Arithmetic Complexity - A Survey

Lecturer: Avi Wigderson * Scribe: Oded Regev |
February 7, 2002

1 Introduction

We describe the state of the art in the computational complexity of natural polynomials,
e.g. symmetric functions, determinant, matrix multiplication. The model we consider is
that of arithmetic circuits over infinite fields which is believed to be easier to handle than
that of finite fields or of the Boolean ring. We present some techniques, results and open
problems. The interested reader is referred to a book by Biirgisser et al. [4] and to two
survey papers [24, 28].

2 Preliminaries and Upper Bounds

We only consider computation of polynomials over fields F of ch(F) = 0 which will be
either the rationals Q or the complex numbers C. Before we formally define the model, let
us begin with a simple example. Assume we want to compute the univariate polynomial
z? Let S(z%) be the minimal size of such a computation. Then, S(z%) ~ logd because
we can multiply x by itself and then multiply the result by itself and so on. After |logd|
steps we have all the polynomials z, z2, 2%, . .., 22"** and now we can multiply a subset
of them in order to reach xz¢. The total number of steps is at most 2logd, or in other

words, S(z¢) < 2logd.

Definition 2.1 Given n input polynomials x1,Zs,...%,, a computation (or a circuit)
of size s of the k polynomials y1,ya, .. .Yk 1S a Sequence gi, g, ..., qs where g; = x; for
1=1,....,n and gp_k—14; =y; fort=1,..., k. The polynomial g; for k > n is the result
of one of the following operations over two polynomials g;, g; where i < j < k. It can
either be a linear combination g, = og; + Bg; for a, B € F or a multiplication g = g; - g;-
We denote by S(P) the size of the shortest calculation of a set of polynomials P.

*Institute for Advanced Study, Princeton, NJ. E-Mail: avi@ias.edu.
tInstitute for Advanced Study, Princeton, NJ. E-Mail: odedr@ias.edu.



Note that we define the size as the number of operations and we are not interested in
the size of the polynomials themselves.

Definition 2.2 The depth of a computation is the longest path between an input and an
output in the tree underlying the computation. We denote by D(P) the minimal depth of
a computation of P.

The measure of depth is interesting since a low depth indicates a highly parallel com-
putation. In the computation of the univariate polynomial ¢ described above, the depth
is around logd and therefore D(z?) < O(logd). By considering the degree of the inter-
mediate polynomials, it can be seen that both the size and the depth of a computation
of z¢ cannot be much lower than log d.

Open Problem 2.3 What is S(II¢, (z — 1)) ?

It can be seen that if S(IIL, (z — 1)) = (logd)°™") then factoring integers is in P/poly.

Linear Operators: We now consider the computation of Az where A is a fixed n xn
matrix and Z = (z1,2,...,%,). That is, we want to find y = Az, or, y; = (a;,T) =
>, aijzj. It can be shown that there exists A such that S(A) > c¢-n® (actually, almost
all matrices A satisfy this property). However,

Open Problem 2.4 Find an explicit matriz A such that S(A) > n (even S(A) > 3n is
interesting).

For certain matrices this computation is known to be easier. For example, consider the
Discrete Fourier Transform matrix:

1 w w?
DFT =| 1 w? w*

where w = €™/ in the nth complex root. Here, S(DFT) < O(nlogn) by using the
computation known as the Fast Fourier Transform [5]. It was shown by Morgenstern [14]
that this is tight assuming that the addition operations in the computation are limited
to gx = ag; + Bg; with [, 8] < 1.

The DFT matrix is a special case of the Vandermonde matrix:

1 2z 22
V(z) = 1 2 zg
where z = (z1,22,...,2,)- The Vandermonde transformation can be computed in

O(nlog® n) operations [1, 3, 4]. Shoup and Smolensky [19] showed that at least Q(n logn)

2



operations are required to compute the Vandermonde matrix with the assumption that the
computation is of depth O(logn) (a similar lower bound applies to any poly-logarithmic
depth circuit). One should note that their lower bound assumes that the values 21, ..., 2z,
are algebraically independent. That is, the circuit is assumed not to use any relations
between the values zy, ..., z,. Notice that a trivial 2(n?) lower bound holds if the matrix
contains n? algebraically independent values. Nevertheless, their result is interesting be-
cause they show an Q(nlogn) lower bound with only n algebraically independent values.

Open Problem 2.5 Show that S(V (Z)) = Q(nlogn) (with no assumption on the depth).

Multiplication of Polynomials: Consider two polynomials z = z(t) = Y, z;t’
and y = y(t) = >, y;t* given as a sequence of coefficients zo,z1,. .., 4, Yo, Y1, - - - » Yd
where d denotes the degree. Adding the two polynomial can be done with exactly
d + 1 addition operations, S(z +y) = d + 1. But what about computing the multi-
plication zy ? It can be done with d? operations by computing each coefficient sepa-
rately. We can improve it as follows. Choose any 2d + 1 values ag, ..., asq and calculate
z(ag), - - -, x(a24),y(ao), - - -,y(azqs). By performing 2d + 1 multiplications, we obtain an
evaluation of x - y in these 2d + 1 values, (z - y)(a;) = z(a;) - y(a;). Now, since z -y is
a polynomial of degree 2d, we can interpolate x - y from its evaluation in 2d + 1 values.
That is, finding each coeflicient requires the addition of the 2d + 1 evaluations with an
appropriate choice of coefficients.

The computation described above is a three step process. First, we changed the repre-
sentation of the polynomials x and y. Then we multiplied them and finally we returned
to the original coefficient representation. Computing the multiplication in the second
step is very fast, only 2d + 1 multiplications. Changing the representations, however,
can take O(d?) operations because each evaluation operation requires d operations. This
can be improved by choosing the points a; = €2/(24+1) a5 our evaluation points. Now,
changing the representation takes only dlogd by using the Fast Fourier Transform and
we conclude that S(z - y) < dlogd.

Matrix Multiplication: Given two nxn matrices, X, Y, what is S(X-Y)? Obviously,
the product of two matrices can be computed in n® steps. After many attempts to show
that n? is optimal had failed, Strassen [21] showed a more efficient way of calculating the
product. The idea is the following. Given two 2 x 2 matrices

a b Ty
c d z w )’
the multiplication of them can be computed with 7 multiplications instead of 8 (though at
the cost of more additions). The same method can be applied recursively by representing
n

each n x n matrix as four 2 x % matrix. The resulting computation is of size O(n'#27) <

3



O(n?#). Currently, the best bound is O(n?3) (due to Coppersmith and Winograd [6]).

Open Problem 2.6 What is the best bound on the computation of matriz multiplication?
Is it O(n?)?

Direct Sum: An interesting corollary of the improved matrix multiplication computa-
tion is the following. Given n vectors z!, 72, ..., 7" and a fixed n x n matrix A, we want to
compute Az!,..., Az". By performing each calculation separately using the computation
described earlier we obtain an O(n?) computation. Notice however that this computation
is actually a matrix multiplication and can therefore be performed using only S(X -Y)
arithmetic operations. Therefore, the cost of performing n identical computations on n
different inputs is less than n times the cost of performing just one computation. In other
words, the “direct sum” condition fails for arithmetic circuits.

Verification of Matrix Multiplication: A related problem is the following ‘decision’
problem: given X,Y and Z, does Z equal X -Y 7 It is not known whether this problem
is easier. With the use of randomization, however, this decision problem can be solved
with high probability in O(n?) [7]. The details of the proof and the following two simple
exercises are left to the reader.

Exercise 2.7 Show that squaring a matriz is as hard as multiplying two matrices.

Exercise 2.8 Show that S(X1-Xs-...- Xg) < S(X-Y)-d and S(X%) < S(X-Y)-logd.

Determinant: Computing the determinant of a matrix can be performed in O(n?)
arithmetic steps. The idea is to use a Gaussian elimination which brings the matrix to a
lower triangular form without changing its determinant. Computing the determinant of
a lower triangular form consists of simply multiplying the elements of the diagonal. The
Gaussian elimination should be done without divisions since division is not an elementary
operation. The details are left to the reader as an exercise. We can also use the following
result of Strassen:

Theorem 2.9 ([23]) Any computation that uses divisions can be transformed into a
computation that does not use divisions with a polynomial increase in size.

The best known computation of the determinant is based on matrix multiplication and
has size S(X -Y) [27].

Another interesting aspect of computing the determinant is the shortest depth of the
computation. Recall that the depth is the longest path from an input to an output. By
using the method outlined above, the depth is D(DET,) < O(n?). The best known
result is that D(DET;,) < (logn)? [9, 26]. Moreover, this computation is still done with
S(X -Y) arithmetic operations.



This result is a special case of a more general result that relates the depth of computing
any polynomial to its degree:

Theorem 2.10 ([26]) Any polynomial size circuit that computes a multivariate polyno-
mial f can be transformed into an equivalent circuit of depth at most (log S(f))-log(degf).

For example, this result translates to D(DET,) < O((logn)?) since the determinant is a
polynomial of degree n and S(DET,) is polynomial. A similar relation is not believed to
hold in the model of computation over finite fields.

3 Lower Bounds
3.1 Restricted Models of Computation

Monotone Circuits: Many lower bounds for arithmetic circuit complexity are based
on some assumptions that restrict the power of the computation. For example, we have
already mentioned that not allowing divisions does not make the computation much
longer. We might also consider monotone computations. These are computations that
are not allowed to use negative coefficients (this makes sense when F = Q or F = R). That
is, the addition operation is only gy = ag; + Bg; where «, 8 are two positive reals. Note
that monotone computations are limited to polynomials whose coefficients are positive.
Exponential lower bounds are known in the model of monotone circuits for some explicit
functions such as the permanent of a matrix. Namely, Jerrum and Snir [10] (also [15])
have shown that S™(Per,) > 2" where SM denotes the size of the shortest monotone
computation. There are also some lower bounds on the depth of a monotone computation.
For example, Shamir and Snir show in [18] that DM(X; - X, - ... - X4) > (logn)(logd)
for d n x n matrices. This implies a similar lower bound for DM (X?) since a simple
argument shows that multiplying d matrices can be done by calculating X for a certain
matrix X. A lower bound of DM (Symd) > (logn)(logd) is shown in [18] where Sym¢ =
Z| S/=d,SC[n] [T csx. This lower bound does not hold in the non-monotone case since there
exists a depth logn computation of Sym? (this is implied by a result of Ben-Or that
appears later).

Non-commutative Circuits: Another possible restriction is the non-commutative
model. Here, we assume that our variables are not commutative, that is, x; - zo does not
necessary equal z5 - 1. This model is considered in a paper by Nisan [15]. For example,
it is shown that D" (Det,) = Q(n) where DV (Det,) denotes the minimum depth of a
non-commutative computation of the determinant (with some order on the variables in
the monomials).

Open Problem 3.1 Find an explicit function for which there exists no polynomaial size
computation in the non-commutative model.



3.2 The General Model

In the following, we consider lower bounds without any restrictions on the type of oper-
ations allowed. All known lower bounds are based on the idea of a progress measure. A
progress measure is a function that is applied to intermediate states of the computation.
While we will see different progress measures, they all share the same three properties.
The initial value (of inputs) is low, the final value (of outputs) is high, and the increase by
each elementary operation is low. The method of progress measures is used in virtually
all the lower bounds for both the arithmetic and the Boolean computation complexity.
The limited power of this method was shown by Razborov and Rudich [17]. Namely, they
show that this method cannot prove superpolynomial lower bounds for general circuits
in the Boolean case (assuming one-way functions exist). An interesting open questions is
whether a similar result holds for the arithmetic case.

Algebraic Geometry: The lower bound we consider now is based on algebraic
geometry. We assume we operate over the complex numbers. We define the de-
gree of a set of polynomials hi,...,hy as the number of affine linear forms Iy,... [
that must be added so as to maximize the finite number of solutions to the equations
hi =c¢1,...,hg = ¢k, l1 =0,...,l; =0 where ¢y,...,c; are any constants. For example,
the degree of y — 2 + 1 is 2 since by adding y = 0 we have a finite number of solutions,
i.e., two solutions. The polynomial y — 2? can be seen to have the same degree by adding
the affine linear form y = 1. The polynomial y — ¢ has degree d since we can add y = 1
and the d solutions are z = 1,e*™/d .  e?m(d-1)/d  GSimilarly, the set of polynomials
{y; — 2}, has degree d" since we can add y; = 1 for all i and a solution is given by
choosing one of the d roots of unity to each of the x;.

The lower bound we show is S(z¢,24,...,2%) > nlogd. Notice that it is essentially
tight. By using the last example of the previous paragraph, we see that the degree of the
output polynomials is n¢. In addition, deg(x1, T, - . ., ,) is 1. We only have to show that
the progress made by the computation in each step is small. Let G; = {g1,92,...,9:} be
the set of ¢ first polynomials in the computation. If g1 = ag; + Bgx then deg(Gii1) =
deg(G;) because an assignment to the variables is a solution to G, iff it is a solution
to Gyr1. When multiplying two polynomials, a corollary of Bezout’s theorem [8, 1.7,
Thm. 7.7] says that deg(Gyy1) < 2deg(G;). Therefore, the progress measure increases
by a factor of at most 2 in each step and hence the size of the computation is at least
log deg(z¢,z4,...,2%) = nlogd. In general,

Theorem 3.2 ([22]) S(f1,..-, fr) > logdeg(fi,..., fr)

This lower bound is tight for many important set of polynomials. Note that by itself, this
method cannot yield a non-trivial lower bound for a single polynomial.

Partial Derivatives: Assume we are given a computation of a multivariate polynomial

f € Flzq, 29, ...,2,] of degree n and we want to compute the partial derivative g—zfl as

6



well. This can be done by computing the partial derivative of every polynomial g; along
the computation. For example, if g¢ = g5 - g4 then we compute the partial derivative of
Je as g—g‘: = g—ii - g4+ g% - g5. The size of the computation increases by a constant factor.

Following the same method, we can calculate all m partial derivatives with an increase
in size by a factor of m. Surprisingly, Baur and Strassen showed that this can be done
without increasing the size of the computation by more than a constant factor:
Theorem 3.3 ([2]) S(&L ..,%) <55(f)

oxy?

A simpler proof can be found in [13]. An improved result that does not increase the depth
of the computation by more than a constant factor can be found in [11].

Proof Sketch: Consider the computation of f as a sequence of polynomials g;,..., ¢

where g, = f is the output of the computation and ¢4, . .., g, are the inputs. The compu-

tation of all the partial derivatives of f is performed as follows. Assume we can compute
0 8 . 0 0 0

692-];1 e a—fs. Then, we append the computation of agsf_l’ agsf_z’ cee a—gfl to the

computation of f. The last n polynomials in this sequence are the partial derivatives of

f

Of i
By Siven

We claim that given %, e, (;97]; we can compute g—;. Consider all the appearances
of g; in the computation of f. Say it appears in gp,,..., gm, where my,...,my € {i +
1,...,s}. Then,

k
of _ g~ 0f oo,
99; = Ogm; 09
. . . . 9Gm,; . . . L.
According to our assumption, %i is given. Computing gg? is easy: if g,,; is an addition
Mj 3

of the form ag; + 8¢’ then the partial derivative is o.. Otherwise, if g, is a multiplication
of ¢g; and ¢’ then the partial derivative is ¢'.

Notice that the number of operations performed while computing the partial derivative
with respect to a polynomial g; is at most twice the number of times g; is used in the
original computation after its computation (that is, its “fan-out”). The sum of the fan-
out of all the intermediate polynomials is the number of edges in the computation tree
which is at most twice the size of the original computation. Therefore, the total number of
operations is at most 441 = 5 times the number of operations in the original computation.
[ |

The importance of this result is that it allows us to derive many lower bounds on

computing single polynomials. For example, consider S(z¢+ 23+ ...+2z¢). This function

might be considered simpler than S(z¢,z4,..., 2%

) since instead of computing each of the
powers separately we only have to compute the sum of them. The result of the previous
paragraphs, however, shows that S(z¢+z4+...+2¢) > 1S(zf~, 247", ..., 2¢7") which is
at least nlogd as we have previously seen. Another surprising corollary is that inversion

is not harder than the determinant. Namely, $S(X ') < S(Det,) because according to

7



’ -1 _ 9DetX . 1
Cramer’s rule, X;;" = dzs; " DeiX

of a bilinear form. Namely, S(y’Az) > $1S(Az) because the vector Az is the vector of

We can also lower bound the size of a computation

the partial derivatives of y' Az according to y, ..., ¥n.
Open Problem 3.4 Prove (or disprove) that S(y'Az) = Q(S(Ax)) over a finite field.

The result in the previous paragraphs shows that the size of computing the first partial
derivatives of a multivariate polynomial is at most a constant factor more than that of
the multivariate polynomial itself. Naturally, we also consider the second order partial
derivatives.

Open Problem 3.5 Let f(z1,...,%n,Y1,---,Ym) be a function of n+m variables. Is it

true that S(5:25) < O(S(f) +n?) ?

i
An exercise to the reader is to show that if the statement above is true then multiplication
of two n X n matrices can be performed by a computation of size O(n?).

Unbounded Fan-in Circuits: We generalize the definition of a computation by
allowing unbounded fan-in. That is, addition operations are any linear combination of the
polynomials of the lower level and the multiplication operations can include any number
of polynomials. We are interested in showing lower bounds for constant depth circuits
(notice that such circuits are trivial without the unbounded fan-in assumption). When
the depth is limited to 2, exponential lower bounds can be easily shown by considering
an irreducible polynomial with an exponential number of monomials. Therefore, we
consider depth 3 computations. Notice that we can transform any computation into a
computation in which addition operations only use the results of multiplication operations
and multiplication operations only use the results of addition operations. This increases
the size of depth 3 computations by a polynomial factor. Thus, there are two possible
types of computations. In a IIXII computation the first level includes multiplication
operations, the second level includes addition operations and the last level includes one
multiplication that provides the output. Lower bounds for II¥II computations can be
shown by taking an irreducible polynomial with an exponential number of monomials
and noticing that the last multiplication operation does not help. The second type of
computation is XII3 where the first level includes addition operations, the second level
includes multiplication operations and the last level includes one addition that provides
the output. This is the simplest non-trivial case and still, no exponential lower bounds
are known:

Open Problem 3.6 Find an explicit function which cannot be computed by a polynomial
size XIIX circuit with unbounded fan-in.

A natural candidate for an exponential lower bound is the polynomial Sym¢ =
> is|=d,sc[n Llzesz.  Over finite fields there exists an exponential lower bound on the

8



size of its calculation. Surprisingly, a result of Ben-Or shows that Syns(Sym¢) < n?
which means that for this polynomial the arithmetic model is stronger than the Boolean
one. The idea is based on the polynomial g(¢) = II?_, (t+z;) = >__, Symé(z)t"¢. Com-
puting it can be done in an arithmetic circuit of depth two by adding ¢ to each of the x;’s
in parallel and then multiplying them all. We can also perform a depth 2 computation of
g(t1),-..g(tns1) for n+1 constants ti, ..., t, 1 by performing the same computation n+1
times in parallel. Now, by taking a linear combination of the polynomials g(¢;),...g(t,)
we can interpolate the coefficient of "~ which is exactly the output polynomial Symé (z).

Ben-Or’s computation uses intermediate polynomials of degree n although the final
polynomial is of degree d. The following result of Nisan and Wigderson shows that this

is necessary':

Theorem 3.7 ([16]) For computations whose intermediate polynomials are of degree at

most d, Ssns(Symd) > (d’/‘z)Q_d.

This lower bound is exponential for, say, d = n/8 since (n/"16)2_”/8 > 16™/169-7/8 = on/8,

Proof Sketch: As mentioned earlier, we can assume that the computation is of type XI13.
We define the dimension dimV of a set of polynomials V' as the number of linearly

independent polynomials in V. Also, for a set of variables S = {z;,,...x;,} let 6—£ be

0
m. The progress measure used to show this lower is the dimension of the set of
i1 Glig---Olgy,

all partial derivatives of a polynomial, that is, {%LS’ C X}. Denote this set by df.

Claim 3.8 The following two properties of the progress measure hold:
o dim(0), fi) <>, dimdf;
o dim(0IL; f;) < IL;dimaf;

Proof: The first property follows from the observation that 0, f; is spanned by the
union of df; for all . The proof of the second property is as follows. Consider the
product II7, f; over the variables X = {z1,...,2,}. Let F; C Of; be a set of linearly
independent polynomials, |F;| = dimdf;. Consider the set F' = {g1 ... - gn | gi € F;}.
Obviously, |F| < II™,|F;| = 1™ ,dimdf;. We claim that any polynomial in 9f is a
linear combination of elements of F. Without loss of generality, consider % where
S ={x1,...,z}. It can be seen that,

Ofi v fm Of: O fm
D DL

'In their paper, they use a somewhat stronger assumption. A polynomial is said to be homogeneous

when all its monomials are of the same degree; a computation is homogeneous when all the polynomials
that appear in the computation are homogeneous. They assumed that the computation is homogenous.
This was motivated by a result that shows that any computation can be turned into a homogenous
computation with the increase of the depth by a factor of O(log d) where d is the degree of the polynomial
computed (appears implicitly in [23], see [25]). This increase in the depth is conjectured to be necessary.



where the sum is over all the partitions of S into Sy,...,S5,,. By substituting each afl
with a linear combination of elements of F; we get that % is a linear comblnatlon

of elements of F. n

We can now consider the behavior of this progress measure on a YIIY circuit. The
lowest level contains only variables and therefore the dimension is 2 (0z; = {4, 1,0}).
After the addition operations of the lowest level, the dimension is still 2 because all the
polynomials are sums of variables and therefore their partial derivatives are all 1 or 0 in
addition to the polynomial itself. In the next level we multiply subsets of polynomials
from the previous level. According to our assumption, the highest degree we encounter is
not more than that of the output, i.e., not more than d. Therefore, the multiplications are
of at most d polynomials and according to the second property of the progress measure,
the dimension increases to at most 2¢. The last operation is an addition operation. Here,
according to the first property, we must take at least 27¢ - dimdSym? polynomials in
order to reach the dimension of the output (dimdSym2).

Claim 3.9 dimdSym¢ > (d/g)

8Symg

Proof: Consider the ( p /2) -vector v that includes all the partial derivatives =5z for sets
S of size d/2. By the definition of Sym¢, asg;”" is exactly Sym /] for a set S of size d/2.

Consider the matrix (, /2) x ( d72) matrix A indexed by sets of size d/2 such that Asy =1
if SNT = ¢ and zero otherwise. This is a nonsingular matrix (e.g. [12, pp. 22-23]) and
it can be seen that Au = v where u is the ( d%)—vector that includes the monomial 1,72
in position 7. Therefore, the dimension of v is ( d%). [ ]

The completes the proof of Theorem 3.7. [ ]

Shpilka and Wigderson [20] show lower bounds without assuming that the intermediate
polynomials are of degree at most d. For example, they show that Ssis(Sym2) > d(n—d).
This is essentially tight since Ben-Or’s result is an LIIX circuit of size O(n?) for computing
the symmetric polynomial. The idea is to note that in the above proof the only assumption
we used is that the fan-in in the second level is bounded by d. On the other hand, we
know that if the fan-in is large, the circuit must be large too. Hence, we can assume that
the number of multiplication gates with large fan-in in not too large. Next, we eliminate
the multiplication gate with large fan-in by zeroing one of their inputs. Since an input
to a multiplication gate is a sum of variables, this can be done by satisfying an affine
linear constraint. To complete the proof, one has to show that the dimension of dSym¢
remains high in the affine subspace to which we are restricted.

10



References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis
of computer algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-
Amsterdam, 1975. Second printing, Addison-Wesley Series in Computer Science and
Information Processing.

Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoret.
Comput. Sci., 22(3):317-330, 1983.

Allan Borodin and Ian Munro. The computational complexity of algebraic and
numeric problems. American Elsevier Publishing Co., Inc., New York-London-
Amsterdam, 1975. Elsevier Computer Science Library; Theory of Computation
Series, No. 1.

Peter Biirgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity
theory. Springer-Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig.

James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex Fourier series. Math. Comp., 19:297-301, 1965.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic pro-
gressions. J. Symbolic Comput., 9(3):251-280, 1990.

Rusips Freivalds. Fast probabilistic algorithms. In Mathematical foundations of com-
puter science, 1979 (Proc. Eighth Sympos., Olomouc, 1979), pages 57-69. Springer,
Berlin, 1979.

Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate
Texts in Mathematics, No. 52.

Laurent Hyafil. On the parallel evaluation of multivariate polynomials. In Conference
Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego,
Calif., 1978), pages 193-195. ACM, New York, 1978.

Mark Jerrum and Marc Snir. Some exact complexity results for straight-line com-
putations over semirings. J. Assoc. Comput. Mach., 29(3):874-897, 1982.

E. Kaltofen and M. F. Singer. Size efficient parallel algebraic circuits for partial
derivatives. In D. V. Shirkov, V. A. Rostovtsev, and V. P. Gerdt, editors, IV In-
ternational Conference on Computer Algebra in Physical Research, pages 133-145,
Singapore, 1991. World Scientific Publ. Co.

Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge Univer-
sity Press, Cambridge, 1997.

11



[13] J. Morgenstern. How to compute fast a function and all its derivatives, a variation
on the theorem of Baur-Strassen. Sigact News, 16(4):60-62, 1985.

[14] Jacques Morgenstern. Note on a lower bound of the linear complexity of the fast
Fourier transform. J. Assoc. Comput. Mach., 20:305-306, 1973.

[15] Noam Nisan. Lower bounds for non-commutative computation (extended abstract).
In Proceedings of the Twenty Third Annual ACM Symposium on Theory of Comput-
ing, pages 410-418, New Orleans, Louisiana, 6-8 May 1991.

[16] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial
derivatives. Comput. Complexity, 6(3):217-234, 1996/97.

[17] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. System
Sci., 55(1, part 1):24-35, 1997. 26th Annual ACM Symposium on the Theory of
Computing (STOC ’'94) (Montreal, PQ, 1994).

[18] Eli Shamir and Marc Snir. On the depth complexity of formulas. Math. Systems
Theory, 13(4):301-322, 1979/80.

[19] Victor Shoup and Roman Smolensky. Lower bounds for polynomial evaluation and
interpolation problems. Comput. Complezity, 6(4):301-311, 1996/97.

[20] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic formulae over fields of charac-
teristic zero. In Fourteenth Annual IEEE Conference on Computational Complexity
(Atlanta, GA, 1999), pages 87-96. IEEE Computer Soc., Los Alamitos, CA, 1999.

[21] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354-356,
1969.

[22] Volker Strassen. Die Berechnungskomplexitét von elementarsymmetrischen Funktio-
nen und von Interpolationskoeffizienten. Numer. Math., 20:238-251, 1972/73.

[23] Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184-202,
1973.

[24] Volker Strassen. Algebraic complexity theory. In Handbook of theoretical computer
science, Vol. A, pages 633-672. Elsevier, Amsterdam, 1990.

[25] L. G. Valiant. Negation can be exponentially powerful. Theoret. Comput. Sci.,
12(3):303-314, 1980.

[26] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of
polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983.

12



[27] Leslie G. Valiant. Why is Boolean complexity theory difficult? In Boolean function
complexity (Durham, 1990), pages 84-94. Cambridge Univ. Press, Cambridge, 1992.

[28] Joachim von zur Gathen. Algebraic complexity theory. In Annual review of computer
science, Vol. 3, pages 317-347. Annual Reviews, Palo Alto, CA, 1988.

13



