
November 14, 2014 15:22 WSPC/S1793-0421 203-IJNT 1530001

International Journal of Number Theory
Vol. 11, No. 1 (2015) 1–28
c© World Scientific Publishing Company
DOI: 10.1142/S179304211530001X

Generalized Fermat equations: A miscellany

Michael A. Bennett

Department of Mathematics, University of British Columbia
Vancouver, BC, Canada V6T 1Z2

bennett@math.ubc.ca

Imin Chen

Department of Mathematics, Simon Fraser University
Burnaby, BC, Canada

ichen@math.sfu.ca

Sander R. Dahmen

Department of Mathematics, VU University Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

s.r.dahmen@vu.nl

Soroosh Yazdani

Department of Mathematics and Computer Science, University of Lethbridge
Lethbridge, AB, Canada T1K 3M4

soroosh.yazdani@uleth.ca

Received 10 July 2013
Accepted 9 June 2014
Published 8 July 2014

This paper is devoted to the generalized Fermat equation xp + yq = zr , where p, q and
r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the
exponent triples (p, q, r), including a number of infinite families, for which the equation
has been solved to date, detailing the techniques involved. In the remainder of the paper,
we attempt to solve the remaining infinite families of generalized Fermat equations that
appear amenable to current techniques. While the main tools we employ are based upon
the modularity of Galois representations (as is indeed true with all previously solved
infinite families), in a number of cases we are led via descent to appeal to a rather
intricate combination of multi-Frey techniques.
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1. Introduction

Since Wiles’ [74] remarkable proof of Fermat’s Last Theorem, a number of tech-
niques have been developed for solving various generalized Fermat equations of the
shape

ap + bq = cr with
1
p

+
1
q

+
1
r
≤ 1, (1)

where p, q and r are positive integers, and a, b and c are coprime integers. The
Euclidean case, when 1/p+1/q+1/r = 1, is well understood (see, e.g., Proposition 6)
and hence the main topic of interest is when 1/p+1/q+1/r < 1, the hyperbolic case.
The number of solutions (a, b, c) to such an equation is known to be finite, via work
of Darmon and Granville [34], provided we fix the triple (p, q, r). It has, in fact, been
conjectured that there are only finitely many nonzero coprime solutions to Eq. (1),
even allowing the triples (p, q, r) to be variable (counting solutions corresponding
to 1p + 23 = 32 just once). Perhaps the only solutions are those currently known;
i.e. (a, b, c, p, q, r) coming from the solution to Catalan’s equation 1p + 23 = 32, for
p ≥ 6, and from the following nine identities:

25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712, 35 + 114 = 1222,

177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072, and

338 + 15490342 = 156133.

Since all known solutions have min{p, q, r} ≤ 2, a similar formulation of the afore-
mentioned conjecture, due to Beal (see [60]), is that there are no nontrivial solutions
in coprime integers to (1), once we assume that min{p, q, r} ≥ 3. For references on
the history of this problem, the reader is directed to the papers of Beukers [10, 11],
Darmon and Granville [34], Mauldin [60] and Tijdeman [73], and, for more classical
results along these lines, to the book of Dickson [36].

Our goals in this paper are two-fold. First, we wish to treat the remaining cases of
Eq. (1) which appear within reach of current technology (though, as a caveat, we will
avoid discussion of exciting recent developments involving Hilbert modular forms
[37, 42–44] in the interest of keeping our paper reasonably self-contained). Secondly,
we wish to take this opportunity to document what, to the best of our knowledge,
is the state-of-the-art for these problems. Regarding the former objective, we will
prove the following two theorems.

Theorem 1. Suppose that (p, q, r) are positive integers with 1
p + 1

q + 1
r < 1 and

(p, q, r) ∈ {(2, n, 6), (2, 2n, 9), (2, 2n, 10), (2, 2n, 15), (3, 3, 2n), (3, 6, n), (4, 2n, 3)}
for some integer n. Then Eq. (1) has no solutions in coprime nonzero integers a, b

and c.
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Proof. These seven cases will be dealt with in Propositions 13, 19, 21, 22, 27, 9
and 23 respectively.

Theorem 2. Suppose that (p, q, r) are positive integers with 1
p + 1

q + 1
r < 1 and

(p, q, r) =

{
(2m, 2n, 3), n ≡ 3 (mod 4), m ≥ 2, or

(2, 4n, 3), n ≡ ±2 (mod 5) or n ≡ ±2,±4 (mod 13).

Then the only solution to Eq. (1) in coprime nonzero integers a, b and c is with
(p, q, r, |a|, |b|, c) = (2, 8, 3, 1549034, 33, 15613).

Proof. The first case will be treated in Proposition 18. The second is Proposi-
tion 24.

Taking these results together with work of many other authors over the past
twenty years or so, we currently know that Eq. (1) has only the known solutions
for the following triples (p, q, r); in Table 1, we list infinite families for which the
desired results are known without additional conditions.

The (∗) in Table 2 indicates that the result has been proven for a family of expo-
nents of natural density one (but that there remain infinitely many prime exponents
of positive Dirichlet density untreated). Table 3 provides the exact conditions that
the exponents must satisfy.

Remark 3. We do not list in these tables examples of Eq. (1) which can be solved
under additional local conditions (such as, for example, the case (p, q, r) = (5, 5, n)
with c even, treated in an unpublished note of Darmon and Kraus). We will also not
provide information on generalized versions of (1) such as equations of the shape
Aap + Bbq = Ccr, where A, B and C are integers whose prime factors lie in a fixed
finite set. Regarding the latter, the reader is directed to [23, 34, 39, 46, 55, 56, 62] (for
general signatures), [52, 53] (for signature (p, p, p)), [7, 8, 27, 48–50] (for signature

Table 1. Infinite families of exponent triples for which Eq. (1) has been solved completely.

(p, q, r) Reference(s)

(n, n, n), n ≥ 3 Wiles [74], Taylor–Wiles [72]
(n, n, 2), n ≥ 4 Darmon–Merel [35], Poonen [63]
(n, n, 3), n ≥ 3 Darmon–Merel [35], Poonen [63]
(2n, 2n, 5), n ≥ 2 Bennett [1]
(2, 4, n), n ≥ 4 Ellenberg [41], Bennett–Ellenberg–Ng [5], Bruin [16]
(2, 6, n), n ≥ 3 Bennett–Chen [2], Bruin [16]
(2, n, 4), n ≥ 4 Immediate from Bennett–Skinner [8], Bruin [18]
(2, n, 6), n ≥ 3 Theorem 1, Bruin [16]
(3j, 3k, n), j, k ≥ 2, n ≥ 3 Immediate from Kraus [54]
(3, 3, 2n), n ≥ 2 Theorem 1
(3, 6, n), n ≥ 2 Theorem 1
(2, 2n, k), n ≥ 2, k ∈ {9, 10, 15} Theorem 1
(4, 2n, 3), n ≥ 2 Theorem 1
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Table 2. Remaining exponent triples for which Eq. (1) has been solved.

(p, q, r) Reference(s)

(3, 3, n)∗ Chen–Siksek [24], Kraus [54], Bruin [17], Dahmen [28]
(2, 2n, 3)∗ Chen [21], Dahmen [28, 29], Siksek [68, 69]
(2, 2n, 5)∗ Chen [22]
(2m, 2n, 3)∗ Theorem 2
(2, 4n, 3)∗ Theorem 2
(3, 3n, 2)∗ Bennett–Chen–Dahmen–Yazdani [3]
(2, 3, n), 6 ≤ n ≤ 9 Poonen–Schaefer–Stoll [64], Bruin [16, 18, 19],
(2, 3, n), n ∈ {10, 15} Brown [15], Siksek [69], Siksek–Stoll [71]
(3, 4, 5) Siksek–Stoll [70]
(5, 5, 7), (5, 5, 19), (7, 7, 5) Dahmen–Siksek [30]

Table 3. Corresponding conditions on exponent triples in Table 2 for which Eq. (1)
has been solved.

(p, q, r) n

(3, 3, n) 3 ≤ n ≤ 104, or
n ≡ 2, 3 (mod 5),

n ≡ 17, 61 (mod 78),
n ≡ 51, 103, 105 (mod 106), or

n ≡ 43, 49, 61, 79, 97, 151, 157, 169, 187, 205, 259, 265, 277, 295, 313
367, 373, 385, 403, 421, 475, 481, 493, 511, 529, 583, 601, 619, 637,

691, 697, 709, 727, 745, 799, 805, 817, 835, 853, 907, 913, 925, 943, 961,
1015, 1021, 1033, 1051, 1069, 1123, 1129, 1141, 1159, 1177, 1231, 1237,

1249, 1267, 1285 (mod 1296)

(2, 2n, 3) 3 ≤ n ≤ 107 or n ≡ −1 (mod 6)
(2m, 2n, 3) m ≥ 2 and n ≡ −1 (mod 4)
(2, 4n, 3) n ≡ ±2 (mod 5) or n ≡ ±2,±4 (mod 13)
(2, 2n, 5) n ≥ 17 and n ≡ 1 (mod 4) prime
(3, 3n, 2) n ≡ 1 (mod 8) prime

(p, p, 2)), [9, 57] (for signature (p, p, 3)), and to [6, 12, 13, 26, 37, 38, 42] (for various
signatures of the shape (n, n, p) with n fixed).

Remark 4. In [30], Eq. (1) with signatures (5, 5, 11), (5, 5, 13) and (7, 7, 11) is
solved under the assumption of (a suitable version of) the Generalized Riemann
Hypothesis. In each case, with sufficiently large computation, such a result can be
made unconditional (and may, indeed, be so by the time one reads this).

Remark 5. Recent advances in proving modularity over totally real fields have
enabled one to solve equations of the shape (1) over certain number fields. Early
work along these lines is due to Jarvis and Meekin [51], which proves such a result
for signatures (n, n, n) over Q(

√
2), while a striking recent paper of Freitas and

Siksek [44] extends this to a positive proportion of all real quadratic fields.

In each of the cases where Eq. (1) has been treated for an infinite family of
exponents, the underlying techniques have been based upon the modularity of Galois
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representations. The limitations of this approach are unclear at this time, though
work of Darmon and Granville (see e.g., [34, Proposition 4.2]; see also the discussion
in [2]) suggests that restricting attention to Frey–Hellegouarch curves over Q (or,
for that matter, to Q-curves) might enable us to treat only signatures which can be
related via descent to one of

(p, q, r) ∈ {(n, n, n), (n, n, 2), (n, n, 3), (2, 3, n), (3, 3, n)}. (2)

Of course, as demonstrated by the striking work of Ellenberg [41] (and, to a lesser
degree, by Theorems 1 and 2), there are some quite nontrivial cases of equations
of the shape (1) which may be reduced to the study of the form Aap + Bbq = Ccr

for signatures (p, q, r) in (2). By way of example, if we wish to treat the equation
x2 + y4 = zn, we may, as in [41], factor the left-hand side of this equation over Q(i)
to conclude that both y2 + ix and y2− ix are essentially nth powers in Q(i). Adding
y2 + ix to y2 − ix thus leads to an equation of signature (n, n, 2).

For more general signatures, an ambitious program of Darmon [32] (see also
[31]), based upon the arithmetic of Frey–Hellegouarch abelian varieties, holds great
promise for the future, though, in its full generality, perhaps not the near future.

By way of notation, in what follows, when we reference a newform f , we will
always mean a cuspidal newform of weight 2 with respect to Γ0(N) for some positive
integer N . This integer will be called the level of f .

2. The Euclidean Case

For convenience in the sequel, we will collect together a number of old results on
the equation ap + bq = cr in the Euclidean case when 1

p + 1
q + 1

r = 1.

Proposition 6. The equations

a2 + b6 = c3, a2 + b4 = c4, a4 + b4 = c2 and a3 + b3 = c3

have no solutions in coprime nonzero integers a, b and c. The only solutions to the
equation a2 + b3 = c6 in coprime nonzero integers a, b and c are with (|a|, b, |c|) =
(3,−2, 1).

Proof. This is standard (and very classical). The equations correspond to the ellip-
tic curves E/Q denoted by 144A1, 32A1, 64A1, 21A1 and 36A1 in Cremona’s nota-
tion, respectively. Each of these curves is of rank 0 over Q; checking the rational
torsion points yields the desired result.

3. Multi-Frey Techniques

In [2], the first two authors applied multi-Frey techniques pioneered by Bugeaud,
Mignotte and Siksek [20] to the generalized Fermat equation a2 + b6 = cn. In this
approach, information derived from one Frey–Hellegouarch curve (in this case, a
Q-curve specific to this equation) is combined with that coming from a second
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such curve (corresponding, in this situation, to the generalized Fermat equation
x2 + y3 = zn, with the additional constraint that y is square).

In this section, we will employ a similar strategy to treat two new families of
generalized Fermat equations, the second of which is, in some sense, a “twisted”
version of that considered in [2] (though with its own subtleties). A rather more
substantial application of such techniques is published separately in [3], where we
discuss the equation a3 + b3n = c2.

3.1. The equation a3 + b6 = cn

Here, we will combine information from Frey–Hellegouarch curves over Q, corre-
sponding to Eq. (1) for signatures (2, 3, n) and (3, 3, n). We begin by noting a result
of Kraus [54] on (1) with (p, q, r) = (3, 3, n).

Proposition 7 (Kraus). If a, b and c are nonzero, coprime integers for which

a3 + b3 = cn,

where n ≥ 3 is an integer, then c ≡ 3 (mod 6) and v2(ab) = 1. Here vl(x) denotes
the largest power of a prime l dividing a nonzero integer x.

Actually, Kraus proves this only for n ≥ 17 a prime. The remaining cases
of the above proposition follow from Proposition 6 and the results of [17, 28],
which yield that there are no nontrivial solutions to the equation above when
n ∈ {3, 4, 5, 7, 11, 13}.
Remark 8. Proposition 7 trivially implies that the equation

a3j + b3k = cn

has no solutions in coprime nonzero integers a, b and c, provided n ≥ 3 and the
integers j and k each exceed unity. The case with n = 2 remains, apparently, open.

Returning to the equation a3 + b6 = cn, we may assume that n > 163 is prime,
by appealing to work of Dahmen [28] (for n ∈ {5, 7, 11, 13}) and Kraus [54] (for
primes n with 17 ≤ n ≤ 163). The cases n ∈ {3, 4} follow from Proposition 6
(alternatively, if n ∈ {4, 5}, one can also appeal to work of Bruin [17]). Applying
Proposition 7, we may suppose further that c ≡ 3 (mod 6) and v2(a) = 1. We begin
by considering the Frey–Hellegouarch curve

F : Y 2 = X3 + bX2 +
b2 + a

3
X +

b(b2 + a)
9

,

essentially a twist of the standard curve for signature (2, 3, n) (see [34, p. 530]). What
underlies our argument here (and subsequently) is the fact that the discriminant of
F satisfies

∆F = −64
27

(a3 + b6) = −64
27

cn,
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whereby n | vl(∆F ) for each prime l > 3 dividing c. Since 3 | c, noting that v3(a2 −
ab2+b4) ≤ 1, we thus have v3(a+b2) ≥ n−1. It follows, from a routine application of
Tate’s algorithm, that F has conductor 26 · 3 · ∏ p, where the product runs through
primes p > 3 dividing c (the fact that 3 divides c ensures multiplicative reduction
at 3).

Here and henceforth, for an elliptic curve E/Q and prime l, we denote by

ρE
l : Gal(Q/Q) → GL2(Fl)

the Galois representation induced from the natural action of Gal(Q/Q) on the
l-torsion points of E. Since n > 163, by work of Mazur et al. (see, e.g., [28,
Theorem 22]), the representation ρF

n is irreducible. Appealing to modularity [14]
and Ribet’s level lowering [65, 66], it follows that the modular form attached to
F is congruent, modulo n, to a modular form g of level 26 · 3 = 192. All such
modular forms are integral and, in particular, have Fourier coefficients satisfying
a7(g) ∈ {0,±4}.

Considering the curve F modulo 7, we find that either 7 | c or that a7(F ) ≡
−b3 (mod 7). In the first case, a7(g) ≡ ±8 (mod n), contradicting the fact that
n > 163. If 7 � bc, then a7(F ) ≡ ±1 (mod 7) and hence, by the Weil bounds,
a7(F ) = ±1, which is incongruent modulo n to any of the choices for a7(g). We
therefore conclude that 7 | b.

We turn now to our second Frey–Hellegouarch curve, that corresponding to
signature (3, 3, n). Following Kraus [54], we consider

E : Y 2 = X3 + 3ab1X + a3 − b3
1, where b1 = b2.

Arguing as in [54], the modular form attached to E is congruent modulo n to the
unique modular form g′ of level 72 which has a7(g′) = 0. Since 7 | b, we find that
a7(E) = ±4, an immediate contradiction. We thus may conclude as follows.

Proposition 9. If n ≥ 2 is an integer, then the only solutions to the equation
a3 + b6 = cn in nonzero coprime integers a, b and c are given by (n, a, |b|, |c|) =
(2, 2, 1, 3).

3.2. The equations a2 ± cn = b6

We begin by noting that the cases with n = 3 follow from Proposition 6, while those
with n = 4 were treated by Bruin [16, Theorems 2 and 3]. The desired result with
n = 7 is immediate from [64]. We will thus suppose, without loss of generality, that
there exist coprime nonzero integers a, b and c, with

a2 + cn = b6, for n = 5 or n ≥ 11 prime. (3)

We distinguish two cases depending upon the parity of c.
Assume first that c is odd. In the factorization b6 − a2 = (b3 − a)(b3 + a), the

factors on the right-hand side must be odd and hence coprime. We deduce, therefore,
the existence of nonzero integers A and B for which

b3 − a = An and b3 + a = Bn,
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where gcd(b, A, B) = 1. This leads immediately to the Diophantine equation

An + Bn = 2b3,

which, by [9, Theorem 1.5], has no coprime solutions for primes n ≥ 5 and |AB | > 1.
It follows that there are no nonzero coprime solutions to Eq. (3) with c odd.

Remark 10. If we write the Frey–Hellegouarch curve used to prove Theorem 1.5
[9] in terms of a and b, i.e. substitute An = b3 + a, we are led to consider

E : Y 2 + 6bXY + 4(b3 + a)Y = X3.

This model has the same c-invariants as, and hence is isomorphic to, the curve
given by

Y 2 = X3 − 3(5b3 − 4a)bX + 2(11b6 − 14b3a + 2a2). (4)

On replacing a by −ia in (4), one obtains the Frey–Hellegouarch Q-curve used for
the equation a2 + b6 = cn in [2].

Next, assume that c is even. In this case, we can of course proceed as previously,
i.e. by factoring b6 − a2 as

b3 ± a = 2An and b3 ∓ a = 2n−1Bn, for A, B ∈ Z,

reducing to a generalized Fermat equation

An + 2n−2Bn = b3, (5)

and considering the Frey–Hellegouarch elliptic curve

E1 : Y 2 + 3bXY + AnY = X3.

This approach, as it transpires, again yields a curve isomorphic to (4). By [9,
Lemma 3.1], the Galois representation on the n-torsion points of E1 is absolutely
irreducible for n ≥ 5, whereby we can apply the standard machinery based on
modularity of Galois representations. If one proceeds in this direction, however, it
turns out that one ends up dealing with (after level lowering, etc.) weight 2 cus-
pidal newforms of level 54; at this level, we are apparently unable to obtain the
desired contradiction, at least for certain n. One fundamental reason why this level
causes such problems is the fact that the curve (4), evaluated at (a, b) = (3, 1) or
(a, b) = (17, 1), is itself, in each case, a curve of conductor 54.

It is, however, still possible to use this approach to rule out particular values of
n, appealing to the method of Kraus [54] — we will do so for n = 5 and n = 13.
In case n = 5, considering solutions modulo 31 to (5), we find that if 31 � AB , then
necessarily a31(E1) ∈ {−7,−4, 2, 8}, whereby we have, for F1 a weight 2 cuspidal
newform of level 54, that a31(F1) ≡ −7,−4, 2, 8 (mod 5) or a31(F1) ≡ ±32 (mod 5).
Since each such newform is one dimensional with a31(F1) = 5, we arrive at a
contradiction, from which we conclude that Eq. (3) has no nonzero coprime solutions
with n = 5.
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Similarly, if n = 13 and we consider solutions modulo 53 to (5), we find that
a53(E1) ∈ {−6, 3, 12} or E1 has multiplicative reduction at 53. This implies that for
F1 a weight 2 cuspidal newform of level 54, we have a53(F1) ≡ −6, 3, 12 (mod 13) or
a53(F1) ≡ ±54 (mod 13). On the other hand, for every such newform F1, a53(F1) =
±9, a contradiction. Equation (3) thus has no nonzero coprime solutions with
n = 13.

To treat the remaining values of n, we will employ a second Frey–Hellegouarch
curve (that for the signature (2, 3, n)). Specifically, to a potential solution (a, b, c) to
(3) with n ≥ 11 and n 	= 13 prime, we associate the curve given by the Weierstrass
equation

E2 : Y 2 = X3 − 3b2X − 2a. (6)

This model has discriminant ∆ = 2633cn. Note that since c is even, both a and b are
odd, whereby it is easy to show that v2(c4) = 4, v2(c6) = 6 and v2(∆) > 12 (since
n > 6). These conditions alone are not sufficient to ensure nonminimality of the
model at 2 (in contrast to like conditions at an odd prime p). A standard application
of Tate’s algorithm, however, shows that for a short Weierstrass model satisfying
these conditions either the given model or that obtained by replacing a6 by −a6

(i.e. twisting over Q(
√−1)) is necessarily nonminimal. Without loss of generality,

replacing a by −a if necessary, we may thus assume that E2 is not minimal at 2. It
follows that a minimal model for this curve has v2(c4) = v2(c6) = 0 and v2(∆) > 0,
whereby the conductor N(E2) of E2 satisfies v2(N(E2)) = 1. If 3 � c, then v3(∆) ≤ 3
and so v3(N(E2)) ≤ 3. If 3 | c, then v3(c4) = 2, v3(c6) = 3 and v3(∆) > 6 (since
n > 3), which implies that the twist of E2 over either of Q(

√±3) has multiplicative
reduction at 3, whereby v3(N(E2)) = 2. For any prime p > 3, we see that the
model for E2 is minimal at p. In particular n | vp(∆min(E2)) for primes p > 3. In
conclusion,

N(E2) = 2 · 3α
∏

p|c,p>3

p, α ≤ 3.

In order to apply level lowering, it remains to establish the irreducibility of the
representation ρE2

n .

Lemma 11. If n ≥ 11, n 	= 13 is prime, then ρE2
n is irreducible.

Proof. As is well known (see, e.g., [28, Theorem 22]) by the work of Mazur et al.,
ρE2

n is irreducible if n = 11 or n ≥ 17, and j(E2) is not one of

−215,−112,−11 ·1313,
−17 ·3733

217
,
−172 · 1013

2
,−215 · 33,−7 · 1373 · 20833,

−7 · 113,−218 · 33 · 53,−215 · 33 · 53 · 113,−218 · 33 · 53 · 233 · 293.

Since j(E2) = 26 · 33b6/cn, one quickly checks that none of these j-values leads to
a solution of (3).
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Remark 12. We note that proving irreducibility of ρE2
n for n = 5, 7, 13 is reduced

to studying the Diophantine equation j(E2) = jn(x), where jn(x) is the j-map
from X0(n) to X(1). For example, when n = 13, this amounts (after introducing
y = a/b3) to finding rational points on a hyperelliptic curve of genus 3 that we can
solve (with some work) using standard Chabauty-type techniques. The previous
argument then shows that the Frey–Hellegouarch curve E2 can be used as well to
solve (5) for n = 13. We leave the details to the interested reader.

Using Lemma 11, modularity [14] and level lowering [65, 66], we thus arrive at
the fact that ρE2

n is modular of level 2 · 3α with α ≤ 3 (and, as usual, with weight
2 and trivial character). At levels 2, 6 and 18, there are no newforms whatsoever,
while at level 54 there are only rational newforms. It follows that there exists a
newform f of level 54, with ρE2

n 
 ρf
n (equivalently, an elliptic curve F2 of conductor

54 with ρE2
n 
 ρF2

n ). If 5 | c, then E2 has multiplicative reduction at 5 and hence
a5(f) ≡ ±6 (mod n). Since we are assuming that n ≥ 11, and since a5(f) = ±3, this
leads to a contradiction. If 5 � c, then E2 has good reduction at 5 and, considering
all possible solutions of Eq. (3) modulo 5, we find that a5(E2) ∈ {±4,±1, 0}. Since
a5(f) ≡ a5(E2) (mod n) and n ≥ 11, the resulting contradiction finishes our proof.
We have shown the following.

Proposition 13. The only solutions to the generalized Fermat equation

a2 + δcn = b6,

in coprime nonzero integers a, b and c, with n ≥ 3 an integer and δ ∈ {−1, 1}, are
given by (n, |a|, |b|, δc) = (3, 3, 1,−2) (i.e. the Catalan solutions).

Remark 14. In the preceding proof, we saw that the possibilities for ap(f) and
ap(E2) are disjoint for p = 5. This does not appear to be the case for any prime
p > 5 (and we cannot use either p = 2 or p = 3 in this fashion), so, insofar as
there is ever luck involved in such a business, it appears that we have been rather
lucky here.

4. Covers of Spherical Equations

The spherical cases of the generalized Fermat equation xp + yq = zr are those with
signature (p, q, r) satisfying 1

p + 1
q + 1

r > 1 (for integers p, q and r, each exceeding
unity). To be precise, they are, up to reordering,

(p, q, r) ∈ {(2, 3, 3), (2, 3, 4), (2, 4, 3), (2, 3, 5)}
and (p, q, r) = (2, 2, n) or (2, n, 2), for some n ≥ 2. In each case, the corresponding
equations possess infinitely many coprime nonzero integer solutions, given by a finite
set of 2-parameter families (see, e.g., [10, 40]). The explicit parametrizations (with
proofs) can be found in [25, Chap. 14]. We will have need of those for (p, q, r) =
(2, 2, 3), (2, 2, 5), (2, 4, 3) and (3, 3, 2).
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4.1. The equation x2 + y2 = z3

If x, y and z are coprime integer solutions to this equation, then we have (see
[25, p. 466])

(x, y, z) = (s(s2 − 3t2), t(3s2 − t2), s2 + t2), (7)

for coprime integers s and t, of opposite parity. We begin this subsection with some
remarks on the Diophantine equation a2+b2n = c3. This particular family is treated
in [21, 29], where, using techniques of Kraus [54] and Chen–Siksek [24], the following
is proved.

Theorem 15 (Dahmen [29]). If n is a positive integer satisfying 3 ≤ n ≤ 107 or
n ≡ −1 (mod 6), then the Diophantine equation a2 + b2n = c3 has no solutions in
nonzero coprime integers a, b and c.

Here we recall part of the proof of this theorem for completeness (and future
use).

Proposition 16. If a, b and c are nonzero coprime integers for which

a2 + b2n = c3,

where n ≥ 3 is an integer, then b ≡ 3 (mod 6).

Proof. We may suppose that n ≥ 7 is prime, since for n = 3, 4 and 5 there are
no solutions (see Proposition 6, [16, 29]). From (7), if we have coprime integers a, b

and c with a2 +b2n = c3, there exist coprime integers s and t, of opposite parity, for
which bn = t(3s2 − t2), and hence coprime integers B and C, and δ ∈ {0, 1}, with

t = 3−δBn and 3s2 − t2 = 3δCn.

If δ = 0 (this is the case when 3 � b), it follows that Cn + B2n = 3s2 which, via
[8, Theorem 1.1], implies a = 0 (and so s = 0). If, on the other hand, we have
δ = 1 (so that 3 | b) and b (and hence t) even, then, writing B = 3B1, we have that
Cn + 32n−3B2n

1 = s2, with B1 even. Arguing as in [8], there thus exists a weight 2
cuspidal newform of level 6, an immediate contradiction.

Note that when b ≡ 3 (mod 6) we are led to the Diophantine equation

Cn +
1
27

B2n = A2, (8)

with A even and BC odd, and hence, via (say) the Frey–Hellegouarch curve (see,
e.g., [8])

E : Y 2 = X3 + 2AX2 +
B2n

27
X, (9)

to a cuspidal newform of level 96, which we are (presently) unable to rule out for
certain n. However, arguing as in [24, 29], we can resolve this case for a family of
exponents n of natural density 1. We recall these techniques here.
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4.2. Quadratic reciprocity

In what follows, we will employ the Hilbert symbol instead of the Legendre symbol,
to enable us to treat the prime 2 without modification of our arguments. Recall the
(symmetric, multiplicative) Hilbert symbol ( , )K : K∗ × K∗ → {±1} defined by

(A, B)K =

{
1 if z2 = Ax2 + By2 has a nonzero solution in K,

−1 otherwise.

For concision, we let ( , )p, ( , ) and ( , )∞ denote ( , )Qp , ( , )Q and ( , )R, respectively.
Note that we have the reciprocity law∏

p≤∞
(a, b)p = 1, (10)

valid for all nonzero rationals a and b. For an odd prime p, if A = pαu and B = pβv

with u and v p-adic units, we further have

(A, B)p = (−1)αβ (p−1)
2

(
u

p

)β (
v

p

)α

. (11)

In particular, for an odd prime p where vp(A) and vp(B) are even, it follows that
(A, B)p = 1. When p = 2, we have the following analogous formula: if we write
A = 2αu and B = 2βv with u and v 2-adic units, then

(A, B)2 = (−1)
u−1
2

v−1
2 +α v2−1

8 +β u2−1
8 .

Proposition 17. Let r and s be nonzero rational numbers. Assume that vl(r) = 0
for all l |n and that the Diophantine equation

A2 − rB2n = s(Cn − B2n)

has a solution in coprime nonzero integers A, B and C, with BC odd. Then

(r, s(C − B2))2
∏

vp(r) odd
vp(s) odd
2<p<∞

(r, s(C − B2))p = 1.

Proof. Let us begin by noting that, by the reciprocity law (10), we have

(r, s(C − B2))2
∏

vp(r) odd,
vp(s) odd,
2<p<∞

(r, s(C − B2))p

= (r, s(C − B2))∞
∏

vp(r) even,
vp(s) odd,
2<p<∞

(r, s(C − B2))p. (12)

Since we suppose

A2 = rB2n + s(Cn − B2n) · 12,
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it follows that (r, s(Cn − B2n))p = 1, for all primes p ≤ ∞. Therefore

(r, s(C − B2))p = (r, Cn−1 + · · · + B2n−2)p.

Since Cn−1 + · · ·+B2n−2 > 0, we also have (r, s(C −B2))∞ = 1. Now, assume that
vp(r) is even for an odd prime p. If vp(s(C −B2)) is also even then, by Eq. (11), we
have that (r, s(C − B2))p = 1. If vp(s(C − B2)) is odd, but p � n then vp(Cn−1 +
· · · + B2n−2) = 0, which implies that

(r, s(C − B2))p = (r, Cn−1 + · · · + B2n−2)p = 1.

When p |n and vp(s(C − B2)) is odd, since we are assuming that r is a p-unit and
since A, B and C are coprime, it follows that

A2 ≡ rB2n (mod p),

and hence ( r
p ) = 1. Appealing again to Eq. (11), we conclude that (r, s(C−B2))p =

1, as desired.

This proposition provides us with an extra constraint upon C/B2 (mod r) to
which we can appeal, at least on occasion, to rule out exponents n in certain residue
classes. If we suppose that we have a solution to Eq. (8) in integers A, B, C and n,
with A even and BC odd, we can either add or subtract B2n from both sides of the
equation in order to apply the above proposition. Subtracting B2n (this is the case
treated in [29]), we obtain

A2 − 28
27

B2n = Cn − B2n.

Here we have r = 28
27 and s = 1, and, via Proposition 17 (supposing that n ≡

−1 (mod 6) and appealing to [64] to treat the cases with 7 |n), may conclude that

(28/27, C − B2)2(28/27, C − B2)3(28/27, C − B2)7 = 1.

Since 3 |B, the quantity Cn is a perfect square modulo 3 and so (28/27, C−B2)3 = 1.
Also, since Cn−1 + · · · + B2n−2 is odd, we may compute that

(28/27, C − B2)2 = (28/27, Cn − B2n)2 = 1.

If 7 |C − B2 then necessarily 7 |A. It is easy to check from (9) that, in this case,
a7(E) = 0. On the other hand, each cuspidal newform f at level 96 has a7(f) = ±4,
whereby we have

0 = a7(E) 	≡ a7(f) (mod n),

an immediate contradiction. Therefore 7 � C − B2, and so

1 = (28/27, C − B2)7 =
(

C − B2

7

)
. (13)

On the other hand, since each elliptic curve E/Q of conductor 96 has a7(E) =
±4, computing the corresponding Fourier coefficient for our Frey–Hellegouarch
curve (9), we find that

A2 ≡ B2n (mod 7) (where A 	≡ 0 (mod 7)).
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It follows from (8) that (C/B2)n ≡ 2 (mod 7). Since n ≡ −1 (mod 6), we therefore
have C/B2 − 1 ≡ 3 (mod 7), contradicting (13). This proves the second part of
Theorem 15.

Similarly, adding B2n to both sides of Eq. (8), we have

A2 +
26
27

B2n = Cn + B2n = −((−C)n − B2n),

where we suppose that n ≡ 3 (mod 4) is prime (so that, via Theorem 15, n ≡
7 (mod 12)). We may thus apply Proposition 17 with r = −26/27 and s = −1 to
conclude that∏

p|78
(−26/27, s((−C)− B2))p =

∏
p|78

(−78, C + B2)p = 1.

As before, we find that (−78, C + B2)3 = 1. Since each elliptic curve E/Q of
conductor 96 has a13(E) = ±2, we thus have, via (9),



A ≡ ±1 (mod 13), B2n ≡ 4, 9, 10 or 12 (mod 13), or

A ≡ ±2 (mod 13), B2n ≡ 1, 3, 9 or 10 (mod 13), or

A ≡ ±3 (mod 13), B2n ≡ 3, 4, 10 or 12 (mod 13), or

A ≡ ±4 (mod 13), B2n ≡ 1, 4, 10 or 12 (mod 13), or

A ≡ ±5 (mod 13), B2n ≡ 1, 3, 4 or 9 (mod 13), or

A ≡ ±6 (mod 13), B2n ≡ 1, 3, 9 or 12 (mod 13),

whereby (C/B2)n ≡ 2, 3, 9 or 11 (mod 13) and hence from n ≡ 7 (mod 12), C/B2 ≡
2, 3, 9 or 11 (mod 13). It follows that (−78, C+B2)13 = 1, whereby (−78, C+B2)2 =
1. We also know that A is even, while BC is odd, whence C + B2 ≡ 2 (mod 4). It
follows from (−78, C + B2)2 = 1 that C/B2 + 1 ≡ ±2 (mod 16), and so C/B2 ≡ 1
or 13 (mod 16). If we now assume that v2(A) > 1, then Eq. (8) implies that Cn ≡
−3B2n (mod 16) (and so necessarily C/B2 ≡ 13 (mod 16)). Our assumption that
n ≡ 3 (mod 4) thus implies (C/B2)n ≡ 5 (mod 16), a contradiction. In conclusion,
appealing to Proposition 6 in case 3 |n, we have the following proposition.

Proposition 18. If n ≡ 3 (mod 4) and there exist nonzero coprime integers a, b

and c for which a2 + b2n = c3, then v2(a) = 1. In particular, if m ≥ 2 is an integer,
then the equation a2m + b2n = c3 has no solution in nonzero coprime integers a, b

and c.

4.2.1. a2 + b2n = c9

The case n = 2 was handled previously by Bennett, Ellenberg and Ng [5], while the
case n = 3 is well known (see Proposition 6). We may thereby suppose that n ≥ 5 is
prime. Applying Proposition 16 and (7), there thus exist coprime integers s and t,
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with s even and t ≡ 3 (mod 6), for which

bn = t(3s2 − t2) and c3 = s2 + t2.

We can therefore find coprime A, B ∈ Z with t = 3n−1An and 3s2 − t2 = 3Bn,
whence

Bn + 4 · 32n−3A2n = c3.

Via Lemma 3.4 of [9], for prime n ≥ 5 this leads to a weight 2 cuspidal newform of
level 6, a contradiction. We thus have the following proposition.

Proposition 19. If n is an integer with n ≥ 2, then the equation a2 + b2n = c9 has
no solutions in nonzero coprime integers a, b and c.

4.3. The equation x2 + y2 = z5

If x, y and z are coprime integers satisfying x2 + y2 = z5, then (see [25, p. 466])
there exist coprime integers s and t, of opposite parity, with

(x, y, z) = (s(s4 − 10s2t2 + 5t4), t(5s4 − 10s2t2 + t4), s2 + t2). (14)

The following result is implicit in [22]; we include a short proof for completeness.

Proposition 20. If a, b and c are nonzero coprime integers for which

a2 + b2n = c5,

where n ≥ 2 is an integer, then b ≡ 1 (mod 2).

Proof. The cases n = 2, 3 and 5 are treated in [5], [2] and [63], respectively. We
may thus suppose that n ≥ 7 is prime. From (14), there are coprime integers s and t,
of opposite parity, for which bn = t(5s4 − 10s2t2 + t2). There thus exist integers A

and B, and δ ∈ {0, 1}, with

t = 5−δAn and 5s4 − 10s2t2 + t4 = 5δBn.

It follows that

5δBn + 4 · 5−4δA4n = 5(s2 − t2)2. (15)

If b is even (whereby the same is true of t and A) and δ = 1, then again arguing
as in [8], we deduce the existence of a weight 2 cuspidal newform of level 10, a
contradiction. If, however, b is even and δ = 0, the desired result is an immediate
consequence of [8, Theorem 1.2].

4.3.1. The equation a2 + b2n = c10

As noted earlier, we may suppose that n ≥ 7 is prime and, from Proposition 20,
that b is odd. Associated to such a solution, via the theory of Pythagorean triples,
there thus exist coprime integers u and v, of opposite parity, with

bn = u2 − v2 and c5 = u2 + v2. (16)
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Hence, we may find integers A and B with

u − v = An and u + v = Bn.

From the second equation in (16) and from (14), there exist coprime integers s and
t, of opposite parity, with

u − v = (s − t)(s4 − 4s3t − 14s2t2 − 4st3 + t4).

Since

(s − t)4 − (s4 − 4s3t − 14s2t2 − 4st3 + t4) = 20s2t2,

it follows that gcd(s − t, s4 − 4s3t − 14s2t2 − 4st3 + t4) | 5. Similarly, we have

u + v = (s + t)(s4 + 4s3t − 14s2t2 + 4st3 + t4),

where gcd(s+t, s4+4s3t−14s2t2+4st3+t4) also divides 5. Since s and t are coprime,
we cannot have s− t ≡ s + t ≡ 0 (mod 5) and so may conclude that at least one of
gcd(s− t, s4 − 4s3t− 14s2t2 − 4st3 + t4) or gcd(s + t, s4 + 4s3t− 14s2t2 + 4st3 + t4)
is equal to 1. There thus exist integers X and Y such that either (Xn, Y n) =
(s − t, s4 − 4s3t − 14s2t2 − 4st3 + t4) or (s + t, s4 + 4s3t − 14s2t2 + 4st3 + t4). In
either case, X4n − Y n = 5(2st)2 which, with [8, Theorem 1.1], contradicts st 	= 0.
In conclusion, we have the following proposition.

Proposition 21. If n is an integer with n ≥ 2, then the equation a2 + b2n = c10

has no solutions in nonzero coprime integers a, b and c.

4.3.2. The equation a2 + b2n = c15

As before, we may suppose that n ≥ 7 is prime. Using Proposition 16, we may
also assume that b ≡ 3 (mod 6). Appealing to our parametrizations for x2 + y2 =
z5 (i.e. Eq. (14)), we deduce the existence of a coprime pair of integers (s, t) for
which

bn = t(5s4 − 10s2t2 + t4) and c3 = s2 + t2.

Since s and t are coprime, it follows that 5s4 − 10s2t2 + t4 ≡ ±1 (mod 3), whereby
3 | t. There thus exist integers A and B, and δ ∈ {0, 1} satisfying Eq. (15), with the
additional constraint that 3 |A. It follows that the corresponding Frey–Hellegouarch
curve has multiplicative reduction at the prime 3, but level lowers to a weight 2
cuspidal newform of level N = 40 or 200 (depending on whether δ = 1 or 0,
respectively). This implies the existence of a form f at one of these levels with
a3(f) ≡ ±4 (mod n). Since all such forms are one dimensional and have a3(f) ∈
{0,±2,±3}, it follows that n = 7, contradicting the main result of [64]. We thus
have the following proposition.

Proposition 22. If n is an integer with n ≥ 2, then the equation a2 + b2n = c15

has no solutions in nonzero coprime integers a, b and c.
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4.4. The equation x2 + y4 = z3

Coprime integer solutions to this equation satisfy one of the following: (see [25,
pp. 475–477])


x = 4ts(s2 − 3t2)(s4 + 6s2t2 + 81t4)(3s4 + 2s2t2 + 3t4),

y = ±(s2 + 3t2)(s4 − 18s2t2 + 9t4),

z = (s4 − 2t2s2 + 9t4)(s4 + 30t2s2 + 9t4),

(17)




x = ±(4s4 + 3t4)(16s8 − 408t4s4 + 9t8),

y = 6ts(4s4 − 3t4),

z = 16s8 + 168t4s4 + 9t8,

(18)




x = ±(s4 + 12t4)(s8 − 408t4s4 + 144t8),

y = 6ts(s4 − 12t4),

z = s8 + 168t4s4 + 144t8,

(19)

or 


x = ±2(s4 + 2ts3 + 6t2s2 + 2t3s + t4)(23s8 − 16ts7 − 172t2s6

− 112t3s5 − 22t4s4 − 112t5s3 − 172t6s2 − 16t7s + 23t8),

y = 3(s − t)(s + t)(s4 + 8ts3 + 6t2s2 + 8t3s + t4),

z = 13s8 + 16ts7 + 28t2s6 + 112t3s5 + 238t4s4

+ 112t5s3 + 28t6s2 + 16t7s + 13t8.

(20)

Here, s and t are coprime integers satisfying


s 	≡ t (mod 2) and s ≡ ±1 (mod 3), in case (17),

t ≡ 1 (mod 2) and s ≡ ±1 (mod 3), in case (18),

s ≡ 1 (mod 2) and s ≡ ±1 (mod 3), in case (19),

s 	≡ t (mod 2) and s 	≡ t (mod 3), in case (20).

Since work of Ellenberg [41] (see also [5]) treats the case where z is an nth power
(and more), we are interested in considering equations corresponding to x = an or
y = bn. We begin with the former.

4.4.1. The equation a2n + b4 = c3

The case n = 2 follows (essentially) from work of Lucas; see Sec. 5. We may thus
suppose that n ≥ 3. We appeal to the parametrizations (17)–(20), with x = an. In
(17) and (20), we have a even, while, in (18) and (19), a is coprime to 3. Applying
Proposition 16 leads to the desired conclusion.

Proposition 23. If n is an integer with n ≥ 2, then the equation a2n + b4 = c3 has
no solutions in nonzero coprime integers a, b and c.
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4.4.2. The equation a2 + b4n = c3

For this equation, with n ≥ 2 an integer, Proposition 16 implies that we are in case
(20), i.e. that there exist integers s and t for which

bn = 3(s − t)(s + t)(s4 + 8s3t + 6s2t2 + 8st3 + t4), gcd(s − t, 6) = 1. (21)

Assuming n is odd, we thus can find integers A, B and C with

s − t = An, s + t =
1
3
Bn and s4 + 8s3t + 6s2t2 + 8st3 + t4 = Cn.

It follows that

A4n − 1
27

B4n = −2Cn, (22)

with ABC odd and 3 |B. There are (at least) three Frey–Hellegouarch curves we
can attach to this Diophantine equation:

E1 : Y 2 = X(X − A4n)
(

X − B4n

27

)
,

E2 : Y 2 = X3 + 2A2nX2 − 2CnX,

E3 : Y 2 = X3 − 2B2n

27
X2 +

2Cn

27
X.

Although the solution (A4n, B4n, Cn) = (1, 81, 1) does not persist for large n, it
still appears to cause an obstruction to resolving this equation fully using current
techniques: none of the Ei have complex multiplication, nor can we separate out
this solution using images of inertia at 3 or other primes dividing the conductor. In
terms of the original equation, the obstruction corresponds to the identity

(±46)2 + (±3)4 = 133.

Incidentally, this is the same obstructive solution which prevents a full resolution
of a2 + b2n = c3.

By Theorem 15, we may assume that every prime divisor l of n exceeds 106,
which implies that ρEi

l is, in each case, irreducible. Applying level lowering results,
we find that the modular form attached to Ei is congruent to a modular form fi of
weight 2 and level Ni, where

Ni =




96, i = 1,

384, i = 2,

1152, i = 3.

The latter two conductor calculations can be found in [8] and the former in [53].
Since l > 106, all the fi’s with noninteger coefficients can be ruled out, after a short
computation. This implies that there is an elliptic curve Fi with conductor Ni such
that ρFi

l 
 ρEi

l . Furthermore, Ei must have good reduction at primes 5 ≤ p ≤ 53
(again after a short calculation using the fact that l > 106).
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Adding 2B4n to both sides of Eq. (22), we have

A4n +
53
27

B4n = 2(−Cn + B4n)

and hence, via Proposition 17,

(−53/27, 2(−C + B4))2(−53/27, 2(−C + B4))3(−53/27, 2(−C + B4))53 = 1.

Since −2Cn ≡ A4n (mod 3), we have (−53/27, 2(−C + B4))3 = 1. Also, since
−53/27 ≡ 1 (mod 8), it is a perfect square in Q2, which implies that (−53/27,
2(−C + B4))2 = 1. Therefore

(−53/27, 2(−C + B4))53 = 1,

i.e. −C/B4 +1 is a quadratic nonresidue modulo 53. Since all the elliptic curves F1

of conductor 96 have a53(F1) = 10 (whereby, from l > 106, a53(E1) = 10), if follows
that (A4/B4)n ≡ 36 (mod 53). Therefore

(−C/B4)n ≡ 17 (mod 53).

If n ≡ ±9,±11,±15,±17 (mod 52) then (−C/B4)n = (α − 1)n 	≡ 17 (mod 53)
for any choice of quadratic nonresidue α. It follows that if n ≡ ±2,±4 (mod 13),
Eq. (22) has no solution with ABC odd and 3 |B.

Similarly, if we subtract 2B2n from both sides of Eq. (22), we obtain

A4n − 55
27

B4n = 2(−Cn − B4n).

Proposition 17 thus implies

(55/27, 2(−C − B4))2(55/27, 2(−C − B4))3(55/27, 2(−C − B4))5

× (55/27, 2(−C − B4))11 = 1.

As before we have (55/27, 2(−C − B4))3 = 1 and since 55/27 ≡ 1 (mod 4) and
Cn−1 + · · · + B4n−4 is odd, also (55/27, Cn−1 + · · · + B4n−4)2 = (55/27, 2(−C −
B4))2 = 1. Similarly, since (A4/B4)n ≡ 1 (mod 5), it follows that (−C/B4)n ≡
−1 (mod 5), whereby, since n is odd, −C/B4 ≡ −1 (mod 5). Therefore
(55/27, 2(−C − B4))5 = 1, which implies (55/27, 2(−C − B4))11 = 1. In partic-
ular −C/B4 ≡ λ (mod 11) where

λ ∈ {0, 1, 3, 7, 8, 9}. (23)

We can rule out λ = 0 and 1 since we are assuming that 11 � ABC . To treat the
other cases, we will apply the Chen–Siksek method to the curves E2 and E3. We
first show that a11(E2) = −4.

Notice that considering all possible solutions to Eq. (22) modulo 13, necessarily
a13(E2) = −6 (since we assume that 13 � ABC ). Observe also that E2 has nonsplit
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multiplicative reduction at 3. Therefore

ρE2
n |G3 
 ρF2

n |G3 

(

χε ∗
0 ε

)
,

where χ is the cyclotomic character and ε :G3 → F∗
n is the unique unramified

quadratic character (see, for example, [33]). It follows that F2 must have nonsplit
multiplicative reduction at 3 and hence F2 must be isogenous to the elliptic curve
384D in the Cremona’s database. In particular, we have a11(E2) = −4 and so

A2n

B2n
≡ 1, 5 (mod 11).

When A2n/B2n ≡ 1 (mod 11), we find, by direct computation, that a11(E3) =
0, contradicting the fact that a11(E) ∈ {±2,±4} for every elliptic curve E/Q of
conductor 1152. Therefore, we necessarily have

A2n

B2n
≡ 5 (mod 11) ⇒

(−C

B4

)n

≡ 8 (mod 11),

whereby λn ≡ 8 (mod 11). A quick calculation shows, however, that for n ≡
±3 (mod 10), this contradicts (23). Collecting all this together, we conclude as
follows (noting the solution coming from (p, q, r) = (2, 8, 3); see [16]).

Proposition 24. If n is a positive integer with either n ≡ ±2 (mod 5) or n ≡
±2,±4 (mod 13), then the equation a2 + b4n = c3 has only the solution (a, b, c, n) =
(1549034, 33, 15613, 2) in positive coprime integers a, b and c.

Remark 25. The table of results regarding Eq. (1) given on p. 490 of [25] lists
the case of signature (2, 4n, 3) as solved, citing work of the first two authors. This
is due to an over-optimistic communication of the first author to Professor Cohen.
We regret any inconvenience or confusion caused by this mistake.

Remark 26. Regarding the Diophantine equation (22) as an equation of signature
(2, 4, n), we can attach the Frey–Hellegouarch Q-curves

E4 : Y 2 = X3 + 4BnX2 + 2(B2n + 3
√

3A2n)X

and

E5 : Y 2 = X3 + 4AnX2 + 2
(

A2n +
1

3
√

3
B2n

)
X.

One further Frey–Hellegouarch Q-curve can be derived as follows. Defining

U = (A4n + B4n/27)/2 = 2(s4 + 2s3t + 6s2t2 + 2st3 + t4)

we have

U2 − 1
27

A4nB4n = C2n.
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Considering this as an equation of signature (n, n, 2) turns out to give us the Frey–
Hellegouarch curve E1 again. Writing V = AnBn/3 and W = C2, we arrive at the
generalized Fermat equation of signature (2, 4, n)

U2 − 3V 4 = Wn

in nonzero coprime integers U, V and W , with 3 |V and v2(U) = 1. As before, we
can associate a Q-curve to this equation.

Although the solution (A4n, B4n, Cn) = (1, 81, 1) does not satisfy our desired
3-adic properties, it still apparently forms an obstruction using current techniques,
here and for all Frey–Hellegouarch curves we have considered, to solving this equa-
tion in full generality.

4.5. The equation x3 + y3 = z2

From [25, pp. 467–470], the coprime integer solutions to this equation satisfy one
of the following:


x = s(s + 2t)(s2 − 2ts + 4t2),

y = −4t(s − t)(s2 + ts + t2),

z = ±(s2 − 2ts − 2t2)(s4 + 2ts3 + 6t2s2 − 4t3s + 4t4),

(24)




x = s4 − 4ts3 − 6t2s2 − 4t3s + t4,

y = 2(s4 + 2ts3 + 2t3s + t4),

z = 3(s − t)(s + t)(s4 + 2s3t + 6s2t2 + 2st3 + t4),

(25)

or 


x = −3s4 + 6t2s2 + t4,

y = 3s4 + 6t2s2 − t4,

z = 6st(3s4 + t4).

(26)

Here, the parametrizations are up to exchange of x and y, and s and t are coprime
integers with


s ≡ 1 (mod 2) and s 	≡ t (mod 3), in case (24),

s 	≡ t (mod 2) and s 	≡ t (mod 3), in case (25),

s 	≡ t (mod 2) and t 	≡ 0 (mod 3), in case (26).

4.5.1. The equation a3 + b3 = c2n

The cases n ∈ {2, 3, 5} follow from [17] and Proposition 6. We may thus suppose
that n ≥ 7 is prime. Since Proposition 7 implies c ≡ 3 (mod 6), it follows that

cn = 3(s − t)(s + t)(s4 + 2s3t + 6s2t2 + 2st3 + t4),



November 14, 2014 15:22 WSPC/S1793-0421 203-IJNT 1530001

22 M. A. Bennett et al.

for s and t coprime integers with s 	≡ t (mod 2) and s 	≡ t (mod 3). There thus exist
integers A, B and C with

s − t = An, s + t = 3n−1Bn and s4 + 2s3t + 6s2t2 + 2st3 + t4 = Cn,

whereby

A4n + 34n−3B4n = 4Cn,

which we rewrite as

4Cn − A4n = 3(32n−2B2n)2.

Applying Theorem 1.2 of [8] to this last equation, we may conclude, for n ≥ 7
prime, that either ABC = 0 or 32n−2B2n = ±1, in either case a contradiction. We
thus have the following proposition.

Proposition 27. If n is an integer with n ≥ 2, then the equation a3 + b3 = c2n has
no solutions in nonzero coprime integers a, b and c.

4.5.2. The equation a3 + b3n = c2

The techniques involved in this case require some of the most elaborate combination
of ingredients to date, including Q-curves and delicate multi-Frey and image of
inertia arguments. For this reason, we have chosen to publish this separately in [3].
Our main result there is as follows.

Theorem 28 ([3]). If n is prime with n ≡ 1 (mod 8), then the equation a3 +b3n =
c2 has no solutions in coprime nonzero integers a, b and c, apart from those given
by (a, b, c) = (2, 1,±3).

4.6. Other spherical equations

Solutions to the generalized Fermat equation with icosahedral signature (2, 3, 5)
correspond to 27 parametrized families, in each case with parametrizing forms of
degrees 30, 20 and 12 (see, e.g., [40]). We are unable to apply the techniques of this
paper to derive much information of value in this situation (but see [4]).

5. Historical Notes on the Equations a4 ± b4 = c3

In [35], it is proved that the generalized Fermat equation (1) with (p, q, r) = (n, n, 3),
has no coprime, nonzero integer solutions a, b and c, provided n ≥ 7 is prime
(and assuming the modularity of elliptic curves over Q with conductor divisible by
27, now a well-known theorem [14]). To show the nonexistence of solutions for all
integers n ≥ 3, it suffices, in addition, to treat the cases n = 3, 4 and 5; the first of
these is classical and was (essentially) solved by Euler (see Proposition 6), while the
last was handled by Poonen in [63]. The case n = 4 is attributed in [35, 63], citing
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[36, p. 630], to the French mathematician Édouard Lucas (1842–1891), in particular
to [58] and [59, Chap. III].

In these two papers, as well as in other work of Lucas [47, pp. 282–288], there
does not appear to be, however, any explicit mention of the equation

a4 + b4 = c3, a, b, c ∈ Z, abc 	= 0, gcd(a, b, c) = 1. (27)

In this section, we will attempt to indicate why, despite this, the aforementioned
attributions are in fact correct. It is worth mentioning that the equations a4±b4 = c3

are also explicitly solved in [25, Proposition 14.6.6].

5.1. Reduction to elliptic generalized Fermat equations

First of all, it is quite elementary to reduce the nonexistence of solutions to (27) (or,
analogously, the equation a4 − b4 = c3; in the sequel, we will not discuss this latter
equation further) to the nonexistence of solutions to certain elliptic generalized
Fermat equations of signature (4, 4, 2). To carry this out, we note that a solution in
integers a, b and c to (27) implies, via (7) (and changing the sign of t), the existence
of nonzero coprime integers s and t for which

a2 = s(s2 − 3t2), (28)

b2 = t(t2 − 3s2) (29)

(and c = s2 + t2). Without loss of generality, we assume that 3 � s. Then gcd(s, s2 −
3t2) = 1 and, from (28), we have

s = ε1α
2, (30)

s2 − 3t2 = ε1β
2, (31)

for some nonzero integers α, β and ε1 ∈ {±1}. Using gcd(t, t2 − 3s2) ∈ {1, 3} and
(29), we have

t = ε2γ
2, (32)

t2 − 3s2 = ε2δ
2, (33)

for nonzero integers γ, δ and ε2 ∈ {±1,±3}. Examining (31) or (33) modulo 4, shows
that ε1, ε2 	≡ −1 (mod 4). Considering these equations simultaneously modulo 8,
now shows that ε2 	= 1. It follows that we have

ε1 = 1 and ε2 = −3.

Substituting (30) and (32) in Eq. (31) now yields

α4 − 27γ4 = β2, (34)

while substituting (30) and (32) in (33) yields

α4 − 3γ4 = δ2. (35)
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5.2. Relation to work of Lucas

In the preceding subsection, we showed that in order to prove that there are no solu-
tions to (27), it suffices to demonstrate that one of the Diophantine equations (34)
or (35) does not have solutions in nonzero integers. In [58, Chap. I; 59, Chap. III],
Lucas studied the Diophantine equation Ax4 + By4 = Cz 2 in unknown integers
x, y, z, using Fermat’s method of descent. Here, A, B and C are integers whose prime
divisors are contained in {2, 3}. His chief concern, however, was not with explicitly
showing that a given equation of this shape has no nontrivial solutions, but rather
in describing nontrivial solutions in the cases where they exist. In [58, Chap. I,
§X] a description of all the equations Ax4 + By4 = Cz 2 as above that do have
nontrivial solutions is recorded, together with a reference to the explicit solutions.
For the other equations Ax4 + By4 = Cz 2, including (34) and (35), it is simply
stated that there are no nontrivial solutions, without explicit proof of this fact.
In these references, however, Lucas clearly demonstrates his mastery of Fermat’s
method of descent and one can check that this method indeed applies immediately
to prove the nonexistence of nontrivial solutions in these cases. This provides con-
vincing evidence that Lucas had proofs for his claims that there are no nontrivial
solutions to (34) and (35), amongst others (which he failed to record, apparently as
he considered these cases to be lacking in interest!).

6. Future Work

A problem of serious difficulty that likely awaits fundamentally new techniques is
that of solving Eq. (1) for, say, fixed r and infinite, unbounded families p and q,
with gcd(p, q) = 1. A truly spectacular result at this stage would be to solve an
infinite family where p, q and r are pairwise coprime. Indeed, solving a single new
equation of this form will likely cost considerable effort using current techniques.

A limitation of the modular method at present is that the possible exponents
(p, q, r) must relate to a moduli space of elliptic curves (or more generally, abelian
varieties of GL2-type). For general (p, q, r), this is not the case. When this pre-
condition holds, the modular method can be viewed as a technique for reducing
the problem of resolving (1) to that of studying certain rational points on these
moduli spaces through Galois representations. The inability to carry out the mod-
ular method in such a situation relates to a lack of sufficiently strong methods
for effectively bounding these rational points (i.e. Mazur’s method fails or has not
been developed). We note however that irreducibility is typically easier to prove
because the Frey–Hellegouarch curves encountered will have semi-stable reduction
away from small primes — this allows Dieulefait and Freitas [37], and Freitas [42],
and Freitas and Siksek [45] for instance, to prove irreducibility without resort to a
Mazur-type result (essentially, via modifications of a method of Serre [67, p. 314,
Corollaire 2] which predates and is used in [61]).

For general (p, q, r), Darmon [32] constructs Frey–Hellegouarch abelian varieties
of GL2-type over a totally real field and established modularity in some cases;



November 14, 2014 15:22 WSPC/S1793-0421 203-IJNT 1530001

Generalized Fermat equations: A miscellany 25

the analogous modular curves are, in general, quotients of the complex upper half-
plane by nonarithmetic Fuchsian groups.

The ABC conjecture implies that there are only finitely many solutions to (1) in
coprime integers once min{p, q, r} ≥ 3. In addition, an effective version of the ABC
conjecture would imply an effective bound on the size of the solutions, though this
effectivity needs to be within computational range to allow a complete quantitative
resolution of (1).
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tions d’arithmétique supérieure, Extrait du Bullettino di Bibliografia e di Sioria delle
Scienze Matematiche e Fisiche (Rome, 1877, Imprimerie des Sciences Mathématiques
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