ for some proper subgroupH < G.
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Note that (1) and Babai-Nikolov-Pyber theorem implies that 2c(�) convolutions of � yields an almost
uniform distribution over SL2(p), since the minimal representation of SL2(p) has size p = |G|1∕3. We now
sketch the proof of the corollary.
Proof sketch. Suppose that �(H) < |G|−�′ for allH ⪇ G.
(1) It is enough to show that ‖� ∗ �‖ < |G|−�‖�‖; this can be iterated.
(2) If ‖� ∗ �‖ ≥ |G|−�‖�‖, then by a variant of the Balog-Szemerédi-Gowers theorem for measures we

get that � is close to the uniform measure over H , where H is a subgroup of G. But by Helfgott’s
theorem H cannot generate G unless � was already close to uniform, hence � must have mass on a
proper subgroup.

We now proceed to proof Helfgott’s theorem.
Proof sketch of Theorem 1.11.1. FixK and suppose that |A ⋅A ⋅A| ≤ K|A|. Suppose thatA generates SL2(p).
We will show that either |A| ≤ KC or |A| ≥ K−C

|G|. We may assume w.l.o.g that A = A−1, otherwise we
take A = A ∪ A−1. We will in fact work in the algebraic closure SL2(Fp) in order to take eigenvalues, etc.

A torus is a subgroup of SL2(Fp) which is conjugate to the group of diagonal matrices. That is, let

D =
{(

� 0
0 �−1

)

∶ � ∈ Fp
}

be the group of diagonal matrices. Then T = xDx−1 for any x ∈ SL2(Fp) is a torus. We note that all tori are
conjugate.

The following fact can be easily verified by simple linear algebra for 2 × 2 matrices: if x ∈ T for some
torus T , then either x = ± id or x has distinct eigenvalues. An element which is not ± id and has distinct
eigenvalues is called regular semi-simple.

The normalizer of a groupH < G is defined asNG(H) = {x ∈ G ∶ xHx−1 = H}. Let T be a torus.
TheWeyl group is defined asW = NG(T )∕T . A key fact in the case of tori in SL2(p) is that |W | = 2. This
can be seen by first changing basis so that T = D and then noting that

NG(D) = D ∪
{(

0 −�
�−1 0

)

∶ � ∈ Fp
∗
}

.

Assume now that A ⊂ G and |A ⋅ A ⋅ A| ≤ K|A|. We first fix notation. Denote X ≲ Y if X ≤ KcY
for some fixed constant c, and X ≈ Y if X ≲ Y and Y ≲ X; that is, we ignore fixed powers of K . The
following is a key fact: suppose T is a torus which contains at least one regular semi-simple element of A.
then |A2 ∩ T | ≈ |A|1∕3.

This was proved by Helfgott, but it can also be derived from a more general theorem due to Larson and
Pink [12]. We quote it here for SLn(Fp) but it holds for any semi-simple lie group.
Theorem 1.11.3 (Larsen-Pink). Assume |A ⋅ A ⋅ A| ≤ K|A|. Let V by any subvariety of G = SLn(Fp). Then

|A ∩ V | ≤ |A|
dim(V )
dim(G) .
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Note that the Larsen-Pink theorem implies immediately that |A2 ∩ T | ≲ |A|1∕3. This is true since
dim(G) = 3 and dim(T ) = dim(D) = 1 (note that D, hence also T , is a subvariety, since it is characterized
by the off-diagonal elements being 0 and the determinant being 1, which are both algebraic relations). We
now sketch the proof that |A2 ∩ T | ≳ |A|1∕3.

Let x ∈ A ∩ T . Look on C(x) = {g−1xg ∶ g ∈ G}. Note that if x ≠ ± id then C(x) is a subvariety
of G of dimension 2, since y ∈ C(x) iff it shares the same eigenvalues as x, which can be characterized
by Det(y) = 1 and tr(y) = tr(x) (we note that C(x) is a subvariety also in SLn(Fp), as the eigenvalues can
be uniquely described by polynomial equations on the elements of the matrix). Hence by the Larsen-Pink
theorem (applied to A3 = A ⋅ A ⋅ A) we get

|A3 ∩ C(x)| ≲ |A|2∕3.

Consider the set of elements {a−1xa ∶ a ∈ A}. They are all contained in A3 ∩ C(x), hence there must be
distinct m ≳ |A|1∕3 elements a1,… , am ∈ A such that

a−11 xa1 =⋯ = a−1m xam.

Thus we get that all aia−1j commute with x. From this we have that aia−1j ∈ T for all 1 ≤ i, j ≤ m, hence in
particular aia−11 ∈ A2 ∩ T , i.e. |A2 ∩ T | ≳ |A|1∕3.

Let T be a torus. We say T is involved with A if A2 ∩T contains a regular semi-simple element (i.e. some
x ≠ ± id). We will prove the following proposition: if |A| > K100 then the set of involved tori is invariant
under conjugation by elements of A. That is, if T is involved then so is a−1T a for any a ∈ A. This will
conclude the proof: we first verify that A2 intersects at least one torus. This could be guaranteed by the
“Escape from subvarieties lemma” of Elkin, Mozes and Oh [9], which states in our case that Ac for a large
enough constant c must intersect some torus. Thus, we will carry the entire argument to Ac , from which we
will deduce that |Ac| ≈ |G|, but from Ruzsa’s theorem this will imply that |A| ≈ |G|. Thus, we may assume
without loss of generality that there exists at least one involved torus. Since A generates G this implies that in
fact all tori must be involved. That is, A2 intersects all tori. Moreover we already proved that the size of any
such intersection is ≈ |A|1∕3. As the number of tori is about p2 = |G|2∕3, and distinct tori intersect only at
{id}, we get that

|A| ≈ |A2| ≈ |G|2∕3|A|1∕3

hence |A| ≈ |G| as we aimed to prove.
Thus, in order to conclude, we need to prove that the set of involved tori is closed under conjugation

by a ∈ A. Let T be an involved torus, and let T̃ = a−1T a be any conjugate torus where a ∈ A. We will
prove T̃ is also involved. Consider the set {xT̃ y ∶ x, y ∈ A2}. Assume x′, y′ ∈ A such that x′ = xt′ and
y′ = t′′y. Then xT̃ y = x′T̃ y′. We have proved already that |A2 ∩ T | ≈ |A|1∕3. Hence the number of
distinct xT̃ y for x, y ∈ A2 is at most |A|2∕|A2 ∩ T |2 ≲ |A|4∕3. Hence by the pigeonhole principle there exist
b1,… , bm, c1,… , cm ∈ A2 for m ≈ |A|2∕3 such that

b1T̃ c1 =⋯ = bmT̃ cm .

We now observe that there must be at least l =√

m ≈ |A|1∕3 distinct bi’s or l distinct ci’s. Assume without
loss of generality that b1,… , bl are distinct. Hence we get that

(b1T̃ b−11 )(b1c1) =⋯ = (blT̃ b−1l )(blcl) .
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Note that each biT̃ b−1i is a subgroup of G, hence each (biT̃ b−1i )(bici) is a coset of subgroup of G. This implies
that

b1T̃ b
−1
1 =⋯ = blT̃ b−1l .

The reason is simple: in general, ifH,K are subgroups of G, andHx = Ky are equal cosets ofH,K , then
we must haveH = K . Thus, we can continue to deduce that all b−1i bj ∈ NG(T̃ ). Since in particular all the
elements b−11 b1,… , b−11 bl are distinct, we get that

|A4 ∩NG(T̃ )| ≳ |A|1∕3 .

Since we have already shown that [NG(T ) ∶ T ] = |W | = 2, this implies that also
|A4 ∩ T̃ | ≳ |A|1∕3.

Hence A4 intersects all tori (and this is enough to conclude the argument from before, as this will imply that
|A4| ≈ |G| hence also |A| ≈ |G|).

1.12 Sum-product theorem

The sum-product theorem of Bourgain, Katz and Tao [4].
Theorem 1.12.1 (Sum-product theorem). Let A ⊂ Fp such that |A| ≤ p0.9. Then max(|A + A|, |A ⋅ A|) ≥
|A|1.01. Equivalently, if |A + A|, |A ⋅ A| ≤ K|A| then either |A| ≤ Kc or |A| ≥ K−cp (i.e. there are no
non-trivial approximate sub-rings of Fp).

The following Lemma states that if A doesn’t increase much under both additions and multiplications,
then it contains a subset which doesn’t increase much under polynomials.
Lemma 1.12.2 (Katz-Tao lemma). Assume |A + A|, |A ⋅ A| ≤ K|A|. Then there is A′ ⊂ A, |A′| ≥ K−c

|A|
such that |A′ ⋅ A′ + A′ ⋅ A′| ≤ Kc

|A′|.
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Chapter 2

Representation theory of finite groups, and
applications

A series of 5 lectures by Avi Wigderson.
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LECTURE 2
Lecturer: Avi Wigderson Scribe: Anil Ada & Laszlo Egri

2.1 Some applications of representation theory

This lecture will introduce formally the notion of group representations. Before we do that, we start by
mentioning some of the applications of representation theory that will be discussed in subsequent lectures.

One major application of representation theory is to understanding random walks on groups, or expansion
in groups. Let G be a group and S a subset of G. There is a natural graph, the Cayley graph, that one can
define with respect to G and S. We denote this graph by Cay(G,S). The vertices are the elements of the
group G and there is an edge from g to g′ if there is s ∈ S such that gs = g′. Note that if S is closed under
taking inverses, then the Cayley graph becomes undirected. We will always deal with such S.

The main question we will ask about these graphs is whether they are expanding (we will define expanders
formally later). Informally we can say that expansion controls the convergence of random walks on the graph.
Also, expanders are graphs in which the diameter is smallest possible.

If Cay(G,S) is an expander then we say that S is an expanding generating set. We will be interested in
the following questions: Which groups have “small” expanding generating set? When is “small” O(1)? Does
expansion depend only on the group G or does it also depend on the choice of S? More specifically, we will
cover the following applications.

• How long does it take to reach a near perfect random deck of cards if we shuffle the deck by taking two
cards at random and swap them? Diaconis and Shahshahani [8] show that O(n log n) swaps lead to a
nearly perfect random deck. (If one uses standard techniques, one obtains O(n2 log n) swaps.)

• Alon and Roichman [1] show that for every group G, most generating sets S of size O(log |G|) is
expanding.

• Lubotzky and Weiss [13], and Meshulam and Wigderson [15] answer the question about the size of
expanding generating sets in t-step solvable groups.

• Cohn and Umans [6] present a representation theoretic approach to fast matrix multiplication. This
approach can potentially achieve the optimum exponent for matrix multiplication.

• A dimension expander is a useful linear algebraic generalization of a standard expander. Lubotzky and
Zelmanov [14] explicitly construct such objects for fields of characteristic 0.

2.2 Representation theory of finite groups

2.2.1 Group actions and representations

In all our lectures, we will be dealing with finite groups and algebraically closed fields where the characteristic
of the field does not divide the size of the group. There is a theory for more general groups and fields but we
will not need it for our purposes.

LetG be a finite groupwith |G| = n. We say that a groupG acts on a finite setΩ if there is a homomorphism
� ∶ G → S

|Ω|. In other words, for all x ∈ G, we have a permutation �(x) ∶ Ω→ Ω and these permutations
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satisfy �(x) ⋅ �(y) = �(xy) for all x, y ∈ G, i.e. the actions of the group elements respect the group operation.
The main objective is to understand every possible action of every possible group.

Here are some examples:
• Let G be any finite group and let Ω = G. Every element x ∈ G defines a permutation on G by left

multiplication. Furthermore, x(yz) = (xy)z and so G acts on itself by left multiplication.
• Let G = Sk be the symmetric group. Then G trivially acts on [k] by permuting the elements. Also, G

acts on
[

(k
2

)

]

, e.g. G acts on graphs on k vertices.
• Let

G = SL2(p) ∶=
{(

a b
c d

)

∶ a, b, c, d ∈ Fp, ad − bc = 1
}

.

Then G acts on F 2p by viewing the elements of G as linear transformations. One can also define the
Möbius action as follows. G acts on {0, 1,… , p − 1} ∪ {∞} by

(

a b
c d

)

� = a� + b
c� + d

.

We will see how one can describe all possible actions of a given group. Furthermore, we will see that this
theory generalizes the Fourier transform over Abelian groups to non-Abelian groups.

In order to understand an object very well in mathematics, a common trick is to turn it into a linear object.
We will now see a canonical way of doing this in the case of group actions.

Let � ∶ Ω → Ω be a permutation and F any field. We can extend � naturally to a linear operator
�̃ ∶ FΩ → FΩ that permutes the coordinates of the vectors in FΩ according to � (the elements of FΩ can
be viewed as functions f ∶ Ω→ F or equivalently as vectors over F whose coordinates are indexed by Ω).
Observe that �̃ is a linear operator over a vector space since �̃(f + g) = �̃(f ) + �̃(g) and �̃(cf ) = c�̃(f ).

Suppose we have an action of G characterized by �. Using the above method, we obtain linear operators
�̃(x) on FΩ. The homomorphism �̃ now defines an action of G on FΩ. The idea is to study the linear objects
�̃(x) rather than the non-linear objects �(x).

We can think of �̃(x) as a matrix in GL
|Ω|(F ). So we can identify the linear action �̃(x), x ∈ G, with the

homomorphism �̃ ∶ G → GL
|Ω|(F ). Note that in this setting �̃’s image is a collection of permutation matrices

but we will study more generally all homomorphisms from G to GL
|Ω|(F ). (We’ll drop the tilde from now on.)

Definition 2.2.1. We say that � ∶ G → GLd(F ) is a G-representation if � is a group homomorphism.

2.2.2 Maschke’s theorem and irreducible representations

We will view a G-representation � as follows.
g1 g2 ⋯ gn
↓ ↓ ↓

⎛

⎜

⎜

⎝

�(g1)
⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

�(g2)
⎞

⎟

⎟

⎠

⋯
⎛

⎜

⎜

⎝

�(gn)
⎞

⎟

⎟

⎠
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Here g1, g2,… , gn represent the group elements and �(g1),… , �(gn) the corresponding matrices. We do not
distinguish between two representations that are the same up to a change of basis. Therefore we say that two
representations � and � are equivalent, denoted � ≅ �, if there is an invertible Z such that for all x ∈ G,
�(x) = Z�(x)Z−1.

To understand G-representations, we will identify the building blocks of representations, i.e. the ir-
reducible representations. There is a nice analogy between representations and integers. Every integer
has a unique decomposition into its prime factors where a prime appears a certain number of times in the
decomposition. Primes are the building blocks of integers which cannot be further decomposed. We will see
that representations have a very similar structure in the sense that they can be decomposed into irreducible
representations where each irreducible representation appears a certain number of times.

SupposeW is a non-trivial subspace of V such that �(x)W ⊆ W for all x ∈ G. In this case, we callW
�-invariant. It is clear that span{�(x)W } = W since �(id) = Id . We can now hope to change basis so that
we separate the action of the matrices �(x) onW and on the complement ofW . This hope is realized using
Maschke’s Theorem.
Theorem 2.2.2 (Maschke’s Theorem). IfW satisfies the above condition, then there exists a subspace U of
V so that V = W ⊕U and �(x)U ⊆ U for all x ∈ G, i.e. U is �-invariant.

Given Maschke’s Theorem, we can apply an invertible transformation Z, �(x) → Z�(x)Z−1, to do a
change of basis to obtain block diagonal matrices:

g1 g2 ⋯ gn
↓ ↓ ↓

⎛

⎜

⎜

⎜

⎝

�(g1) 0

0 �(g1)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

�(g2) 0

0 �(g2)

⎞

⎟

⎟

⎟

⎠

⋯

⎛

⎜

⎜

⎜

⎝

�(gn) 0

0 �(gn)

⎞

⎟

⎟

⎟

⎠

In this case, we can write � = � ⊕ � where � and � are G-representations. We call � irreducible if it cannot
be decomposed as above.

Clearly, we can keep applying Maschke’s Theorem recursively to a representation (in an arbitrary order)
until we end up with a collection of irreducible representations. Later we will show that this procedure gives a
unique decomposition up to equivalence of representations, into irreducible representations. Furthermore we
will show that G has finitely many irreducible representations.1 There are many nice facts about irreducible
representations which we will prove in the next lecture. For now let’s state two of them. If we denote all the
irreducible representations by �1,… , �t with dimensions d1,… , dt respectively, then
(1) ∑t

i=1 d
2
i = n,

(2) t is equal to the number of conjugacy classes of G.2
Note that these statements are independent of the field, so long as it is algebraically closed and does not
have characteristic that divides |G|. If G is Abelian then t = n with di = 1 for all i. In this case, the

1A note on the computational complexity of computing all the irreducible representations of a given group: Babai and Rónyai [3]
give a polynomial time algorithm that given G’s multiplication table as input, produces all the irreducible representations of G.

2For x ∈ G, the conjugacy class of x is {yxy−1 ∶ y ∈ G}.
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homomorphisms � ∶ G → ℂ, which are also known as the characters of the group, are exactly the irreducible
representations. This gives us an idea on how group representations generalize the notion of Fourier transform
over Abelian groups.3

Define the functions �i ∶ G → F by �i(x) = Tr(�i(x)). These are called the characters (generalizing the
Abelian case) and provide very useful information about the representations. Information about the characters
along with the dimensions d1,… , dt will be utilized in applications.

2.2.3 Finding all irreducible representations

Our task now is to find all the irreducible representations of a group. The most natural representation that
one can try to decompose is the action of G on itself. We give this representation a special name and call
it the regular representation. So in the regular representation R ∶ G → GLn(F ), the matrix for R(x) is a
permutation matrix which contains a 1 in the the coordinate (y, z) if and only if x = yz−1, i.e. y = xz.

We can now recursively apply Maschke’s Theorem to obtain the decomposition R =⨁t
i=1mi�i, where

�1,… , �t are the distinct (non-equivalent) set of irreducible representations and mi�i denotes �i ⊕⋯⊕ �i
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

mi

.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1

�2

�2

⋱

�t

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

It turns out that {�1,… , �t} is the set of all irreducible representations of G. Furthermore, mi = di = dim(�i)
for all i. That is,
Theorem 2.2.3. In the decomposition of the regular representationR, each irreducible representation appears
the number of times equal to its dimension.

This theorem, the facts stated earlier and much more follows elegantly from one basic and fundamental
lemma called Schur’s Lemma. The proof of these statements via Schur’s Lemma will be presented in the
second lecture. We end this lecture with the statement and proof of Schur’s Lemma.
Lemma 2.2.4 (Schur’s Lemma). Let �1 and �2 be irreducible representations of G with dimensions d1 and
d2 respectively. Suppose A is a d1 × d2 dimensional matrix such that

∀x ∈ G ∶ A = �1(x)A�2(x)−1. (2.1)
3The homomorphisms (or characters) � ∶ G → ℂ, when G is Abelian, form an orthonormal basis for the vector space of functions

{f ∶ G → ℂ}. This is the Fourier basis and the Fourier expansion of f is the expression for f as a linear combination of the
characters.
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If �1 ≇ �2, then A = 0. If �1 = �2, then A = �1.

Proof. We claim that Ker(A) is �2-invariant and Im(A) is �1-invariant. To see this, let v ∈ Ker(A). Then
by (2.1), we know 0 = �1(x)Av = A�2(x)v, which implies �2(x)v ∈ Ker(A). Hence Ker(A) is �2-invariant.
Similar argument shows Im(A) is �1-invariant. Since �1 and �2 are irreducible, we know Ker(A) and Im(A)
are either 0 or the whole space.

For the first case, suppose A ≠ 0. We will show �1 ≅ �2. If Ker(A) is the whole space or Im(A) is
0 then A = 0 so Ker(A) = 0 and Im(A) = F d1 . Since d2 = dim(Im(A)) + dim(Ker(A)), we get d1 = d2.
Furthermore, since rank(A) = dim(Im(A)) we know that A is invertible. Then rewriting (2.1), we obtain
A−1�1(x)A = �2(x), i.e. �1 ≅ �2.

For the second case, since �1(x) = �2(x), we know d1 = d2. If A = 0 then we are done so suppose A ≠ 0.
Then we know Ker(A) is not the whole space and hence Ker(A) = 0, i.e. A is invertible. This means that A
has a non-zero eigenvalue �. Define A′ to be A − �1. Then it is easy to verify that A′ satisfies (2.1). Thus,
as done with A, we can conclude that Ker(A′) is �2-invariant and therefore is either 0 or the whole space.
It cannot be 0 since the eigenvector corresponding to � is in the kernel. So we conclude that A′ = 0, i.e.
A = �1.
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LECTURE 4
Lecturer: Avi Wigderson Scribe: Phuong Nguyen

We will discuss some properties of the regular representation of a group, which will be useful for
understanding the group algebra. These are important in showing that certain Cayley graphs are expanders.
In fact the first examples of expander graphs are Cayley graphs.

2.3 The regular representation

In this section we will show that the regular representation of a group G contains all information about the
irreducible representations of G.

Two representations � and � are said to be isomorphic if one can be obtained from the other by change of
basis, i.e., there is some invertible matrix Z so that for all x:

�(x) = Z�(x)Z−1 .

Recall that the character �� of a representation � is
��(x) = tr(�(x)) .

i.e., ��(x) is the trace of the matrix �(x).
The main theorem of today’s lecture is:

Theorem 2.3.1. Let R be the regular representation of G, and suppose that by applying (in arbitrary order)
the procedure given by Maschke’s Theorem R is decomposed into

R =
t

⨁

i=1
mi�i

where the �i are irreducible and distinct up to isomorphism. Then

1. The set {�1, �2,… , �t} does not depend on the process by which R is decomposed. Furthermore,
{�1, �2,… , �t} are all irreducible representations of G.

2. Let di be the dimension of �i, then mi = di for 1 ≤ i ≤ t.

3.
∑t
i=1 d

2
i = n.

4. t is the number of conjugacy classes of G.

5. The characters of {�1, �2,… , �t} are orthonormal. When G is Abelian, the characters form an unitary
matrix.

6. In general, the set of character functions {��i ∶ 1 ≤ i ≤ t} spans the space of all class functions of G.
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By 1 the set {�1, �2,… , �t} is well defined, and it will be denoted by Irrep(G), the set of all irreducible
representations of G.

Before proving this theorem, let’s have a look at an example. Let G be the permutation group S3:
G = {id, (123), (132), (12), (13), (23)} .

Note that S3 is non-commutative. Consider the action � of S3 on the set {1, 2, 3}. Here each element x ∈ G
is a permutation on the indices {1, 2, 3}, and �x = �(x) is the linear map (say on ℂ3)

�x
⎛

⎜

⎜

⎝

v1
v2
v3

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

vx(1)
vx(2)
vx(3)

⎞

⎟

⎟

⎠

.

In particular, the values of �x are:
x id (123) (132) (12) (13) (23)

�x
⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

Notice that
�x

⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

for all x, so the subspace spanned by (1, 1, 1) is invariant for �. By Maschke’s Theorem the orthogonal
subspace U = ⟨(1, 1, 1)⟩⟂ is also invariant for �. Consider the following basis for U :

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1
!
!2

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

1
!2
!

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

where ! = e2�i∕3 is a 3rd-root of unity. Using this basis we can describe the decomposition of � easily. For
example, consider �(123):

⎛

⎜

⎜

⎝

1
!
!2

⎞

⎟

⎟

⎠

(123)
←←←←←←←←←←←←←←←←←←←→

⎛

⎜

⎜

⎝

!2
1
!

⎞

⎟

⎟

⎠

= !2
⎛

⎜

⎜

⎝

1
!
!2

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

1
!2
!

⎞

⎟

⎟

⎠

(123)
←←←←←←←←←←←←←←←←←←←→

⎛

⎜

⎜

⎝

!
1
!2

⎞

⎟

⎟

⎠

= !
⎛

⎜

⎜

⎝

1
!2
!

⎞

⎟

⎟

⎠

.

So �(123) becomes
⎛

⎜

⎜

⎝

1
!2

!

⎞

⎟

⎟

⎠

.

Similarly for �x for others x ∈ G. Thus over the basis
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

1
!
!2

⎞

⎟

⎟

⎠

,
⎛

⎜

⎜

⎝

1
!2
!

⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭
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� is decomposed into the trivial representation and another representation which we call �:
x id (123) (132)
1
�x

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
!2

!

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
!

!2

⎞

⎟

⎟

⎠

x (12) (13) (23)
1
�x

⎛

⎜

⎜

⎝

1
!

!2

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
!2

!

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

1
1

1

⎞

⎟

⎟

⎠

Now we have found here two irreducible representations for G, namely the trivial (of dimension 1) and
� (of dimension 2). Because 12 + 22 = 5, using the theorem above we know that we have not found all
irreducible representations of G; in fact one representation of dimension 1 is missing. A good guess gives us
the homomorphism from G to {±1} that maps each permutation in G to its sign:

x id (123) (132) (12) (13) (23)
sign 1 1 1 −1 −1 −1

Again by the theorem we know that the regular representation of G is decomposed into
1⊕ sign⊕ � ⊕ � .

Finally, here are the characters of G:
x id (123) (132) (12) (13) (23)
�1 1 1 1 1 1 1

�sign 1 1 1 −1 −1 −1
�� 2 −1 −1 0 0 0

For another example application of the theorem, suppose that G is an Abelian group. Then each element
of G is itself a conjugacy class, and G has exactly n conjugacy classes. So t = n, and hence it follows from 3
that all di = 1, i.e., all irreducible representations of G have dimension 1. Note also that when G is Abelian,
the character functions of G form an unitary matrix (see 5).

To prove the theorem we need Lemma 2.3.3 below which follows from Schur’s Lemma. In general, given
two representations � and �, in order to apply Schur’s Lemma, we wish to find a matrix A so that

∀x ∈ G ∶ A = �(x)A�(x)−1 . (2.2)
Such a matrix A can in fact be obtained from an arbitrary matrix B by symmetrization:
Lemma 2.3.2. Suppose that � and � are two representations of dimensions d� and d� respectively, and B is
a d� × d� matrix. Let

A = Ey∈G
[

�(y)B�(y)−1
]

Then A satisfies (2.2).
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The proof of this lemma is straightforward and is left as an exercise.
Thus by Schur’s lemma, for any matrix B, we have

A = Ey∈G
[

�(y)B�(y)−1
]

=

{

0 if � ≇ � ,
�1 if � = � .

To state the next lemma we introduce the following notation. For each irreducible representation � of G
let d� denote the dimension of �. (In Theorem 2.3.1 we use di for d�i .) For such a � and i, j, 1 ≤ i, j ≤ d�,
define the function f�,i,j ∶ G ←→ ℂ so that

f�,i,j ∶ x → �(x)i,j .

(In other words, f�,i,j(x) is the (i, j) entry of the matrix �(x).)
For two functions f and g on G, define their inner product ⟨f, g⟩ by

⟨f, g⟩ = Ex∈G
[

f (x)g(x)
]

where E denotes expectation, and g(x) is the complex conjugate of g(x). Note that we will be using this inner
product for group homomorphisms, so g(x) = g(x−1).
Lemma 2.3.3. For any two representations �, � of G and 1 ≤ i, j ≤ d� , 1 ≤ k,l ≤ d� we have:

⟨f�,i,j , f�,k,l⟩ =

{ 1
d�

if � = � ∧ (i, j) = (k,l) ,

0 if � ≇ � or (� = � and (i, j) ≠ (k,l)) .

Proof. We will use Schur’s Lemma. Consider B = Bj,l where (Bj,l)j,l = 1 and all other entries of Bj,l are
0. Let

Aj,l = Ey∈G
[

�(y)B�(y)−1
] so that Aj,li,k = Ey∈G

[

�(y)i,j(�(y)−1)l,k
]

.

Now �(y) is equivalent to a permutation matrix, so �(y) is unitary, i.e., (�(y))−1 is just the conjugate of the
transpose of �(y). As a result, (�(y)−1)l,k = �(y)k,l. Consequently,

Aj,li,k = Ey∈G
[

�(y)i,j�(y)k,l
]

so, by definition,
Aj,li,k = ⟨f�,i,j , f�,k,l⟩ .

Now, by Lemma 2.3.2, Aj,l satisfies the hypothesis (2.2) of Schur’s Lemma. Therefore (by Schur’s
Lemma):

Aj,l =

{

0 if � ≇ � ,
�1 if � = � .

Now if � ≇ � then Aj,l = 0, i.e., ⟨f�,i,j , f�,k,l⟩ = 0 for all i, j, k,l.
On the other hand, suppose that � = �. Then Aj,l = �1 for some �. So if i ≠ k we also have Aj,li,k = 0,i.e., ⟨f�,i,j , f�,k,l⟩ = 0.
Finally, suppose that � = � and i = k. Then Aj,li,i = �1 for some �. In particular,

Aj,li,i =
tr(Aj,l)
d�
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(because Aj,l is a d� × d� matrix). We calculate tr(Aj,l):
tr(Aj,l) = tr(Ey∈G[�(y)Bj,l�(y)−1])

= Ey∈G
[

tr((�(y)Bj,l�(y)−1))
]

= Ey∈G
[

tr(Bj,l)
]

(because tr(ZAZ−1) = tr(A))

=

{

0 if j ≠ l ,
1 if j = l .

Thus
Aj,li,i =

{

0 if j ≠ l ,
1
d�

if j = l .
This completes the proof of Lemma 2.3.3.

Now we return to the proof of the main theorem.
Proof of Theorem 2.3.1. We prove the items listed in Theorem 2.3.1 in the order 5, 2, 3, 4, 6, 1.

First let � ∈ {�1, �2,… , �t}. Recall the characteristic function �� = tr(�). So

�� =
d�
∑

i=1
f�,i,i .

For two different �, � ∈ {�1, �2,… , �t} we have � ≇ � so that, by Lemma 2.3.3, the functions f�,i,i and f�,j,j
are pairwise orthogonal. Therefore ⟨�� , ��⟩ = 0. On the other hand, also by Lemma 2.3.3 one can derive:

⟨�� , ��⟩ =

⟨ d�
∑

i=1
f�,i,i,

d�
∑

j=1
f�,j,j

⟩

= 1 .

Thus we have shown that {��i ∶ 1 ≤ i ≤ t} are orthonormal. This establishes the first sentence of 5.
When G is Abelian, from 3 (or also 4) we have t = n, i.e., we have n vectors ��i . Hence they form a unitary
matrix. This proves the last sentence of 5.

Next, by assumption
R =

t
⨁

i=1
mi�i

so the character of the regular representation �R is

�R =
t

∑

i=1
mi�i

(where �i = ��i). As a result,
⟨�j , �R⟩ =

t
∑

i=1
mi⟨�j , �i⟩ = mj .

We will compute ⟨�j , �R⟩ in another way and show that it is dj ; it will follow that dj = mj . By definition,
R(x) is simply the permutation by x, so for x = id (the identity element of G) we have R(id) = 1, hence
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�R(id) = tr(1) = n. On the other hand, for x ≠ id the elements on the diagonal of R(x) are all 0, so
�R(x) = tr(R(x)) = 0. Now by definition,

⟨�j , �R⟩ = Ey∈G
[

tr(�j(y)) tr(R(y))
]

.

Using the values of R(y) calculated above we get

⟨�j , �R⟩ =
1
n
tr(�j(id))n = tr(�j(id)) .

As �j(id) is the dj × dj identity matrix we have tr(�j(id)) = dj . Therefore ⟨�j , �R⟩ = dj , and this proves 2.
Next we prove 3. From the above we have

�R =
t

∑

i=1
di�i ;

hence
�R(id) =

t
∑

i=1
di�i(id) .

The LHS is simply n because R(id) is the identity matrix of size n× n, and the RHS is∑t
i=1 d

2
i because �i(id)is the identity matrix of size di × di. This proves 3.

The proof of 4 is left as an exercise.
Note that

tr(A) = tr(ZAZ−1) and so tr(�(x)) = tr(�(z)�(x)�(z−1)) .

Therefore
tr(�(x)) = tr(�(zxz−1)) .

In other words, the character functions are class functions. Therefore 6 follows immediately from 4 and the
fact (established above) that the character functions are orthonormal.

Now we prove 1. It suffices to show that the set {�1, �2,… , �t} contains all irreducible representations of
G up to isomorphism. We prove this by contradiction. By Lemma 2.3.3 the set

{f�s,i,j ∶ 1 ≤ s ≤ t, 1 ≤ i, j ≤ ds}

is an orthogonal subset of the functions on G, and by 3 this set consists of exactly n functions. As a result,
this set spans the whole vector space of all functions on G. Now suppose for a contradiction that some
irreducible representation � of G is not isomorphic to any in {�1, �2,… , �t}. Then the functions f�,k,l where
1 ≤ k,l ≤ d� are also orthogonal to all functions f�s,i,j , a contradiction.

2.4 Group algebras and Cayley graphs

Given a field F and a group G, consider the algebra, called the group algebra for G:
F [G] = {f ∶ f is a function from G to F} .

Here addition is defined by
(f + g)(x) = f (x) + g(x)
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and multiplication is defined by convolution, as follows. Write each f ∈ F [G] as
∑

x∈G
f (x) x

where the boldface x is a formal object which you may treat as the function taking the value 1 on x and zero
elsewhere. If we define the product of two such formal objects so that x ⋅ y = xy, this yields the definition of
ℎ = f ⋆ g by linearity:

(
∑

x∈G
f (x) x)(

∑

y∈G
g(y) y) =

∑

z∈G
ℎ(z) z

where ℎ is the function
ℎ(z) =

∑

w∈G
f (w)g(w−1z) .

It can be verified that the vector space F [G] together with the convolution operation form an algebra of
dimension n = |G|.

Using the regular representation R for G (where each element x ∈ G is represented as an n × n matrix
R(x)) we can represent each function f ∈ F [G] by a matrix R(f ):

R(f ) =
∑

x∈G
f (x)R(x) .

Note that
(R(f ))y,z = f (yz−1) .

In particular, the first column of R(f ) consists of the elements
(R(f ))y,id = f (y) ,

i.e., it gives us the graph of f .
It is easy to see that

R(f ) + R(g) = R(f + g)
and it can be verified that

R(f )R(g) = R(f ⋆ g) . (2.3)
The latter can be seen as follows: For y, z ∈ G:

(R(f ⋆ g))y,z = (f ⋆ g)(yz−1)

=
∑

w∈G
f (w)g(w−1yz−1) .

On the other hand, by definition of convolution:
(R(f )R(g))y,z =

∑

u∈G
(R(f ))y,u(R(g))u,z

=
∑

u∈G
f (yu−1)g(uz−1)

=
∑

w∈G
f (w)g(w−1yz−1)

where the last equality is obtained by letting w = yu−1 (so u = w−1y). This proves (2.3).
Notice that F [G] has dimension n (the size of G), while the space of all n × n matrices has dimension n2.

So the matrices that represent F [G] form a proper subspace ofMn(F ). The next theorem tells us what this
subspace looks like.
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Theorem 2.4.1 (Wederburn decomposition). Let F be an algebraically closed field, G a group of size n so
that char(F ) ̸ | n. Let Irrep(G) = {�1, �2,… , �t} and let di × di be the dimension of �i, for 1 ≤ i ≤ t. Then

F [G] ≅
t

⨁

i=1
Mdi(F ) .

Here the isomorphism ≅ is under the Fourier Transform (i.e., a sequence of basis changes), andMdi(F )
denotes the space of all di × di matrices over F .

The proof of this theorem is left as an exercise.
Definition 2.4.2 (Cayley graph). Let G be a group and S ⊆ G. The Cayley graph C(G,S) is defined as
follows. The vertices of C(G,S) are elements of G, and the edges of C(G,S) are of the form (x, sx) for
s ∈ S.

In most application S will be closed under taking inverse, i.e., x−1 ∈ S for all x ∈ S. In such cases,
C(G,S) is really an undirected graph.

Now consider taking a random walk on the graph C(G,S) by starting at the identity element and at each
step we go from a vertex x to vertex sx with uniform probability over all s ∈ S. The probability transition
matrix for such a random walk is the normalized adjacency matrix of C(G,S), i.e., the |G| × |G| matrix
whose (x, sx) entry is 1∕|S| for all s ∈ S, and all other entries are 0. So the transition matrix is the regular
representation R(pS) of the function

pS =
1
|S|

∑

s∈S
s .

We are interested in the eigenvalues of the above probability transition matrix. By diagonalizing (i.e.,
proper change of basis) this leads us to the eigenvalues of different irreducible components of R(f ). For
example, the second largest eigenvalue of the probability transition matrix is the largest eigenvalue of all
nontrivial irreducible components ofG. Another useful piece of information is that, suppose that the nontrivial
irreducible representations of G all have “high” dimension, i.e., di are large. Then in the decomposition of
R each �i has many (i.e., at least di) repetitions, because each �i occurs di times. So except for the largest
eigenvalue, all eigenvalues of R(pS) occur with many repetitions.

The following claim can be proved using Schur’s Lemma.
Claim 2.4.3. Suppose that S is a conjugacy class (or a union of conjugacy classes) of G. Then after the
Fourier Transform, the regular representation R(pS) of pS is a diagonal matrix.

Another useful result is Parseval’s identity for Fourier Transform.
Lemma 2.4.4 (Parseval’s identity). When F = ℂ, then

n‖f‖2 = tr(R(f )tR(f )) .

N. b. Both [17, 11] contain elementary introductions to the representation theory of finite groups.
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LECTURE 6
Lecturer: Avi Wigderson Scribe: Arkadev Chattopadhyay

2.5 Introduction

We are going to consider expansion in groups, using the machinery of linear representations of groups. We
shall assume throughout that our generating sets are closed under inverse, though we may not mention it
explicitly. In particular, we will discuss the following results:

1. Alon-Roichman: LetG be a finite group andS ⊆ G be a random subset, elements chosen independently
and uniformly from G. Then there is a universal constant c so that if |S| = c log |G|, the Cayley graph
Cay(G,S) is an expander with high probability.

2. Bourgain-Gamburd: Recall that for any prime p, SL2(p) is the group of 2×2matrices over the field Fp
with determinant 1. The result of Bourgain and Gamburd asserts that if we pick two random elements
of this group, then the corresponding Cayley graph expands with high probability.

3. Diaconis-Shahshahani: Consider Sk, the symmetric group of permutations on k objects. Let S =
{(1, 2), (1, 3),… , (k − 1, k)} be the set of all transpositions. Then the random walk on Cay(Sk, S)
converges to within � (in L1) of the uniform distribution in 1

2k log k + c′� steps, for some constant c′.

2.6 Review of the group algebra

Recall that an algebra over a field F is a vector space over the field equipped with an additional operation of
multiplication that is bilinear with respect to vector addition. Given a group G, the group algebra F [G] is the
set of all functions f ∶ G → F , each of which is expressed as the following formal sum:

∑

x∈G
f (x) ⋅ x .

Multiplication of two functions is defined as follows:
(

∑

x∈G
f (x) ⋅ x

)(

∑

y∈G
g(y) ⋅ y

)

=
∑

z∈G
ℎ(z) ⋅ z ,

where
ℎ(z) =

∑

w∈G
f (w)g(w−1z) .

In other words, ℎ is the convolution of f and g, denoted by f ∗ g. This defines an algebra of dimension n, the
order of G. Another convenient way to view this algebra is as the following matrix algebra: to each function
f we associate the matrix

R(f ) =
∑

x∈G
f (x)R(x) ,
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where R(x) is the matrix representation of the linear operator associated with the element x ∈ G for the
regular representation of G. Note that R(f ) by definition is a |G| × |G| matrix, such that R(f )y,z = f (yz−1).
In other words,

f = R(f ) ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
0
.
.
.
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(2.4)

Armed with this observation, it is easy to verify the following two properties:
R(f + g) = R(f ) + R(g); R(f ∗ g) = R(f )R(g) . (2.5)

Thus, the matrix algebra generated by the matrices corresponding to the regular representation of G is
isomorphic to the complex group algebra ℂ[G].

2.7 Random walks

Let p be any probability distribution on elements of group G, i.e. p ∶ G → ℝ is a non-negative function that
satisfies ∑x∈G p(x) = 1. Observe that p is an element of the group algebra ℂ[G] and, in particular, R(p)
denotes the corresponding matrix in the associated matrix algebra. For each S ⊆ G, we define the probability
distribution given by the following: pS(x) = 1∕|S| if x ∈ S and otherwise pS(x) = 0. The simple but key
observation is that R(pS) is the probability transition matrix of the random walk on Cay(G,S).

Recalling the machinery developed in previous lectures, let �1,… , �t be the irreducible representations
of G. Let di be the dimension of �i. Then we know that for any element x ∈ G, we can apply a set of unitary
transformations to R(x), called the Fourier transform (w.r.t a predetermined orthonormal basis) to transform
it into the following block diagonal matrix: R(x) =⨁t

i=1 di�i. Thus, under this Fourier transform, R(pS)
gives rise to the following block diagonal matrix:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1(pS)

�2(pS)

�2(pS)

⋱

�t(pS)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where �i(pS) = ∑

x∈G pS(x)�i(x). As always, we assume that our set S is closed under taking inverses. Thus,
R(pS) is symmetric and has real eigenvalues. Further, note that R(pS) is a doubly stochastic matrix. Hence
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its maximal eigenvalue is 1. Let, the eigenvalues be denoted as follows:
1 = �1(pS) ≥ �2(pS) ≥… ≥ �n(pS) .

Let
�(pS) ≡def maxi≥2||

|

�i(pS)
|

|

|

be the second largest eigenvalue. Then, Cay(G, pS) is called an �-expander if �(pS) ≤ �.
Remark 2.7.1. For the Bourgain-Gamburd result about the group SL2(p), they get a 0.999 expander with
high probability when a random set of two elements is chosen.

The quantity 1 − �(p) is called the spectral gap and it is closely related to the notion of combinatorial
expansion in graphs.

2.7.1 Convergence to the uniform distribution

For any probability distribution p, let us look at the function p − u, where u denotes the uniform distribution
over the group G. We claim that the block diagonal matrix corresponding to R(p − u), written in the Fourier
basis, looks as follows:

R(p − u) →FT

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

�2(p)

�2(p)

⋱

�t(p)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

In other words, the only difference between the block diagonal forms of R(p − u) and that of R(p) is in the
top left hand corner, where in the former it is zero and in the latter we had 1. This follows from the fact that
R(p − u) = R(p) − R(u) and the following:
Proposition 2.7.2. For any non-trivial irreducible representation � of G, we have

∑

x∈G
�(x) = 0 .

Proof. Let ℎ = ∑

x∈G �(x). Then, �(y)ℎ = ℎ�(y) = ℎ for all y ∈ G. Applying Schur’s Lemma, we see that
ℎ = �1, where � is some scalar and 1 is the identity matrix. Since � is non-trivial, there exists some z ∈ G
for which �(z) ≠ 1. However, ℎ = �(z)ℎ and, hence, �1 = ��(z). Thus � = 0 implying ℎ = 0.
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This immediately shows R(u) in its block diagonal form has a single non-zero entry at its top left hand
corner and this is equal to 1. Thus, R(p − u) has the block diagonal form claimed in the figure above.

Recall that the operator norm of a matrixA, denoted by ‖A‖ is defined as max
||v||=1 ‖Av‖. For symmetric

matrices, this is equal to the maximum eigenvalue ignoring sign, i.e. maxi |�i(A)|. Hence, noting the block
diagonal form of R(p − u) from above,

‖R(p − u)‖ = �(p)

where �(p) is the spectral gap of R(p).
We define

pl ≡ p ∗ p ∗⋯ ∗ p
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

l

.

Recall, for any function f ,
R(fl) = R(f )l.

It is easy also to verify, using the fact u ∗ p = p ∗ u = u, that
(pl − u) = (p − u)l.

Hence, using (2.4) and (2.5), we obtain

pl − u = R(p − u)l ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
0
.
.
.
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus,
||pl − u|| ≤ ||R(p − u)l|| = �(p)l. (2.6)

2.8 Expanders

Theorem 2.8.1 (Alon-Roichman). Let S = {X1,… , Xk}, where each Xi is chosen independently and
uniformly at random from the group G. Then,

ℙ
[

�(pS) >
1
2

]

≤ |G| ⋅ exp(−k).

Proof. For every element x ∈ G, define

R′(x) ≡ R
(

x + x−1
2

− u
)

Then,
R(pS − u) =

1
|S|

∑

x∈S
R′(x).
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We note the following properties of R′(x):
1. ||R′(x)|| ≤ 1. This is because R(x) is a permutation matrix, by definition.
2. When we average, Ex∈G R′(x) = 0. This is because, ∑x∈G R(x) = J , where J is the all 1 matrix.

Thus, Ex∈G R(x) = J∕|G| = R(u) which implies the claim.
3. We are sampling |S| = k such random matrices. Their average is zero and each of their norm is

bounded by 1. We would like to argue that with very high probability, the norm of the average of k
such random matrices is greater than half.

4. If these matrices were of dimension 1, then the above is true via the classical Chernoff-Hoeffding
bound. What we are therefore looking for is a generalization of this inequality for matrix valued random
variables.

Luckily, such a generalization does exist:
Theorem 2.8.2 (Alswhede-Winter Inequality [?]). Let R be any real symmetric matrix-valued random
variable satisfying the following: ||R|| ≤ 1 and E

[

R
]

= 0. If R1,… , Rk are independent random variables
each identical to R, then

ℙ
[

|

|

|

|

|

|

1
k

k
∑

i=1
Ri
|

|

|

|

|

|

≥ 
]

≤ n ⋅ exp(−2k∕2) .

The proof of the Alon-Roichman Theorem now immediately follows from the Alswhede-Winter Inequality.
Remark 2.8.3. The above can be derandomized via the method of conditional expectations: One can find in
polynomial time O(log |G|) generators with respect to which the given group G expands.

Note that, unlike the Chernoff bound, there is an extra factor of n in the Alswhede-Winter Inequality.
This is unavoidable in general as can be seen by considering R that is restricted to take values from diagonal
matrices. The best one can do, in this case, is to take a union bound for n different sums of scalar valued
random variables and bound each sum by the Chernoff bound. However, Alswhede-Winter can be perhaps
strengthened in some interesting situations. For instance, Avi conjectures the following:
Conjecture 2.8.4. Let G be a group and � be any one of its irreducible non-trivial representations. Let
X1,… , Xk be k random elements chosen independently and uniformly from G. Then,

ℙ
[

|

|

|

|

|

|

|

|

1
k

k
∑

i=1

�(Xi) + �(X−1
i )

2
|

|

|

|

|

|

|

|

> 1
2

]

≤ exp(−Ω(k)).

Indeed, it is not known if the above holds for the more general case, when the random matrices are
selected uniformly at random from the set of unitary matrices. If such a strengthened inequality does exist,
then one can apply it to each irreducible representation of G individually. This gives rise to a gain when the
dimensions of the irreducible representation are large. However, when G is abelian this does not result in any
improvement and in fact Avi gives the following exercise:

Exercise: If G is abelian and Cay(G,S) is an expander show that |S| = Ω(log |G|).
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2.8.1 Solvable groups

Recall that the commutator subgroup of G, denoted by [G ∶ G
], is defined to be the subgroup generated

by the commutators of G, i.e. ⟨{aba−1b−1 ∶ a, b ∈ G}
⟩. If G is abelian then [

G ∶ G
]

= 1. It is not
hard to verify that [G ∶ G

] is a normal subgroup of G and that the quotient group G∕[G ∶ G
] is abelian.

Furthermore, every normal subgroup having this property contains the commutator subgroup. Consider the
following series:

G = G0 ⊇ G1 ⊇⋯ ⊇ Gt
where Gi+1 =

[

Gi ∶ Gi
]. We say G is l-step solvable if Gl = 1. G is called solvable if there exists an l

such that it is l-step solvable. In contrast, G is called simple if [G ∶ G
]

= G, i.e. the group does not move
at all. Hence, finite simple groups are finite and very non-abelian.
Theorem 2.8.5 (Lubotzky-Weiss). If G is l-step solvable and Cay(G,S) is expanding then

|S| ≥ log log⋯⋯ log
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

l

|G| .

Theorem 2.8.6 (Meshulam-Wigderson). For every l, there exists an l-step solvable group G with an
expanding generating set S such that

|S| ≤ log log⋯⋯ log
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

l

|G| .

The above shows that the lower bound of Lubotzky and Weiss on the size of the generating set can be
tight for some solvable groups. However, it is known to be not tight in general. For example, consider the
affine group below:

Ap ≡def
{

f ∶ x → ax + b ∶ a ≠ 0, a, b ∈ Fp
}

.

The group operation is function composition. Then, Ap = Fp ⋊ F ∗p is a semi-direct product of Fp and F ∗p and
is 2-step solvable. However, it requires Ω(log p) generators to expand.

2.8.2 Stories

Lubotzky shows the following corollary to Selberg’s 3
16 th Theorem: consider the following set S of generators

for SL2(p):
S =

{(

1 1
0 1

)

,
(

1 −1
0 1

)

,
(

0 1
−1 0

)}

.

The set S also generates SL2(ℤ). Selberg shows that SL2(ℤ)is expanding with respect to S. Consequently, the
expansion of all Cayley graphs Cay(SL2(p), S) for all p, follows from the expansion of one “mother group.”

The first group known to be expanding was SLn(p) for n ≥ 3. In a recent, capstone result, all nonabelian
finite simple groups were shown to admit a constant number of generators that yield a expander Cayley graph.
Theorem 2.8.7 (Nikolov and Kassabov). Every finite simple group is expanding with a constant number of
generators.
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Although we have talked about expansion in Cayley graphs, the arguments extend easily to a more general
class of graphs called Schreier graphs. A group G acts on a set Ω if every element x ∈ G is associated with a
map Πx ∶ Ω→ Ω so that for each x, y ∈ G, Πx◦Πy = Πxy and, furthermore, Πe is the identity map when e is
the group identity. It is easy to verify then that each Πx is a bijection as it is invertible. Let Π = {Πx | x ∈ G}.
Note that G acts on itself in an obvious way. Just as this action of G gives rise to the regular representation,
any action of G on Ω gives rise to a |Ω|-dimensional representation of G. Abusing notation, let us denote this
representation Π. Given any subset S ⊆ G, we denote by Sch(G,Π,Ω, S) the Schreier graph whose set of
vertices is Ω and whose edges are all pairs u, v ∈ Ω for which there is an s ∈ S so that Πsu = v. As before,
this graph is not directed as S is closed under inverse.

It is simple to verify that the transition matrix of the random walk on Sch(G,Π,Ω, S) is equal to
∑

x∈G Π(x)pS(x). Just as before for Cayley graphs, one can apply the Fourier transform to convert this
into block diagonal form where each block belongs to a copy of an irreducible representation �i of G, i.e.
∑

x∈G �i(x)pS(x). Hence, one gets the following immediately:
Theorem 2.8.8. If Cay(G,S) is an expander, then Sch(G,Π,Ω, S) is also an expander.

Though the above is a simple result, it is quite useful. For example, using it we prove next that the
following graph is an expander: the set of vertices of the graph is Fp, where p is any prime. Every x ∈ F ∗p is
connected to x + 1, x − 1 and −1∕x. Finally, the vertex 0 is connected to 1 and −1.

We do this in two steps. First, consider the natural action of SL2(Fp) on the affine space F 2p given by
(

a b
c d

)(

x
y

)

=
(

ax + by
cx + dy

)

.

This induces an action on the set of projective lines ℙ2(Fp). Recall that this set has p finite lines that
we identify with Fp and a single point at infinity. The action on this set of finite lines by elements of the
generating set S can therefore be written as follows:

(

1 1
0 1

)

x → x + 1;
(

1 −1
0 1

)

x→ x − 1; and
(

0 1
−1 0

)

x→
−1
x
.

Thus, the element 0, under this action, maps to 1, −1 and the point at infinity. It is easy to verify that the point
at infinity maps to itself by two of the elements of S and to the point 0 by the other element of S. Thus, the
Schreier graph of this action on projective lines by S is a graph on p + 1 vertices, where we view the first p
vertices as points from Fp and the p + 1th vertex is the point at infinity. This Schreier graph is an expander as
Cay(SL2(p), S) is an expander. If we remove the p + 1th vertex from this graph and delete the three edges
incident to it, we get exactly our desired graph on Fp. Thus, the desired graph is also an expander.

50



LECTURE 8
Lecturer: Avi Wigderson Scribe: Valentine Kabanets and Antonina Kolokolova

First, let us clarify some things from the previous lecture.
• Mixing time in terms of the second largest eigenvalue: We want to argue that ‖pl − u‖ ≤ �(p)l.
To see this, observe that for any function f , the matrix R(f ) contains (the truth table of) f as its first
column. Hence,

pl − u = R(pl − u) ⋅

⎛

⎜

⎜

⎜

⎝

1
0
⋮
0

⎞

⎟

⎟

⎟

⎠

.

Taking the norms on both sides, we have ‖pl − u‖ ≤ ‖R(pl − u)‖ ≤ �(p)l.
• Schreier graph: Let G be a group and S ⊆ G. Let � be the G-action on some setΩ, i.e., � ∶ G → SΩ

is a homomorphism of G in to the group of permutations of the set Ω. By treating each permutation as
its associated permutation matrix, we may extend this to a homomorphism � ∶ G → GL

|Ω|(ℂ). Let
Irrep(G) = {�i,… , �t} be the set of all irreducible representations of G. Then � =⨁t

i=1mi�i. Thus,spec{Sch(G, �,Ω;S)} ≤ spec{Cay(G;S)} (where spec denotes the spectrum of the matrix); we will
see the same matrices �i(Ps) in both cases, but possibly with different multiplicities, thus the same
eigenvalues appear, perhaps with different multiplicities. In particular, if Cay(G;S) is an expander,
then so is Sch(G, �,Ω;S). Note: If S is a generating set, the trivial representation occurs once and the
graph is connected; otherwise, we get a disconnected graph.

2.9 Fast matrix multiplication

Let A,B be k × k matrices over ℂ. We want to compute A ⋅ B = C . Let ! be the least real number such that
there exists a matrix multiplication algorithm that uses only n!+� multiplications for every � > 0. (Note: It is
always possible to make the number of additions no more than the number of multiplications plus a constant;
thus it’s sufficient to bound the number of multiplications only.)

Trivially, ! ≤ 3. Strassen [?] showed that ! ≤ log2 7. The currently best bound is due to Coppersmith
and Winograd [?]: ! ≤ 2.38.... In 2003, Cohn and Umans [6] suggested a new approach, based on group
representation theory. The initial algorithm wasn’t even better than k3 but, in later work, Cohn, Kleinberg,
Szegedy, and Umans [?] improved it to ! ≤ 2.38..., matching the Coppersmith-Winograd [?] bound.

The Cohn-Umans approach relies on finding groups with specific properties. Let G be a group, and let
H1,H2,H3 ≤ G be three subgroups. The group G and subgroups H1,H2,H3 satisfy the triple-product
property if the following holds:

∀ℎ1 ∈ H1, ℎ2 ∈ H2, ℎ3 ∈ H3 ℎ1ℎ2ℎ3 = 1⇒ ℎ1 = ℎ2 = ℎ3 = 1 .

Assume, without loss of generality, that |Hi| = k. We treat the k × k matrices A and B as being indexed
by the elements inH1 ×H2 andH2 ×H3, respectively. The idea is to think of A,B as elements a, b of the
group algebra. Then the convolution a ∗ b will correspond to the matrix multiplication A ⋅ B if we have the
triple property.
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More precisely, let ℂ[G] be the group algebra over ℂ. Associate with the matrix AH1×H2
the element

a =
∑

Aℎ1ℎ2(ℎ1ℎ
−1
2 ) of ℂ[G]. Similarly, associate BH2×H3

with b = ∑

Bℎ2ℎ3(ℎ2ℎ3)
−1. Let C = A ⋅ B. We

will show that the convolution a ∗ b(ℎ1ℎ−13 ) = Cℎ1ℎ3 . We have:
a ∗ b(ℎ1ℎ−13 ) = Σℎ̂1,ℎ2,ℎ̂2,ℎ̂3Aℎ̂1ℎ2Bℎ̂2ℎ̂3 , (2.7)

where the summation is over those indices satisfying the condition ℎ̂1ℎ−12 ℎ̂2ℎ̂3 = ℎ1ℎ−13 . The latter condition
can be equivalently written as

(ℎ−11 ℎ̂1)
⏟⏟⏟

H1

(ℎ−12 ℎ̂2)
⏟⏟⏟

H2

(ℎ̂3
−1ℎ3)

⏟⏞⏟⏞⏟
H3

= 1 ,

which implies, by the triple property, that ℎ1 = ℎ̂1, ℎ2 = ℎ̂2, ℎ3 = ℎ̂3. Thus, the right-hand side of
equation (2.7) is equal to∑ℎ2

Aℎ1ℎ2Bℎ2ℎ3 = Cℎ1ℎ3 , as required.We know that R(a ∗ b) = R(a)R(b). To compute the matrix product R(a)R(b), we first apply the Fourier
transform to both R(a) and R(b), resulting in block-diagonal matrices; then we multiply these block-diagonal
matrices; finally, we apply the inverse Fourier transform to recover R(a ∗ b):

�i(a)

⋱
⋅

�i(b)

⋱
=

�i(c)

⋱
FT−1
⃖⃖⃖⃖⃖⃖⃖⃖⃗

We may carry out the Fourier transform once, in advance, for a constant size (depending on k) matrix.
Then this strategy can be applied recursively.

Cost of this algorithm: To compute the matrix products �i(a) ⋅ �i(b) = �i(c) over all t irreducible
representation �1,… , �t, we need Σti=1d!i ≤ n ⋅ d!−2max (where n = |G| and we used the fact that∑t

i=1 d
2
i = n).

Note that k! ≤
∑t
i=1 d

!
i . If there is some � such that k� > Σd�i then ! ≤ �. If there were a subgroup of size

k >
√

n, then we would get ! = 2, but getting subgroups of that size is impossible. Thus we wish to find a
group with subgroups satisfying the triple-product property that are as large as possible. In the original paper,
there are interesting examples with k close to√n. In their examples, including k = 2.38..., the dimensions di
are small: 1 or 2. If a group is abelian, this approach cannot beat ! = 3.

2.10 The Fourier transform over general groups

Suppose we have a group G, with Irrep(G) = {�1,… , �t} of dimensions d1,… , dt. Given a function
f ∶ G → F , we define its Fourier transform at �i as

f̂ (�i) = Ex f (x)�i(x) ;

observe that this is matrix-valued. The inverse Fourier transform is given by the following formula:

f (y) =
t

∑

i=1
di tr[f̂ (�i)�i(y)−1] .

Let us prove this formula.

52



Proof. Expanding the right-hand side and using the linearity of expectation, we have
t

∑

i=1
di tr[Ex f (x)�i(xy−1)] = Ex

t
∑

i=1
di tr[f (x)�i(xy−1)] = Ex f (x)

t
∑

i=1
di tr[�i(xy−1)] . (2.8)

Observe that
t

∑

i=1
di tr[�i(xy−1)] = tr[R(xy−1)] =

{

n xy−1 = 1,
0 otherwise.

Hence, the right hand-side of equation (2.8) is equal to (1∕n)nf (y) = f (y) .
We also have the Parseval identity:

n‖f‖22 = tr[R(f )
tR(f )] ,

where ‖f‖2 = ∑

x |f (x)|2, and t denotes the transpose.

2.11 Using the multiplicity of eigenvalues: Gowers’ trick

For a group G with irreps �i’s of dimensions di’s, let m(G) = min di, for i ≠ 1. Note that the second largest
eigenvalue of the regular representation of G has multiplicity at least m(G). This can be used to get nontrivial
upper bounds on the size of subgroups of G, to bound mixing time in G, etc.

The first use of this idea is due to Sarnak and Xue [?] (see also the book by Davidoff, Sarnak, and
Valette [?]). It was also used by Bourgain and Gamburd [?, ?] and other papers with different motivations, in
particular, by Gowers [?] and by Babai, Nikolov, and Pyber [?].

We will prove the following.
Theorem 2.11.1. Let p and q be arbitrary probability distributions onG, and let u be the uniform distribution.
Then

‖p ∗ q − u‖2 ≤ n
m(G)

‖p − u‖2 ⋅ ‖q − u‖2 .

Remark 2.11.2. In abelian groups,m(G) = 1. In this case, can use Cauchy-Schwartz for the proof. (Exercise!)
Gowers [?] was interested in the following question for SL2(p). SupposeX, Y ,Z are subsets of the group.

Can one infer the existence of solutions to the equation xy = z, for x ∈ X, y ∈ Y , and z ∈ Z, from the sizes
of the sets? The answer is yes: If |X| = |Y | = |Z| = n.99, then |XY | > n − n.99, and hence a solution exists.

Here are some examples of groups G and the corresponding m(G).
m(G) |G|

G abelian m(G) = 1
G = Altk (alternating) m(G) = k − 1 k!

G = SL2(p) p p3

Figure 2.1: Examples of groups G and values m(G).
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Quasirandom groups are those groups where m(G) is large. One can use Theorem 2.11.1 to get upper
bounds on the size of subgroups of a given group. SupposeH ≤ G, take X = Y = H . Then take p and q to
be uniform onH . Using

‖p ∗ q − u‖2 ≤ n
m(G)

‖p − u‖2 ⋅ ‖q − u‖2 ,

one easily gets
1

|H|

≤ n
m(G)

⋅
1

|H|

⋅
1

|H|

so |H| ≤ n
m(G) . In particular, this shows that quasirandom groups cannot have large subgroups.

Proof of Theorem 2.11.1. What we want to prove can equivalently be written as follows:

n‖p ∗ q − u‖2 ≤ 1
m(G)

(n‖p − u‖2) ⋅ (n‖q − u‖2) . (2.9)

Denote p′ = p − u and q′ = q − u. Observe that (p − u) ∗ (q − u) = p ∗ q − u. Using Parseval’s identity (see
the previous section) and the fact that R(f ∗ g) = R(f )R(g), we can write the left-hand side of equation (2.9)
as follows:

tr[(R(p′)R(q′))t(R(p′)R(q′))] = tr[R(q′)tR(p′)tR(p′)R(q′)
= tr[(R(p′)tR(p′))(R(q′)tR(q′))] ,

where for the second equality we used the fact that tr[AB] = tr[BA] for any matrices A and B. We will also
need the following
Fact 2.11.3. If A and B are positive semidefinite, then tr(AB) ≤ ‖A‖ ⋅ tr(B).

In our case, we have matrices of the form AtA, which are positive semidefinite, and so, applying the above
fact, we can continue

tr[R(p′)tR(p′)R(q′)tR(q′)] ≤ ‖R(p′)tR(p′)‖ ⋅ tr[R(q′)tR(q′)]

≤ 1
m(G)

tr[R(p′)tR(p′)] ⋅ tr[R(q′)tR(q′)] ,

where for the last inequality we used the observation that each nonzero eigenvalue of R(p′) has multiplicity at
least m(G) (by the definition of R(p′) and m(G)), and hence,

tr[R(p′)tR(p′)] ≥ m(G) ⋅ ‖R(p′)tR(p′)‖ .

Applying Parseval’s identity, we get the right-hand side of equation (2.9), as required.
Exercise: If p is a class function, this multiplicity can be improved to m(G)2.
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LECTURE 10
Lecturer: Avi Wigderson Scribe: Pavel Pudlák

2.12 Lubotzky’s 1-2-3 question

In 1979 Margulis gave the first explicit definition of expanders. The motivation came from Pinsker’s research
into error-correcting codes. A few years before Kazhdan had defined Property (T). Lubotzky then observed
that a deep result of Selberg concerning SL2(ℤ) implies that the infinite group SL2(ℤ) is expanding: it follows
that if SL2(ℤ) is expanding with a set S, then, for all p, Cay(SL2(p), S) is expanding.
Question 2.12.1 (Lubotzky’s 1-2-3 question). Denote by Sa the set

{(

1 ±a
0 1

)

,
(

1 0
±a 1

)}

.

1. Then ⟨S1⟩ = SL2(ℤ) and hence can be used to generate expanders.
2. The set ⟨S2⟩ generates a subgroup of finite index in SL2(ℤ) and hence also suffices for expansion.
3. ⟨S3⟩ generates a subgroup of infinite index. Does it give expanders on SL2(p) ?4

Theorem 2.12.2 (Bourgain-Gamburd [?]). If x, y ∈ SL2(p) such that the girth of Cay(SL2(p), {x, y}) is no
more than � log |SL2(p)|, then Cay(SL2(p), {x, y}) is an expander.

Remark 2.12.3. The set Sa generates a free subgroup of SL2(ℤ) for a ≥ 2; it follows that the graph
Cay(SL2(p), Sa) satisfies the condition of the theorem. In particular, the theorem answers Lubotzky’s question.
Moreover, random elements {x, y} suffice!

To prove that Sa generates a free group is not difficult.To see that the resulting graph has large girth,
observe that a nontrivial product of matrices from Sa may be 0 only if it has large enough elements to be
divisible by p. It follows that the product has to be of length Ω(log p). The result for random elements uses
the same argument, except that one has to combine it with the Schwartz-Zippel lemma. We outline the proof
below.
Proof sketch of the Bourgain-Gamburd theorem. Let P be the distribution given by the set {x, x−1, y, y−1}.
By Parseval’s equality (Lemma 2.4.4)

n‖P l − U‖22 = tr[R(P
l − U )tR(P l − U )] =

n
∑

j=2
�j(P )2l .

Thus an upper bound on n‖P l − U‖22 yields an upper bound on �2(P ), the second eigenvalue of the Caleygraph. Namely, if we could upper-bound it by 1∕n� , � > 0 for l = O(log n), we would get �(P ) < c < 1. For
this we would need ‖P l‖22 ≤ 1∕n + 1∕n1+�. But this seems too difficult. Therefore Bourgain and Gamburd

4Note that
(

1 −a
0 1

)

=
(

1 +a
0 1

)−1

.
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use an observation of Sarnak and Xue [?] (appearing also in Davidoff-Sarnak-Valette [?]) that �(P ) occurs
with multiplicity m, roughly n1∕3. Then we have

m�(P )2l ≤
n
∑

j=2
�j(P )2l .

Thus it suffices to prove a bound
‖P l − U‖22 ≤

1
n1−�

, (2.10)
for � such that m ≥ n2� (so � ≈ 1∕6). This will give us

�(P )2l ≤ n
mn1−�

= 1
n�
,

whence �(P ) < c < 1.
First we explain, using group representation theory, why the multiplicity is high.

n‖P l − U‖22 = tr[R(P
l − U )tR(P l − U )] =

t
∑

i=1
di tr[�(P l − U )t�(P l − U )] ,

where the sum is over all irreducible representations �i of the group and di are their multiplicities. The last
equality follows from the fact that n‖P l − U‖22 is invariant under the group actions. If we know that di ≥ m
for all i > 1, then the multiplicity of �(P ) is at least m.

To compute the upper bound on ‖P l − U‖22, we first use the assumption about the girth of the graph
Cay(SL2(p), {x, y}). This gives (computation omitted)

‖P l‖22 ≤
1
n�
,

for some � > 0 and l0 = O(log |SL2(p)|). To get the bound needed in (2.10), we apply Corollary 1.11.2 of
Helfgott’s theorem. According to that result, for some l = O(l0), we have either

‖P l‖22 ≤
1

n1−�∕2

or P is concentrated on some proper subgroup H (P (H) ≥ 1∕n1−�′). Proving that the second possibility
cannot take place requires an argument that is omitted.
Example 2.12.4. Here is another example where one needs a better analysis of the convergence to uniform
distribution. Diaconis and Shashiani [8] studied the problem of “shuffling cards.” Given a deck of k cards,
we randomly pick two consecutive cards and switch them. This can be represented as a random walk on
Cay(Sk, {(1, 2), (2, 3),… , (k − 1, k)}). Observe that

�(Q) = 1 − 1
k
,

where Q denotes the uniform distribution on the permutations {(1, 2), (2, 3),… , (k − 1, k)}. Using a trivial
analysis based on the leading eigenvalue, one can show that O(k2 log k) suffice to get close to the uniform
distribution on all k! permutations. Diaconis and Shashiani proved that O(k log k) steps in fact suffice to get
uniform mixing.
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2.13 Kazhdan’s constant

Definition 2.13.1. Let S be a generating subset of a group G. Let � be a unitary representation of G that
does not contain the trivial representation.5 If for � > 0,

∀v⃗ ≠ 0⃗,∃x ∈ S ‖�(x)v⃗ − v⃗‖ ≥ �‖v⃗‖ ,

then the Kazhdan constant KG(S) ≥ �.
Suppose KG(S) ≥ � > 0. Then Cay(G,S) is a combinatorial expander. More precisely

Proposition 2.13.2. If KG(S) ≥ �, then for all T ⊆ G of size at least n∕2,

∃x ∈ S |Tx △ T | ≥ �
√

2
|T | .

Sketch of proof. The inequality is equivalent to
‖R(x)1⃗T − 1⃗T ‖ ≥ �

√

2
‖1⃗T ‖ .

We would be done if R did not contain the trivial representation. If we restricted our attention to vectors
v⃗ ⊥ 1⃗, the stement would similarly follow. Write 1⃗T = �1⃗ + v⃗, with v⃗ ⊥ 1⃗. Thus v⃗ is the part of 1⃗T that
projects on the subspace of the nontrivial irreducible representations. Since T ≤ n∕2, ‖v⃗‖ ≥ ‖1⃗T ‖∕

√

2. We
can replace 1⃗T by v⃗ (loosing the factor of 1∕√2), because R(x)1⃗ = 1⃗.

Note that for |S| = O(1), KG(S) and 1 − �(PS) are related upto squares.

2.14 Dimension expanders

Definition 2.14.1. A dimension expander on F d is a family of linear operators T1,… , Tk ∶ F d → F d such
that for every subspace V ⊆ F d of dimension less than d∕2,

∃i dim(TiV ∩ V ) ≤ (1 − �) dimV .

Note that a random set of constant size of linear operators is a dimension expander.
Conjecture 2.14.2 (Wigderson). If Cay(G;S) is expanding and � is an irreducible representation of G, then
{�(x) ∶ x ∈ S} is a dimension expander.
Theorem 2.14.3 (Lubotzky-Zelmanov [14]). The conjecture is true for ℂ.

Explicit dimension expanders of constant degree over every field have been constructed by Bourgain (see
the Dvir-Wigderson paper [?]).

5This means that the decomposition of � into irreducible representations does not contain the trivial representation. Equivalently,
no nozero vector is fixed by all the group actions.
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2.15 More on expanders

Theorem 2.15.1 (Lubotzky-Weiss [13]). If G is l-step solvable and Cay(G;S) is an expander, then |S| ≥
log(l) |G|.

Theorem 2.15.2 (Meshulam-Wigderson [15]). There exists G and S such that G is l-step solvable and
Cay(G;S) is an expander and |S| ≤ log(l∕2) |G|.

Lubotzky and Weiss asked if expansion is a group property. Namely: does the the fact that Cay(G;S) is
an expander depend only on G, not on the choice of S?6

This question was answered negatively by Alon, Lubotzky and Wigderson. They used the semidirect
product of groups and the fact that the Caley graphs of semidirect products are essentially the zig-zag products
of the Caley graphs of the components. (The zig-zag product was introduced by Reingold, Vadhan and
Wigderson [?].)

Outline of the proof of the Meshulam-Wigderson Theorem. Construct groups
G1,… , Gl,… and sets S1,… , Sl,…

as follows:
Gl+1 = Gl ⋉ Fpl [Gl] .

I.e., take the semidirect product with the additive group of the group algebra FPl [Gl]. (The semidirect product
is defined by (g, v)(ℎ, u) = (gℎ, vℎ + u), where vℎ is v with the coordinates permuted by ℎ.) Here pl are
distinct primes. (We need to ensure that pl does not divide |Gl|.) The orders of the groups nl = |Gl| satisfy
the recursion nl+1 = nlpnll ; for the sets we will have |Sl+1| ≤ |Sl|10.

The set Sl+1 is constructed by taking the union of the orbits (with respect to the action of the group Gl
on Fpl [Gl]) of a certain number randomly chosen set of elements of Fpl [Gl].A crucial step in the analysis of this construction is an estimate on the number of irreducible representations
of small dimensions of F [G]. Let

F [G] =
t

⨁

i=1
Mdi(F )

and define
�(d) = |{i ∶ di ≤ d}| .

What we need is an exponential upper bound on �(d). A general upper bound was proved by de la Harpe,
Robertson and Vallete:
Theorem 2.15.3. If kG(S) ≥ �, then for all d, �(d) ≤ exp(d2).

Because this is not enough they prove a better bound for a class of groups:
Theorem 2.15.4. If G is a monomial group and kG(S) ≥ �, then for all d, �(d) ≤ exp(d).

A group is monomial if all irreducible representation consist of permutation matrices. They conjecture,
however, that their bound holds true in general. Concerning monomial groups they prove:
Theorem 2.15.5. If G is monomial, then G⋉ F [G] is monomial too.

Thus they can start with any abelian group G1.
6for sets of a given size
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