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1 Introduction

“Do natural hard problems really exist?”
“Can randomness really help computation?”

These are two great questions in computer science today.

In this survey we will reveal surprising connections between these two questions, surveying
progress made in the past 20 years in this field, and leading up to the current state-of-the-art.

Question 1 - Are there natural hard problems? There are many natural problems for
which no efficient (i.e. polynomial-time) algorithm is known. A few examples are (i) factoring
integers into their prime factors, (ii) deciding whether a Boolean formula is satisfiable, (iii)
computing the permanent of a given matrix. We classify problems such as these into complexity
classes, according to the amount of resources (e.g. running time, randomness, memory space)
they require (for a list of complexity classes and their definitions, see Appendix A). For example,
the complexity class EXP is the class of all problems that are decidable in exponential time.
We consider a problem to be ‘hard’ if it does not to belong to an ‘easy’ complexity class, for
example if it is outside the class P (consisting of all problems decidable in polynomial time). In
formal terms, the question of whether or not hard problems exist can be written as an inequality
between complexity classes:

?
NP Z P
NP ¢ DTIME(2)
EXP & P/poly

This question remains notoriously open, with no significant progress in sight.
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Question 2 - Does randomness help computation? Randomness is a resource that is
widely used in algorithms both to simplify them and to speed up computation. Indeed, there are
a number of natural problems for which the best-known probabilistic algorithm is significantly
better than the best-known deterministic one.

For example, there is a polynomial-time probabilistic algorithm to test whether a given num-
ber is prime or not, but there is no such deterministic algorithm.

Another example is the symbolic determinant: Given a n X n matrix A whose entries are
either integers or variables from x1, ..., z,, determine whether det(A) = 0. An extremely simple
probabilistic algorithm solving this problem is to plug in random values for each variable; and
then compute the determinant. The result would be non-zero with high probability unless
det A = 0. There is no known sub-exponential-time deterministic algorithm for this problem.

It is trivial that any probabilistic polynomial-time algorithm can be simulated in exponential
time by trying all possible coin toss combinations and computing the majority, hence BPP C
EXP. The question is whether any non-trivial derandomization is possible, i.e.,

?
BPP ¢ P
?
BPP ¢ SUBEXP = DTIME(2"™)

This question, similarly to the previous one, has remained widely unanswered for quite some
time.

However, as it turns out, there is a beautiful connection between questions 1 and 2, that
prevents a simultaneous ‘yes’ answer to both. Formally, we know the following concrete relations,

Theorem 1.1 ([Yao82, IW97, IW98|) The following relations are true,
e [f there exist one-way-functions then BPP C SUBEXP.
e If EXP ¢ P/poly then BPP C SUBEXP.

o If EXP Z BPSUBEXP then! BPP C Avg—P.

The link between these two seemingly unrelated questions is provided by a general deran-
domization scheme, discussed next.

2 General Derandomization

We recall that the class BPP is the class of all languages that are decidable in bounded probabilis-
tic polynomial time. Formally, BPP consists of all languages L for which there is a polynomial-
time algorithm A that receives in addition to its input? z, a random string r, and such that for

!The class Avg—P is, roughly speaking, the class of all languages for which there is a polynomial-time algorithm
solving with high probability on all polynomially sampleable distributions.

2Throughout this paper we think of the input length, n, as a parameter that is asymptotically tending to
infinity. Wlog we also take the length of the random string to be n as well. We think of a function over {0,1}"
as belonging to an ensemble of functions with increasing input lengths.



every input it gives the correct output with high probability, namely,

If ze€L then Pryc. g1y [Alz,7)=yes] >2/3.
If x&L then Pryc. o1y [Alw,r) =yes] <1/3.

A trivial derandomization can be obtained by running A on all possible random strings and
deciding according to majority. The running time of this deterministic procedure is exponential,
hence it implies BPP C EXP. A non-trivial derandomization of BPP is obtained by running A
on some smaller carefully selected subset of the random strings so that the majority result still
reflects the true majority.

Let us denote the uniform distribution on {0,1}" by U,. Instead of supplying the algorithm
A with a random string r € U, we can replace r by a pseudo-random string G(s) € {0,1}"
deterministically generated from a shorter random seed s € U,,. If, for any polynomial-time
algorithm A, A’s behavior remains virtually unchanged for all inputs, then the function G is
called a pseudo-random generator:

Definition 2.1 (Pseudo Random Generator - PRG) A function G : {0,1}™™ — {0,1}"
is a pseudo-random generator if

For any circuit C, |C| < n?, |Pr[C(Uy,) = 1] — Pr[C(G(Uyy)) = 1]| < n ™2 (1)
The distribution D,, = G(U,,) is said to be pseudo-random?.

The choice of n? and n~? in the above definition is arbitrary and can be made any polynomial
via padding.

The distribution G(U,y,) is ‘computationally close to uniform’. It is interesting to contrast
this with the information theoretic definition of being statistically close to uniform, defined in
terms of the statistical distance between two distributions,

Definition 2.2 (Statistical Distance) The statistical distance of two distributions Dy, D, is
max |Pr[C(Dy) = 1] — Pr[C(D},) = 1]|

where the mazimum is taken over all possible circuits C.

Thus, a distribution D,, is statistically e-close to uniform if
For any circuit C, |Pr[C(Uy,) =1] —Pr[C(Dy) =1]| <€ (2)

Note the similarity between (1) and (2), the only difference being the limit on the size of
the ‘observer’ circuit in the computational case. Thus, pseudo-randomness may be viewed
as a new ”computational” variation of the statistical distance, where the distance between
distributions is measured not by any observer (i.e. any circuit), but rather by observers with
limited computational power.

Here is how a pseudo-random generator can be used to derandomize probabilistic algorithms,

3The definitions employed herein are non-uniform. One can replace every mention of a size-bounded circuit
by a time-bounded probabilistic Turing machine to obtain the analogous uniform definition.



Theorem 2.3 (Basic Derandomization) Let G : {0,1}™™ — {0,1}" be a pseudo-random
generator. Then,
BPP C DTIME(time(Q) - 2).

Proof: Given a language L € BPP, an input z é L, and a probabilistic algorithm A(z,r)
deciding L, run this algorithm on z using r = G(s) as the random string, for all possible seeds
s € {0,1} and take the majority result. If there exists some input  on which the majority of
A(z,G(s)) differs from the majority of A(z,r), then A with input z (which can be converted
into a small circuit) can serve as a distinguisher between G(U,,) and U,, contradicting G being
a PRG. ]

The central question in derandomization is: ”What are the minimal values of m and time(Q)
for which a pseudo-random generator G exists?”.

In what follows we present a historical survey of derandomization results up until the current
state of the art. In Section 3 we present the first pseudo-random generators, originating from
cryptography. In Section 4 we present the Nisan-Wigderson generator and the hardness vs.
randomness paradigm. In Section 5 we present newer views of the NW generator. We conclude
in Section 6 with a brief comparison between computational and information-theoretic views of

randomness.

3 Sequential Pseudo-random generators

Predating the beginning of a rigorous theory of pseudo-randomness, certain computational
applications required random bits, and for this purpose sequential pseudo-random-generators
were used. A sequential generator takes a function g : {0,1}™ — {0,1}™, and produces a
sequence of m-bit numbers Xi,..., X, (computed from a seed X, € {0,1}"" by iterating g)
where X;11 = g(X;). Various functions g have been suggested.

The Linear Congruential Generator. This generator was the most widely used generator,

in real-life applications. It is defined by selecting an m-bit prime p, values a,b € Z,, and

setting gr,c(X) “ax +b (mod p). Eventually this generator was “broken” by good predictor

algorithms, that give correct predictions even when a,b and p are unknown.

The von-Neumann Generator. The function g of this generator is defined by squaring an
m-bit integer X and then taking the middle m bits of the 2m bits of the outcome,

gun(X) X bits 3 m of X2

Von Neumann conjectured that this generator, due to its non-linearity, would be hard to break.
This is not backed by any rigorous analysis (it hasn’t been disproved either).



Shamir’s ‘Reverse’ Discrete Logarithm Generator. Shamir [Sha83] suggested the use
of the discrete logarithm function as g. Given a prime p and a generator a of Zjy, the discrete
logarithm DL, , : {0,1}" — {0,1}" is defined by

VX €7 DL (X) XY st @ =X (modp)

There is no known polynomial-time algorithm for DL, but the generator G can be computed in

Y mod p is quite easily computable. Indeed, the DL function is an

reverse, since DL;,}l(Y) =a
example of a one-way-function — a function which is easy to compute but hard to invert — which
is a fundamental cryptographic primitive. Shamir’s suggestion was to exploit this property
of DL and to compute the pseudo-random sequence in reverse order, selecting X, 11 €r 7Z,
uniformly at random and setting X,, = ¢~!'(X,41) and inductively X; = ¢g~'(X;;1). Since
the DL function is a permutation, the distribution over sequences obtained in this manner is
identical to that in which we’d selected Xy €r Z, at random and computed the sequence in
the forward direction. Shamir also suggested a criterion for evaluating a (sequential generator
based on a) given function ¢g: A sequence is called unpredictable if when reading the output

sequence from left to right, given any initial ¢ values, it is hard to compute the ¢ + 1st value.

Definition 3.1 (Unpredictable Sequence of Numbers) A sequence of m-bit numbers
(X1,...,Xp) is called (s,e)-unpredictable if it is drawn from a distribution D, such that for
every circuit C, |C| < s,

Vi < n, P C(X1,....X;) = Xip1] <e.
e (Xl,n,Xi)eDn[ (X1 i) ir1] <€

We say that o sequence is unpredictable if it is (n®,n~°)-unpredictable for any constant ¢ > 0.

Theorem 3.2 ([Sha83]) If there is no polynomial-time circuit for computing Discrete-Log,
then Dy, = {(X1,...,Xy) | Vi, X;11 = DL(X;)} is unpredictable.

Proof Sketch: The proof proceeds by contradiction. Suppose D,, was predictable, i.e. there is
some 7 and some polynomial-size circuit C' such that Prx cio 1y [C(X1,..., Xi) = Xip1] > e
We can compute the discrete logarithm for a random X € Z, by setting X; = X and for
all j < i X;_1 = a” (mod p) and feeding this sequence to C. Since D, is predictable,
C(Xy,...,X;) = Xj41 = DL(X;) with probability > €, which means we are able to compute
the discrete logarithm on e fraction of the inputs X.

In order to reach a contradiction we need to present a polynomial-size circuit computing
the discrete logarithm on ewvery input. For this, we observe that the discrete logarithm has
the additional special property of being random-self-reducible: an oracle for random values of
the function can be used to compute the function on an arbitrary input. Indeed, given any
algorithm A (e.g. the above) that computes the discrete logarithm on some e fraction of the
inputs, we compute DL(Z) for an arbitrary value of Z € Zn, by selecting a random r € Z,
and outputting A(a" - Z) — r mod p. Since a" - Z mod p is distributed uniformly in Zj, this
process will output the value DL(Z) mod p with probability > e. It is easy to check whether
the outcome is correct or not, so repeating this process O(1/¢) times will find the correct value
for DL(Z) with probability > 2/3.



|
Note, of course, that the unpredictability of Shamir’s sequence is entirely dependent on the
order of the numbers. The sequence is completely predictable from right to left.

The Blum-Micali-Yao Generator. The unpredictable sequence of Shamir’s generator, is
not pseudo-random: the first 4+ numbers leak some information about the 7 + 1-st number. For
example, if X; is a quadratic residue (and this can be decided in polynomial time), we know
that X;11 is even.

Our next step would be to find an unpredictable sequence of bits rather than of m-bit numbers.

Definition 3.3 (Unpredictable Sequence of Bits) A sequence of n bits (z1,...,x,) is
called (s, e)-unpredictable if it is drawn from a distribution D, such that for every circuit C,
ICl <,

. 1
Vi < n, Igl;n [C(z1y. .. 15) = Tig1] < 3 +e€

We also call the distribution D, unpredictable.

Blum and Micali [BM84] proved that the most significant bit (msb) of the discrete logarithm
function (i.e. the bit indicating whether the value of the discrete logarithm is greater than p/2)
is as hard to compute as is the whole function. Formally, they proved the following reduction,

Lemma 3.4 ([BM84]) Given access to a circuit C' for which

1
P10 = msb(DLOO)] > 5 +¢

one can compute the discrete logarithm with high probability in time poly(|X]|, %)

A Boolean predicate such as the msb predicate is called a hard-core predicate of a given function
because it captures all of the hardness of the function.
From this fundamental lemma it follows that,

Theorem 3.5 ([BM84]) Let Xy € Zy, and define
. ef def
Vi=1,...,n X; = DL, o(Xi—1) and b; = msb(X;).

The sequence (by, by, ..., b,) is unpredictable.

Proof Sketch: The proof follows by reduction to the previous theorem (Theorem 3.2). Suppose
C is a predictor algorithm for the bits by,...,b,, predicting b;41 from by,...,b; for some 3.
We apply Lemma 3.4 and use C to predict X;41 from Xy,...,X;, in contradiction to the
unpredictability of Xq,..., X,. [ |

Interestingly, in contrast to the number sequence X1, ..., X,,, the msb bit-sequence by, ..., b,
cannot be predicted even in the reverse order. Moreover, Yao [Yao82] proved that every unpre-
dictable bit-sequence is in fact pseudo-random (see Definition 2.1),

Theorem 3.6 ([Yao82]) Every unpredictable bit sequence is pseudo-random.



Proof Sketch: Let D,, be an unpredictable distribution. Suppose there is a circuit C' that dis-
tinguishes between a random @ = (u1,...,u,) € U, and b = (by,...,b,) € D, with probability
€ > 0. Define the hybrid distributions H; = {(bl, ey bis Uity .o Uy) | b ER Dy, ER Lln} for
i=0,...,n (noting that Ho = U, and H,, = D,), and denote
Y| pr [Cl@)=1- Pr [C(x) =1]| .
TEH 41 TEH,;
Since Z?;OI P; > €, there must be some i € [n] for which P; > €¢/n, i.e. C distinguishes H; from
H; 1 with an advantage of > €/n. From this we can construct (uniformly) a predictor for b;
from the bits by, .., b;, whose success probability is % +€/n. [ |
A corollary of this (plugging in Theorem 2.3) is

Corollary 3.7 The following are true:
e If Discrete-Log & P/poly, then BPP C SUBEXP.

e If Discrete-Log & BPP, then* BPP C AvgSUBEXP.
e If Discrete-Log ¢ SUBEX P/Poly, then BPP C p %/ DT|ME(2(10gn)O(1))'

Yao also showed that a pseudo-random generator can be constructed from any one-way per-
mutation (i.e. a one-to-one function that is easy to compute but hard to invert). This was later
extended,

Theorem 3.8 ([HILL98]) One-way functions exist if and only if pseudo-random generators
exist.

An important theorem that was used for proving this result, is the Goldreich-Levin ‘hard-
core-bit’ theorem, which states that a non-negligible advantage in the prediction of xors of
subsets of bits in the output of a one-way function, can be converted into an algorithm for
inverting the whole function,

Theorem 3.9 ([GL89]) Let f: {0,1}" — {0,1}", and define b: {0,1}*" — {0,1} by
o) < (r, fla) DN i f@)s mod 2
i=1

Any polynomial-time algorithm for predicting b with success probability % + € can be converted
to a polynomial-time algorithm that inverts f with success probability €.

This theorem has several interpretations, and is useful in other contexts. For example, it can
be viewed as a local list decoding of the Hadamard code. This is the first such result, in an area
that is currently very active. It can also be viewed as an algorithm which learns all the high
Fourier coefficients of a Boolean function (given oracle access to the function), an algorithm

that is useful in various computational learning algorithms.

“The class AvgSUBEXP is, roughly speaking, the class of all languages for which there is a sub-exponential
time algorithm solving with high probability on all polynomially sampleable distributions.



Given these first derandomization results, it was natural to seek unconditional derandom-
ization results for complexity classes where lower-bounds do exist unconditionally. Two such
models are small-space computations and constant-depth circuits.

Umesh Vazirani observed that the 2n + 1 bit-sequence x1, ..., Zn, Y1, -, Yn, (T -y mod 2) is
unpredictable for any (read-once) automaton whose space is bounded by o(n). This is shown
by relying on the lower bound of n + 1 for the number of communication bits required to
compute z -y mod 2. The state of the machine after reading z1,...,z, can be viewed as the
communication sent from player z to player y when trying to compute z - y mod 2, which
is known to require n + 1 communication bits. Following that, Nisan [Nis92] used recursive
hashing to construct a generator that stretches (logn)? bits to n bits, that appear random to
any logspace machine.

Impagliazzo, Nisan and Wigderson [INW94] extended Nisan’s communication complexity
lower-bounds to derandomize the computation of any network of processors whose inter-
communication is bounded.

Another model for which we have unconditional lower-bounds is bounded-depth circuits.
Ajtai and Wigderson [AW89] showed the existence of a bit-generator for ACy (the class of
bounded-depth circuits with unbounded fan-in AND and OR gates), stretching n¢ bits to n
bits. Nisan [Nis91] constructed a pseudo-random generator that stretches (logn)¢ bits into n
bits that appear random to any constant depth circuit. This paper served as the seed for the

next development.

4 Hardness vs. Randomness

In the previous section we saw the first seeds of the general paradigm of trading hardness for
randomness. A significant expansion of this paradigm, leaving behind the world of cryptographic
functions, was introduced by Nisan and Wigderson with the NW-generator.

4.1 The NW Generator

The Nisan Wigderson pseudo-random generator [NW94] is a completely different approach to
derandomization, and is essentially the basis of almost all new derandomization results. The
NW construction is non-sequential, and can be used with a whole range of hardness assumptions
whose extreme will yield the ultimate derandomization, P = BPP.

In the NW setting, the function whose hardness is exploited for derandomization can be any
function in EXP, rather than being an inverse of a function in P. Breaking loose from the cryp-
tographic setting, the generator is allowed to run in time super-polynomial (even exponential)
in the seed length, which is still ok for derandomization purposes.

The generator is constructed as follows. Let f : {0,1}"" — {0,1} be a function that we
assume is unpredictable, i.e.,

Definition 4.1 (Unpredictable function) A function f :{0,1}" — {0,1} is unpredictable

if for any polynomial-size circuit C, and for any ¢ > 0,

]' —C
Pr [C(a) = fla)] - 5| <n .



Let [ > m and let Si,...,S, C [I], |S;)| = m. For a string z € {0,1}' denote by g, the
projection of 2 on the coordinates of S;, and define NW; : {0, 1} = {0,1}",

def
Vo e {0,1},  NWi(z) = f(zs)f(s,) ... f(zs,)
This function is a pseudo-random generator if the subsets S; are ‘almost disjoint’, or more
formally, a combinatorial design,

Lemma 4.2 (Design [NW94]) For every integers n,m > 0 such that logn < m < n, there
exists | = O(m?) and subsets Sy,...,Sp C [l], |Si| = m, such that for alli # j, |S; N S;| < logn.
Moreover, the subsets S; can be found deterministically by a Turing machine running in space
O(logn).

Assuming this lemma, NW; is a pseudo-random generator,

Theorem 4.3 ([NW94]) Let f € EXP be unpredictable, then NW; is a pseudo-random gen-
erator.

Proof Sketch: Let us assume that NW; is not a pseudo-random generator, and deduce that
[ is predictable. Define the hybrid distributions #; consisting of the first ¢ bits of NW;(U,,)
and the remaining n — 7 bits of U,. If H,, = NW; (Uy,) is not pseudo-random then there is an
algorithm that distinguishes #H; from #;; for some 7, which can be transformed into a predictor,
predicting the i 4 1st bit of NWy(Uyy,) from the first ¢ bits with some non-negligible advantage.
To contradict the unpredictability of f we transform this into a predictor predicting the ¢th bit
of NW(x) — denoted y; — from the bits xy,...,2;. Since y; = f(zs;) actually depends only on
the m bits in 5;, let us fix the rest of the bits in = so that the predictor does as well as in the
average case. Whenever the predictor relies on some value of y; with j < ¢, we can plug into our
circuit a truth-table computation of y;. Since y; depends on only |S; N S;| < logm bits of zg,,
it can be encoded by a circuit of size m. The size of the new predictor-circuit thus increases by
at most m - n, and we have reached a contradiction.

Note that even if the predictor of y; from yq, ..., y;—1 is uniform, the predictor from z1, ...,z
is not so, as it relies on oracle calls to the hard function f. |

4.2 Hardness Amplification

The hard function f taken by the NW construction above was assumed to be unpredictable, i.e.
such that no circuit can predict it much better than a random coin toss. Naturally, the weaker
the assumptions we make, the stronger (and more believable) the derandomization results.
Hardness amplification techniques allow us to construct extremely hard functions from mildly
hard ones, therefore allowing derandomization under weaker hardness assumptions.

We assume existence of functions that are hard in the worst case and from them construct
functions that are unpredictable, which can then be transformed via the NW generator into a
pseudo-random generator.

Definition 4.4 Let f:{0,1}" — {0,1}. Let s = poly(n) and let e = 1/poly(n). f is said to be

e Hard in the worst case: V circuit C,|C| <s, Pr,[C(z) = f(z)] < 1.



e Mildly hard: V circuit C,|C| < s, Pry[C(z)= f(z)]<1—e.
e Unpredictable: V circuit C,|C| < s, Pr,[C(z) = f(z)] < 3 +e.

The first hardness amplification was Yao’s XOR-lemma [Yao82] taking a function that is
mildly hard and converting it into an unpredictable function, i.e. one that can be efficiently
computed on no more than slightly above half of the inputs.

Theorem 4.5 (Yao’s XOR-Lemma [Yao82]) If f is mildly hard, then there is a function
f' € P! that is unpredictable.

The function f’ is taken to be the XOR. of polynomially many copies of f on different inputs.
Therefore, f’ is easy to compute whenever f is. For several proofs of this theorem see [GNW95,
IW97].

A second hardness amplification step is to transform a worst-case hard function into a mildly
hard function.

Theorem 4.6 ([Lip91, BF90, BFNW91]) If f € EXP is hard in the worst case, then there
is a function f, € EXP! that is mildly hard.

Proof Sketch: Let f : {0,1}" — {0,1} and let f. : GF(q)™ — GF(q) be the unique multi-linear
polynomial over GF(q) such that for every = € {0,1}", f(z) = fe(z), i.e

n
de
v(xla"'7$n) € GF(q)na fe(]:la"'axn) :f Z ala Y H ]-_az

(a1,...,an)€{0,1}" i=1

As seen by the above formula, f. can be computed from f by simple interpolation, hence
fe € EXP/. (This computation can actually be done in PSPACE. Interestingly however, even
when f € P, the extension function f, is not known to be computable in any class below
PSPACE. Luckily, the NW generator requires only that f. be in EXP.)

A circuit that computes f, on 1 — € of its domain, can be used to compute f on every
x € {0,1}" by choosing a random line passing through z, and interpolating f(z) from values of
fe on random points z on that line. The majority of the lines passing through z will give the
correct value for f(z).

Note that the function f. is non-Boolean, so in order to turn it into our mildly hard function,
we need to concatenate it with an appropriate binary error-correcting code. [ |

Combination of the two hardness amplification steps yields,

Theorem 4.7 ([BFNW91, NW94]) If EXP Z P/poly then BPP C SUBEXP.
Theorem 4.8 ([IW97]) If E Z size(2°) then BPP = P.

The last result needed to avoid the input size blow-up of the Yao XOR-Lemma, and invented
a ‘derandomized’ version of it.

A few years later, Sudan, Trevisan and Vadhan [STVO01], used list-decoding to show that
the XOR-lemma is not needed for hardness amplification. They proved that the function f, is

10



not only mildly hard, but in fact unpredictable. They showed that a list-decoding algorithm
for Reed-Muller codes (of which a multi-linear polynomial is a special case) can be used to
transform an algorithm that predicts f. on % + € of its inputs, to one that predicts f on an
arbitrary value.

Theorem 4.9 ([STVO1]) If f € EXP is hard in the worst case, then there is a function fe €
EXP/ that is unpredictable.

5 New Views of the NW Generator

The proof of the NW generator is actually a “black-box” reduction, taking a distinguisher D
that “breaks” the pseudo-random generator NWy, and creates from it a predictor algorithm
AFD for f. Hence, a hardness assumption that prevents AP from belonging to a certain class,
implies the corresponding derandomization result, which applies to a wider range of complexity
classes. This observation was made by Klivans and Melkebeek [KvM99], who then used it to
derandomize AM, placing for example graph non-isomorphism in NP, under a certain hardness

assumption:

Theorem 5.1 ([KvM99]) Denote by CSAT(f) the circuit complexity of f, relative to a SAT
oracle. If there exists f € NE N coNE with CSAT(f) € 2% then AM = NP.

Trevisan’s Extractor. Another direction was taken by Trevisan [Tre99]. He considered the
NW reduction as an algorithm, taking as input both the seed and a truth-table of a function
f. Rather than assume that f is hard, Trevisan considered a random f and showed that if the
distribution from which f is drawn has sufficient min-entropy, then the distribution on the out-
puts of the NW-generator is statistically close to uniform. This is a much stronger requirement
than just being pseudo-random. Such an object, transforming a “weakly random” distribution
to one that is statistically close (recall Definition 2.2) to uniform is called an extractor, (see,
e.g. [Nis96]). The proof follows the NW-reduction: Assume any (in this case, random) function
f, and a distinguisher D that distinguishes between the uniform distribution and the output dis-
tribution NWj(z). The NW reduction constructs a polynomial-sized circuit A? (that is allowed
to use D-gates) predicting f with non-negligible advantage. The (small!) number of possible
such circuits translates (by taking the logarithm) to an immediate bound on the min-entropy
of the distribution from which f is drawn.

The Shaltiel-Umans PRG. A completely different construction of pseudo-random genera-
tors was suggested by Shaltiel and Umans [SU01, Uma02] who take an extractor construction
[TZS01, SUO1] and transform it into a PRG.

In all known derandomization results, one takes a ‘hard’ function f, and uses the seed to
determine some ¢t inputs z1,..,2; on which f will be evaluated, and then the pseudo-random
sequence is f(z1),..., f(x;). Here, the seed is viewed as a point # € F?, where F is a finite
field with generator g, and the ‘hard’ function f is evaluated on z,g - z,¢> - z,. ... The pseudo-
randomness proof relies on the fact that £ — gz can be represented (if F¢ is viewed as a vector

space) as a linear transformation.

11



Uniform derandomization. Beginning with the NW generator, derandomization results
relied on hardness assumptions that, while considerably weaker than the previous cryptographic
assumptions regarding the existence of a one-way function, are all non-uniform. Impagliazzo and
Wigderson [IW98] extended these results to work for a uniform assumption, i.e. derandomization
based on the assumption that EXP # BPP rather than EXP ¢ P/poly.

Intuitively, derandomization requires a non-uniform assumption because if there was a func-
tion that is uniformly hard but non-uniformly easy, then a rare BPP instance may encode the
information that makes this function easy, and this instance could not be ‘derandomized’ by
this function. However, we can still hope to achieve a derandomization for which it is hard to
find such ‘bad’ instances. Roughly speaking, we define the class AvgSUBEXP to be the class of
all languages for which there is a sub-exponential time algorithm solving with high probability
on all polynomially sampleable distributions. Now, the following “gap-theorem” regarding BPP
is known:

Theorem 5.2 ([IW98]) If BPP # EXP then BPP C AvgSUBEXP.

Proof Sketch: Previous derandomization proofs were inherently non-uniform in that they
take a distinguisher allegedly “breaking” the PRG and construct from it a circuit for the hard
function f. The process relies on values of f at certain (sometimes random) points.

Suppose we already had a circuit Cy,_; for computing f on n — 1 sized inputs. If f were
downward-self-reducible, then oracle calls for f on inputs of length n can be answered relying
on Cyp_1. Thus, the NW reduction can be applied to produce a circuit Cy, (note that this
reduction queries f only on inputs of length n) constructed by the help of the smaller (n — 1)
circuit. It is crucial that the circuit C;, does not depend on Cy,_; at all. Thus, recursively,
we can construct a circuit for f from scratch.

For the proof to work we must use the fact that the NW generator only fails if EXP C P /poly
which implies [KL82] that EXP = P#P_in which case EXP has downward-self-reducible functions
that are complete. [ |

Corollary 5.3 ([IW98]) EXP N P/poly = BPP if and only if EXP = BPP.

Is there hope for derandomization without proving lower-bounds? Known deran-
domizations of BPP rely on EXP containing ‘hard’ problems for circuits. Without any such
assumptions we cannot even rule out NEXP = BPP. In fact, it is well-known that the NW
pseudo-random generator derandomizes BPP if and only if EXP contains ‘hard’ functions. Since
proving circuit lower-bounds (i.e. showing existence of hard functions in EXP) is very hard,
it is interesting whether there might be a different approach to derandomization that would
not require proving lower-bounds. Let us imagine that P = BPP, Impagliazzo, Kabanets, and
Wigderson [IKWO01] outlined three conceivable scenarios for proving this,

1. A non-constructive proof showing that for every BPP algorithm there ezists a P algorithm
accepting the same language.

2. A constructive proof describing a deterministic polynomial-time algorithm for estimating
the acceptance probability of a given algorithm, relying on an encoding of a Boolean circuit
computing the function.
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3. A constructive proof describing a deterministic polynomial-time algorithm for estimating
the acceptance probability of a given function, relying only on oracle access to the function.

Known derandomization results all fall into the (stronger) third scenario. As already mentioned
above, such proofs are known to be equivalent to proving circuit lower bounds. Impagliazzo,
Kabanets, and Wigderson [IKWO01] proved that a derandomization result following the second
scenario will also necessarily prove circuit lower bounds. This can be reformulated as proving
that promise-BPP C SUBEXP. They proved that even a non-deterministic derandomization
of MA (which will imply promise-BPP C SUBEXP) cannot be proven without simultaneously
proving a circuit lower bound for some problem in NEXP:

Theorem 5.4 (IKWO01]) If NEXP C P/poly then NEXP = MA.

Interestingly, this theorem assumes a non-uniform assumption, and deduces a uniform result.

This can be conceptually compared to the unknown implication NP C P/poly — NP = P.

6 Computational vs. Information Theoretic Randomness

We have discussed complexity theoretic aspects of randomness, and the fundamental relations
between derandomization and proving complexity lower bounds. Let us conclude this survey
by a short comparison between some computational ‘views’ of randomness and their statistical

counterparts.
Computational Information theoretic
Unpredictable function Coin toss
Pseudorandom distribution Statistically close to uniform

Worst-case hardness — Average case hardness | (Local) error-correcting codes

Pseudo-random generators Extractors

The first two items in this table display the essential difference between information theoretic
randomness and computational randomness is in the limitations we put on the observer. When
the distinguisher is computationally bounded, an unpredictable function appears like a coin toss,
and a pseudo-random distribution looks like the uniform one. Moreover, this is precisely the
definition of these two objects!

The last two items relate some interesting connections or equivalences between these two
outlooks on randomness. The third item says that if we look at a function as an error-correcting
code, and at its inputs as indexing the ‘bits’ of that code, then an average case — worst case
reduction for the function amounts to encoding it in a locally decodable error-correcting code,
see [KT00] for more on this topic. The last item in the table is a place where the study of
computational randomness has lead to some fruitful insights about extracting true randomness
from a ‘weak’ random source, and vice versa. In one direction Trevisan [Tre99] showed that
the NW generator, if interpreted appropriately, already extracts much of the randomness in a
weakly random source. In the other direction, Umans and Shaltiel [SU01, Uma02] were able to
transform a strong extractor construction back into a PRG construction.

13



A A List of Complexity Classes

Definition A.1 The following definitions are standard,

e DTIME(t(n)) is the class of all languages L that are decidable by a deterministic Turing
machine with running time bounded by t(n).

e NDTIME(t(n)) is the class of all languages L that are decidable by a non-deterministic
Turing machine with running time bounded by t(n).

e BPTIME(t(n)) is the class of all languages L that are decidable by a probabilistic Turing
machine M with running time bounded by t(n), such that if x € L then Pr[M accepts | >
% and if x ¢ L then Pr[M accepts z] < %

We name complexity classes as follows,
o P =DTIME(nOW)
BPP = BPTIME(n°()

NP = NDTIME(n?(M)

SUBEXP = (.., DTIME(2"")
E = DTIME(20(™)

o EXP = DTIME(2"°")
o NEXP = NDTIME(2"°"")
Definition A.2 (P/poly) The class P/poly consists of all languages L such that for ev-

ery m, there exists an “advice string” S(n) of length |S(n)] < n°W such that L' =
{(z,S(|«])) [z € L} € P.

Definition A.3 (MA,AM, [BM88]) A language L is in the class MA if there exists a
polynomial-time decidable predicate R(z,y,z) and a constant ¢ > 0 such that for every

z €{0,1}",

rel = Fye{0,1}": Pr [R(z,y,z)=1>
ze{0,13"

W= Wl

€L = Fye{0,1}: Pr [R(z,y,2)=1<
ze{0,1}"™°

A language L is in the class AM if there exists a polynomial-time decidable predicate R(z,vy, z)
and a constant ¢ > 0 such that for every z € {0,1}",

v

re€Ll = Pr [Ely € {0,1}" : R(z,y,2) = 1]
zE{O,l}"C

(VAN
Wl = Wl

gL = Pr [Hy € {0,1}" : R(z,y,2) = 1]
2€{0,1}"*
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