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1. INTRODUCTION

The algebra Qsym of quasi-symmetric functions was introduced by
Gessel [14] as a source of generating functions for P-partitions [24]. Since
then, quasi-symmetric functions have played an important role as generat-
ing functions in combinatorics [26, 27]. The relation of Qsym to the more
familiar algebra of symmetric functions was clarified by Gelfand et al. [13]
who defined the graded Hopf algebra NC of noncommutative symmetric
functions and identified Qsym as its Hopf dual.

Joni and Rota [17] made the fundamental observation that many discrete
structures give rise to natural Hopf algebras whose coproducts encode the
disassembly of these structures (see also [22]). A seminal link between
these theories was shown by Ehrenborg [11], whose flag f-vector quasi-
symmetric function of a graded poset gave a Hopf morphism from a Hopf
algebra of graded posets to Qsym. This theory was augmented in [4] where
it was shown that the quasi-symmetric function associated to an edge-labelled
poset similarly gives a Hopf morphism. That quasi-symmetric function
generalised a quasi-symmetric function encoding the structure of the
cohomology of a flag manifold as a module over the ring of symmetric
functions [3, 6].

We extend and unify these results by means of a simple construction.
Given a graded representation of NC on the Z-linear span ZP of a graded
poset P, the matrix coefficients of such an action are linear maps on NC
and hence quasi-symmetric functions. In Section 2 we show how this situa-
tion gives rise to a Hopf morphism as before. In Section 3, we extend this
construction to an arbitrary oriented multigraph G. Sections 4, 6, and 7
give examples of this construction, including rank selection in posets, flag
f-vectors of polytopes, P-partitions, Stanley symmetric functions, and the
multiplication of Schubert classes in the cohomology of flag manifolds.

In Section 5, we discuss how properties of the combinatorial structure of
G may be understood through the resulting quasi-symmetric function. This
analysis allows us to relate work of Bayer, Billera, and Liu [1, 9] on
Eulerian posets with work of Stembridge [28] on enriched P-partitions.
More precisely, we show that the quotient of NC by the ideal of the
generalised Dehn�Somerville relations is dual to the Hopf subalgebra of
peak functions in Qsym. We also solve the conjecture of [2], showing that
the shifted quasi-symmetric functions form a Hopf algebra. These functions
were introduced by Billey and Haiman [10] to define Schubert polyno-
mials for all types.

In Section 7, we show how a natural generating function for enumerating
peaks in a labelled poset is the quasi-symmetric function for an enriched
structure on the poset. Special cases of this combinatorics of peaks include
Stembridge's theory of enriched P-partitions [28], the Pieri-type formula
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for type B and C Schubert polynomials in [5], and Stanley symmetric
functions of types B, C, and D. These examples linking the diverse areas of
Schubert calculus, combinatorics of polytopes, and P-partitions illustrate
how this theory transfers techniques and ideas between disparate areas of
combinatorics.

We thank Sarah Witherspoon who contributed to the appendix on Hopf
algebras and Geanina Tudose for her assistance with fusion coefficients.

2. PIERI OPERATORS ON POSETS

Many interesting families of combinatorial constants can be understood
as an enumeration of paths in a ranked partially ordered set (poset) which
satisfy certain conditions. One example of this is the Littlewood�Richardson
rule in the theory of symmetric functions [19]. This rule describes the multi-
plicity c*

+, & of a Schur function S* in the product S+S& of two others. The
constants c*

+, & can be seen as an enumeration of all paths in Young's lattice
from + to * satisfying some conditions imposed by &. We note that the
constants c*

+, & are invariant under certain isomorphisms of intervals in
Young's lattice, namely c*

+, &=c?
{, & whenever *�+=?�{. The skew Schur

functions S*�+ are generating functions of these constants as we have

S*�+=:
&

c*
+, & S& .

We generalise the principles of this example, introducing families of
algebraic operators to select paths in a given poset. Here, analogues of the
Littlewood�Richardson constants count paths in the poset satisfying some
conditions imposed by the family of operators. These enumerative com-
binatorial invariants of the poset are encoded by generating functions
which generalise the skew Schur functions. We show that the association of
such a generating function to a poset induces a Hopf morphism to Qsym.

Let (P, <) be a graded poset with rank function rk: P � Z+ and let ZP
be the free graded Z-module generated by the elements of P. For an integer
k>0, a (right) Pieri operator on P is a linear map h� k : ZP � ZP which
respects the poset structure. By this we mean that for all x # P, the support
of x .h� k # ZP consists only of elements y # P such that x< y and rk( y)&
rk(x)=k. We note that such an operator h� k is of degree k on ZP.

Gelfand et al. [13] define the Hopf algebra NC of noncommutative
symmetric functions to be the free associative algebra Z (h1 , h2 , ...) with a
generator hk in each positive degree k and coproduct 2hk=�k

i=0 hi �hk&i ,
where h0=1. It follows that given a family of Pieri operators [h� k]k>0 on
a poset P, the map hk [ h� k turns ZP into a graded (right) NC-module.
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Conversely, any graded right action of NC on ZP which respects the poset
structure of P gives a family of Pieri operators on P. When the context is
clear, we may identify the generator hk with the operator h� k .

Given such a representation of NC on ZP and x, y # P, the association
of 9 # NC to the coefficient of y in x .9 is a linear map on NC. These
matrix coefficients are elements of the Hopf dual of NC which is the Hopf
algebra Qsym of quasi-symmetric functions [13]. These coefficients vanish
unless x� y. This gives a collection of quasi-symmetric functions K[x, y]

associated to every interval [x, y] of P.
Let HP be the free Z-module with basis given by Cartesian products of

intervals [x, y] of P, modulo identifying all singleton intervals [x, x] with
the unit 1 and empty intervals with zero. Then HP is a graded Z-algebra
whose product is the Cartesian product of intervals and whose grading is
induced by the rank of an interval of P. It has a natural coalgebra structure
induced by

2A= :
x # A

[0� A , x]�[x, 1� A],

where A=[0� A , 1� A] is an interval of P with minimal element 0� A and maximal
element 1� A . Projection onto Z of the degree 0 component of HP is the counit.
It follows that HP is a bialgebra. It is graded; therefore, by Proposition A.2,
there is a unique antipode and HP is a Hopf algebra.

Theorem 2.1. For any graded poset P, HP is a Hopf algebra.

Suppose we have a family of Pieri operators on a poset P. Since NC is
a Hopf algebra, the action of NC�NC on ZP�ZP=Z(P_P) pulls back
along the the coproduct 2 to give an action of NC on Z(P_P). We iterate
this and use coassociativity to get an action of NC on the Z-linear span of
Pk. Since a product of intervals of P is an interval in such an iterated
product of P with itself, we may extend the definition of K to the gener-
ators of HP and then by linearity to HP itself, obtaining a Z-linear
homogeneous map K: HP � Qsym. Let ( } , } ) be the bilinear form on ZP
induced by the Kronecker delta function on the elements of P.

Theorem 2.2. The map K: HP � Qsym is a morphism of Hopf algebras.

Proof. We show that K respects product and coproduct, which suffices.
For x, y # P and 9 # NC, we have K[x, y](9)=(x .9, y). Thus for x # P
and 9 # NC,

x .9=:
y

(x .9, y) y=:
y

K[x, y](9) y.
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Let A=[0� A , 1� A] and B=[0� B , 1� B] be intervals of Pk1 and Pk2, respec-
tively. For 9 # NC, using Sweedler notation for the coproduct

29=: 9a �9b ,

and the duality between the product of Qsym and the coproduct of NC, we
obtain

KA_B(9)=( (0� A �0� B) .9, 1� A �1� B)

=�: 0� A .9a �0� B .9b , 1� A �1� B�
=: (0� A .9a , 1� A)(0� B .9b , 1� B)

=: KA(9a) KB(9b)=(KA �KB)(29)=(KA } KB)(9).

Let A=[0� A , 1� A] be an interval of Pk and 9, 8 # NC. Using the duality
between the coproduct of Qsym and the product of NC, we have

(2KA)(9�8)=KA(9 } 8)=( (0� A .9 ) .8, 1� A)

=�:
y

(K[0� A , y](9) y) .8, 1� A�
=� :

x, y

K[0� A , y](9) K[ y, x](8)x, 1� A�
= :

y # A

K[0� A , y](9) K[ y, 1� A ](8)=K2A(9�8). K

The map K is a generating function for the enumerative combinatorial
invariants associated to the NC-structure of ZP. Let [a:] be a graded basis
of NC and let [b:] be the corresponding dual basis in Qsym. Then

K[x, y]=:
:

(x .a� : , y) b: . (2.1)

We interpret the coefficient of b: in K[x, y] as the number of paths from x
to y satisfying some condition imposed by a: .

We reformulate Eq. (2.1) in terms of the Cauchy element of Gelfand
et al. [13]. This element relates each graded basis of the Hopf algebra
NC=�n�0 NCn to its corresponding dual basis in the Hopf algebra
Qsym=�n�0 Qsymn . More precisely, let :=(:1 , :2 , ..., :l) with l�0 be
a sequence of positive integers. Such a sequence is a composition of n,
denoted : < n, if n=�l

i=1 :i . By convention the empty sequence for l=0 is the
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unique composition of 0. The complete NC-functions [S:=h:1
h:2

} } } h:l
]: < n

and the ribbon NC-functions [R:]: < n form two bases of NCn . Similarly
the monomial quasi-symmetric functions [M:]: < n and the complete quasi-
symmetric functions [F:]: < n form two bases of Qsymn . In the graded
completion of �n�0 NCn �Qsymn we have the following Cauchy element,

C :=:
:

a: �b:=:
:

R: �F:=:
:

S :�M: , (2.2)

where [a:] and [b:] is any pair of dual graded bases.
The right action of NC on ZP extends linearly to an action of the graded

completion of �n�0 NCn �Qsymn on the completion of Qsym�Z ZP. The
following theorem is simply a reformulation of Eq. (2.1).

Theorem 2.3. For any family of Pieri operators on a poset P and x, y # P,

K[x, y]=(x .C, y).

Expanding the quasi-symmetric function K[x, y] in a basis of Qsym gives
a family of enumerative combinatorial invariants for the given action of NC
on the poset P. In this way, the functions K[x, y] are seen to be analogues
of the skew Schur functions presented at the beginning of this section.

3. PIERI OPERATORS ON GRAPHS

We extend this simple construction on graded posets to (locally finite)
oriented multigraphs. Let G=(V, E) be a multigraph where V is the set of
vertices and E is a function V_V � Z+ such that

:
y$ # V

E(x, y$) and :
x$ # V

E(x$, y)

are both finite for all x, y # V. The value E(x, y) identifies the number of
arrows from x to y in G. The function E is the incidence matrix of the
graph G, and E r is the matrix product of r copies of E. Given x, y # V, let
[x, y] be the set of all paths from x to y. Consider a graded version of this
set,

[x, y]= .
r�0

[x, y](r),

where the interval [x, y](r) is the set of all paths of length r from x to y.
Note that |[x, y](r)|=E r(x, y) is finite.
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Let ZG denote the free Z-module generated by V. Here, a Pieri operator
is a linear map h� k : ZG � ZG where for all x # V, the support of x .h� k # ZG
consists of elements y # V such that Ek(x, y)>0. As before, a family
[h� k]k>0 of Pieri operators induces on ZG the structure of an NC-module.
We thus obtain a collection of linear maps K[x, y] (r) : NC � Z given by
9 [ (x .9 (r), y) where 9 (r) is the r th homogeneous component of 9, and
thus quasi-symmetric functions K[x, y] (r) # Qsymr .

We define a Hopf algebra HG associated to G. Define the product of
two intervals by [x, y](r)_[u, v](s) :=[(x, u), ( y, v)] (r+s), an interval in
G_G. Let HG be the free Z-module with basis given by products of inter-
vals [x, y](r) in G, modulo identifying all intervals [x, x](0) with the unit
1 and all empty intervals [x, y](r) with zero. If we let r be the degree of an
element [x, y](r), then HG is a graded Z-algebra with product _. The
algebra HG has a natural coalgebra structure induced by

2[x, y](r)= :
r

s=0

:
z # V

[x, z] (s) �[z, y](r&s).

The counit is again the projection onto Z of the degree 0 component. Since
the bialgebra HG is graded, we have the following theorem.

Theorem 3.1. For any oriented multigraph G, HG is a Hopf algebra.

Suppose we have a family of Pieri operators on a graph G. As in Section 2,
we have an action of NC on the Z-linear span of Gk, for any positive
integer k. Since the generators of HG are sets of the form [w, z] (t) in Gk,
we may define the quasi-symmetric function K on each of these generators
of HG and then extend by linearity to HG itself, obtaining a Z-linear
graded map K: HG � Qsym. We leave to the reader the straightforward
extension of Theorem 2.2.

Theorem 3.2. The map K: HG � Qsym is a morphism of Hopf algebras.

To extend Theorem 2.3, we decompose the Cauchy element C into its
homogeneous components: C=�r�0 Cr . For example, we can use Cr=
�: < r S :�M: . The following is immediate.

Theorem 3.3. For any family of Pieri operators on a graph G and x, y # G,

K[x, y] (r)=(x .Cr , y).

Remark 3.4. These constructions generalise those of Section 2. Given a
ranked poset P we associate to it the incidence graph GP=(P, E) where
E(x, y)=1 if y covers x and E(x, y)=0 otherwise. The intervals [x, y](r)
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are empty unless r=rk( y)&rk(x) in which case [x, y] (r) is equal to the
saturated chains in [x, y]. In such a case we omit the superscript (r) and
arrive again at the results of Section 2.

4. THREE SIMPLE EXAMPLES

We give three simple examples to illustrate our theory.

Example 4.1 (Simple path enumeration). Given a graph G, define the
Pieri operator h� k : ZG � ZG by

x .h� k= :
y # G

Ek(x, y) y.

This action of NC satisfies h� ah� b=h� a+b for all a, b # Z+. From this we
deduce that K[x, y] (r)=E r(x, y) �: < r M: . Thus K simply enumerates all
paths of length r from x to y. When G is a graded poset P, E r(x, y)=0
unless r=rk( y)&rk(x) and x� y in P. In this case, E r(x, y) counts the
saturated chains in the interval [x, y].

Example 4.2 (Skew Schur functions). Let (P, <) be Young's lattice of
partitions. For + # P, define + .h� k to be the sum of all partitions * such that
*�+ is a row strip and |*|&|+|=k. This family of Pieri operators lifts the
action of the algebra 4 of symmetric functions on itself. It follows that
K[+, *] is the skew Schur function S*�+ .

Example 4.3 (Rank selection Pieri operators and flag f-vectors). Given
any ranked poset P, consider the Pieri operator obtained by setting x .h� k

equal to the sum of all y>x such that rk( y)&rk(x)=k. In this case,
(x .S� :, y) counts all chains in the rank-selected poset obtained from
[x, y] with ranks given by :, and K is Ehrenborg's flag f-vector quasi-
symmetric generating function [11].

5. STRUCTURE FROM HOPF SUBALGEBRAS

Suppose, for a family of posets, we have a class of enumerative com-
binatorial invariants which possesses some additional structure. In many
situations, the associated families of Pieri operators satisfy some relations,
and the resulting actions of NC are carried by a Hopf quotient of NC.
Equivalently, the images of K lie in the dual of this quotient, a Hopf
subalgebra of Qsym.

91PIERI OPERATORS ON POSETS



More precisely, let an action of NC on ZG be given by a homomorphism
, from NC to the linear endomorphism ring End(ZG). Let I be an ideal
generated by some relations satisfied by the Pieri operators. When I is a
Hopf ideal, so that we have 2(I)/I�NC+NC�I, we have the
commuting diagram

as the functions K[w, z] (t) are characters of representations ,}k on ZGk.
In particular, Eq. (2.1) has a more specialised form. Given a basis [c*]

of NC�I and [d*] its dual basis inside Qsym, we have

K[x, y] (r)=:
*

(x .c* , y) d* , (5.1)

where the sum is only over the index set of the given basis for NC�I. Here
the numbers (x .c* , y) are specialisations of the enumerative invariants in
Eq. (2.1).

We illustrate these principles in a series of examples which introduce
certain classes of Pieri operators defined by quotients of NC.

Example 5.1 (Simple path enumeration). In Example 4.1, the ideal I

is generated by ha+b&hahb for all a, b>0. This is not a Hopf ideal since

2(h2&h1 h1)=h2 �1+h1 �h1+1�h2&(h1 �1+1�h1)2

=(h2&h1h1)�1+1� (h2&h1h1)&h1 �h1 ,

which is not contained in I�NC+NC�I.

Example 5.2 (Symmetric Pieri operators). A family of Pieri operators
is symmetric if h� ah� b=h� bh� a for all a, b>0. In this case, NC�I$
Z[h1 , h2 , ...], which is the self-dual Hopf algebra 4 of symmetric functions
(see [19, 27]), and thus I is a Hopf ideal. Symmetric Pieri operators
satisfy x .S :=x .S; whenever : and ; determine the same partition, and
hence by Eq. (2.1) we can write K[x, y] in the form

:
* |&r

A* :
*(:)=*

M: ,
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where r is the rank of the interval [x, y], *(:) is the partition determined
by :, and A* is some constant. By definition, �*(:)=* M: is the symmetric
function m* , and so we see again that the image of K lies in 4. Symmetric
Pieri operators can be found in Example 4.2 and in Sections 6 and 7.

It is interesting to use other known dual bases of 4 in Eq. (5.1), in
particular, its self-dual basis [S*] of Schur functions.

Example 5.3 (Flag f-vectors of Eulerian posets). Consider Example 4.3
when the given ranked poset P is Eulerian. The flag f-vectors of Eulerian
posets satisfy the linear generalised Dehn�Sommerville or Bayer�Billera
relations [1]. Billera and Liu [9, Proposition 3.3] show that the ideal of
relations satisfied by such Pieri operators is generated by the (even) Euler
relations

:
i+ j=2n

(&1) i h� ih� j=2h� 2n+ :
2n&1

i=1

(&1) i h� ih� 2n&i=0, (5.2)

where n is a positive integer. As in [9], let I be the ideal of NC generated
by

X2n := :
i+ j=2n

(&1) i hi hj=2h2n+ :
2n&1

i=1

(&1) i h ih2n&i .

Then we have the following algebra isomorphism,

Q�NC�I$Q ( y1 , y3 , y5 , ...) ,

where yi has degree i. We identify the dual (NC�I)* inside Q�Qsym to
be the peak Hopf algebra 6 introduced by Stembridge [28] in his study
of enriched P-partitions. This shows that I is a Hopf ideal over Q.

Theorem 5.4. (Q�NC�I)*$Q�6.

Let us clarify some notation for the proof of Theorem 5.4. Given com-
positions :, ; < m, write ;P: if ; is a refinement of : and let ;* be the
refinement of ; obtained by replacing all components ;i>1 of ; for i>1
with [1, ;i&1]. Given a composition : < m with :1>1 if m>1, the Billey�
Haiman shifted quasi-symmetric functions [10] are shown [2] to have the
formula

%:= :

;*P:
; < m

2k(;) M; , (5.3)

where k(;) is the number of components of ;.
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If : is a composition with all components greater than 1, except perhaps
the last, then we call : a peak composition and %: a peak function. In [28]
Stembridge shows that the linear span 6 of the peak functions is a sub-
algebra of Qsym. In fact, 6 is a Hopf subalgebra of Qsym [2].

Recall that in the identification of Qsym as the graded linear dual of NC,
the families [M:] and [S :] are dual bases. That is, M:(S ;)=1 if :=;
and 0 otherwise. Given any two compositions '=('1 , '2 , ...) and ==
(=1 , =2 , ...), let ' } = be the concatenation ('1 , '2 , ..., =1 , =2 , ...).

Lemma 5.5. The peak algebra 6 annihilates the ideal I.

Proof. We show that a peak function %: annihilates any function of the
form S;X2nS #. Since M'(S =)=0 unless '==, it follows that we need only
study those summands 2k($)M$ in %: such that either $=; } 2n } # or else
$=; } i } (2n&i) } #. Now if 2k(; } 2n } #)M; } 2n } # is a summand of %: , then it
follows that all summands of the form 2k(; } i } (2n&i) } #)M; } i } (2n&i) } # will also
belong to %: . By the Euler relations (5.2), it follows immediately that
S;X2nS # is annihilated by %: .

We are left to consider the case where 2k(; } i } (2n&i) } #)M; } i } (2n&i) } # is a
summand of %: but not 2k(; } 2n } #)M; } 2n } # . Observe that from the definition
(5.3) we must have n>1 since if 2k(; } 1 } 1 } #)M; } 1 } 1 } # is a summand of %:

then 2k(; } 2 } #)M; } 2 } # will be too as (; } 1 } 1 } #)*=(; } 2 } #)*. Suppose
; < m and let j be such that

:1+:2+ } } } +:j&1�m<:1+:2+ } } } +:j .

Then M; } i } (2n&i) } # is in the support of %: if and only if :1+:2+ } } } +:j

is m+i or m+i+1. If it is m+i, then for i{1

%:(S;X2nS #)=%:((&1) i S; } i } (2n&i) } #+(&1) (i&1) S; } i&1 } (2n&i+1) } #)=0.

If i=1, then (; } 1 } (2n&1) } #)*P:. Since %: is a peak function and n>1,
we must have :j+1>1. This implies that 2n&1�:j+1 , hence (; } 2n } #)*
P: and 2k(; } 2n } #)M; } 2n } # is a summand of %: , which contradicts our
assumption.

A similar argument for m+i+1 completes the proof of the lemma. K

Proof of Theorem 5.4. By Lemma 5.5, Q�6�(Q�NC�I)*$
(Q ( y1 , y3 , y5 , ...) )*. This containment is an equality since the dimension
of the i th homogeneous component of both 6 [28] and Q( y1 , y3 , y5 , ...)
[9] is the i th Fibonacci number. K

Definition 5.6. Pieri operators are symmetric if the image of K lies
within the algebra 4 of symmetric functions. Similarly, Pieri operators are
Eulerian if the image of K lies within 6Q , the Q-span of 6. This occurs if
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there is some scalar multiple :kh� k of each Pieri operator such that the :kh� k

satisfy the Euler relations (5.2).

We solve the conjecture presented in [2] related to the general functions
%: introduced by Billey and Haiman [10]. Let 5 be the Q-linear span of
all the %: .

Theorem 5.7. The space 5 is a Hopf subalgebra of Q�Qsym. Moreover
the set

J=[9 # NC | %(9)=0 for all % # 5]

is the principal ideal generated by X2=2h2&h1 h1 .

Proof. We first show that J is an ideal and it is included in I=(X2n) ,
the ideal generated by the Euler relations. By Theorem 3.2 of [2], 5 is a
coalgebra. Hence 5*=NC�J is an algebra, which shows that J is an
ideal. Since 6/5 we have that J/I. Now it is straightforward to check
that X2 # J. Let J� �J be the principal ideal generated by X2 . Since
2(X2)=1�X2+X2 �1 we have that J� is a Hopf ideal and NC�J� is a
Hopf algebra. Its dual (NC�J� )* is a Hopf subalgebra of Qsym contained
in 5. To conclude our argument, we show that the dimension of the
homogeneous components of degree n in NC�J� and 5 are equal for all n.
In NC�J� , the homogeneous component of degree n has dimension given by
the number of compositions of n that contain no component equal to 2.
This satisfies the recurrence ?n=?n&1+?n&2+?n&4 with initial conditions
?1=1, ?2=1, ?3=2, and ?4=4. This is exactly the recurrence of Theorem
4.3 in [2] given for calculating the dimension of the homogeneous compo-
nent of degree n in 5. Hence (Q�NC�J� )*=5 is a Hopf algebra and
J� =J. K

6. DESCENT PIERI OPERATORS

Definition 6.1. An (edge)-labelled poset is a graded poset P whose
covers (edges of its Hasse diagram) are labelled with integers. To enumerate
chains according to the descents in their sequence of (edge) labels, we use the
descent Pieri operator

x .h� k :=:
|

end(|),

where the sum is over all chains | of length k starting at x,

|: x w�
b1 x1 w�

b2 } } } w�
bk xk=: end(|),
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with no descents; that is b1�b2� } } } �bk . The resulting quasi-symmetric
function KP was studied in [4], where (with some effort) it was shown to
give a Hopf morphism from a reduced incidence Hopf algebra to Qsym. We
may likewise have edge-labelled graphs and define descent Pieri operators
in that context.

To a subset [ j1< j2< } } } < jk] of [n&1], we associate the composition
( j1 , j2& j1 , ..., n& jk). Given a saturated chain | in P with labels b1 ,
b2 , ..., bn , let D(|) be the descent composition of |, that is the composition
associated to the descent set [i | bi>bi+1] of |. Then (Eq. (4) of [4]) we
have

K[x, y]=: FD(|) , (6.1)

where the sum is over all saturated chains | in the interval [x, y], and F:

is the complete (or fundamental) quasi-symmetric function.
If we label a cover +<}* in Young's lattice consistently by either the

column or content of the box in *�+, then the descent Pieri operator coin-
cides with the Pieri operator of Example 4.2.

Example 6.2 (k-Bruhat order and skew Schubert functions). The Pieri-
type formula for the classical flag manifold [18, 23] suggests a symmetric
Pieri operator on a suborder of the Bruhat order on the symmetric group,
which encodes the structure of the cohomology of the flag manifold as a
module over the ring of symmetric polynomials. Let Sn denote the symmetric
group on n elements and let l(w) be the length of a permutation w in this
Coxeter group.

We define the k-Bruhat order <k by its covers. Given permutations
u, w # Sn , we say that u<}k w if l(u)+1=l(w) and u&1w=(i, j), where
(i, j) is a reflection with i�k< j. When u<}k w, we write wu&1=(a, b) with
a<b and label the cover u<}k w in the k-Bruhat order with the integer b.

The descent Pieri operators on this labelled poset are symmetric as h� m

models the action of the Schur polynomial hm(x1 , ..., xk) on the basis of
Schubert classes (indexed by Sn) in the cohomology of the flag manifold
SL(n, C)�B. We also have

K[u, w]=:
*

cw
u, (*, k)S* ,

where cw
u, (*, k) is the coefficient of the Schubert polynomial Sw in the

product Su } S*(x1 , ..., xk). This is the skew Schubert function Swu&1 of [6].
Geometry shows these coefficients cw

u, (*, k) are nonnegative. It is an important
open problem to give a combinatorial or algebraic proof of this fact.
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Example 6.3 (The weak order on Sn and Stanley symmetric functions).
The weak order on the symmetric group Sn is the labelled poset whose
covers are w<}w(i, i+1), with label i if l(w)+1=l(w(i, i+1)). In [4], it
is shown that the descent Pieri operators on this labelled poset are sym-
metric and K[u, w] is the Stanley symmetric function or stable Schubert
polynomial Fwu&1 , introduced by Stanley to study reduced decompositions
of chains in the weak order on Sn [25].

Example 6.4 (Noncommutative Schur functions of Fomin and Greene).
Fomin and Greene have a theory of combinatorial representations of certain
noncommutative Schur functions [12]. These are a different noncommu-
tative version of symmetric functions than NC. Using the Cauchy element
in their algebra, they obtain symmetric functions Fy�x which include Schur
functions, Stanley symmetric functions, stable Grothendieck polynomials,
and others. A combinatorial representation gives rise to an edge-labelled
directed graph so that the functions Fy�x of Fomin�Greene are the func-
tions K[x, y] coming from the descent Pieri operators on this structure.

Let FGn be the quotient of the free associative algebra Z (u1 , u2 , ..., un)
by the two-sided ideal generated by the following relations

uiuk uj =uku iuj , i� j<k |i&k|�2

ujui uk=u juk ui , i< j�k |i&k|�2 (6.2)

(ui+ui+1) ui+1u i =ui+1 ui (ui+u i+1).

In FGn_Z[z1 , z2 , ..., zm] define the noncommutative Cauchy element to
be

� := `
m

i=1

`
1

j=n

(1+ziuj).

Let R be any set whose cardinality is at most countable, and let ZR be the
free Abelian additive group with basis consisting of the elements of R.
A representation of FGn on ZR is combinatorial if for all x # R, we
have x .ui # R _ [0]. Given a combinatorial representation of FGn on ZR
and x, y # R, set

Fy�x :=(x .�, y) .

We define an edge-labelled directed multigraph R with vertex set R for
which Fy�x is the quasi-symmetric function coming from the descent Pieri
operator on that structure. We construct R by drawing an edge with label
&i from x to x .ui

x ww�&i x .u i
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if x .ui {0. Considering the descent Pieri operators on R, we have the
following.

Theorem 6.5. For every x, y # R, Fy�x=K[x, y](z1 , ..., zm , 0).

Remark 6.6. We identify the generators zi in Z[z1 , ..., zm] with those in
the algebra Qsym generated by the indeterminates z1 , z2 , ... .

Before we prove Theorem 6.5, we recall some results from [12]. Define

ek(u) := :
i1>i2> } } } >ik

ui1
u i2

} } } uik

and for a partition *=(*1 , ..., *m) set e*(u) :=e*1
(u) } } } e*m

(u).

Proposition 6.7 (Fomin�Greene).

(1) For any positive integers a, b, we have ea(u) eb(u)=eb(u) ea(u).

(2) �=�* m*(z) e*(u).

Here, m*(z) :=m*(z1 , ..., zm) is the monomial symmetric polynomial.

Proof of Theorem 6.5. Observe that for x # R,

x .ek(u)= : y=x .h� k .
x ww�

&i1 } } } ww�
&ik y

i1> } } } >ik

From this and Proposition 6.7 it follows that the Pieri operators are
symmetric; that is, h� ah� b=h� bh� a for all a, b # Z+. Hence, as in Example 5.2,
we have x .S:=x .S ; whenever : and ; are two compositions that deter-
mine the same partition.

Then

Fy�x=(x .�, y) =:
*

m*(z)(x .e*(u), y)

=:
*

m*(z)(x .S *, y)

=�x .:
:

M:(z) S :, y�
=:

r �x . :
: < r

M:(z) S :, y�
=:

r

K[x, y] (r) (z1 , ..., zm , 0)

by Theorem 3.3, which by definition is equal to K[x, y](z1 , ..., zm , 0). K
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Example 6.8 (P-Partitions). Let P be a poset and consider any (vertex)
labelling #: P � N of P. A (P, #)-partition is an order preserving function
f : P � N such that if x< y and #(x)>#( y), then f (x)< f ( y). It is sufficient
to check these conditions for covers x<}y in P.

Let A(P, #) be the set of all (P, #)-partitions. The weight enumerator
1(P, #) of the labelled poset (P, #) is

1(P, #) := :
f # A(P, #)

`
x # P

zf (x) .

This is obviously quasi-symmetric.
Properties of this weight enumerator are tied up with Stanley's fundamental

theorem of P-partitions [24]. Let L(P) be the set of all linear extensions
of P. A linear extension w of P lists the elements of P in order w1 , w2 , ...,
wn , with wi<wj (in P) implying i< j. Here n=|P|. Let D(w, #) be the
descent composition of n associated to the descent set of the sequence of
integers #(w1), #(w2), ..., #(wn).

For a linear ordering w of P, the set A(w, #) may be identified with the
set of all weakly increasing functions f : [n] � N where if #(wi)>#(wi+1)
then f (wi)< f (wi+1). Thus 1(w, #) is Gessel's fundamental quasi-symmetric
function [14] FD(w, #) .

The fundamental theorem of P-partitions notes that

A(P, #)= �
w # L(P)

A(w, #).

This implies that

1(P, #)= :
w # L(P)

1(w, #)= :
w # L(P)

FD(w, #) . (6.3)

We show that 1(P, #) is given by descent Pieri operators on the (graded)
poset IP of lower order ideals of P with (edge) labelling induced from the
vertex labelling of P. A subset I/P is a lower order ideal of P if whenever
x # I and y<x, then y # I. The set IP of lower order ideals of P is ordered
by inclusion. We label a cover I/}J in IP with #(x), where x is the unique
element x # J"I. Then L(P) is in bijection with the maximal chains of IP.
Using the descent Pieri operators for this structure, Eq. (6.1) shows that
every maximal chain of IP contributes the summand FD(w, #) to KIP where
w is the linear extension of that chain. Thus

KIP=1(P, #).

The Hopf structure of H(IP) was studied by Malvenuto in [20].
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Example 6.9 (Quantum cohomology of Grassmannian, fusion coefficients,
and the Hecke algebra at a root of unity). Let m, p be positive integers and
let Cp, m be the set of sequences :: 0<:1< } } } <:p which also satisfy :p&:1

<m+ p. We order this set of sequences by componentwise comparison to
obtain a ranked poset. Given a cover :<};, there is a unique index i with
:i+1=; i and :j=; j for i{ j. We label such a cover with ;i .

The elements of the poset Cm, p may alternately be described by pairs
(a, *), where a is a positive integer and * is a partition with *p+1=0 and
*1�m. We obtain (a, *) from the sequence : by

[*1+ p, ..., *p+1]#[:1 , ..., :p] mod (m+ p),

a } (m+ p)= :
p

i=1

: i&*i&i.

We may likewise pass from the indexing scheme (a, *) to sequences :, as
this association is invertible (see [21]).

For x # Cm, p and 0<k�p, consider the Pieri operator

x .h� k :=:
|

end(|), (6.4)

where the sum is over all chains | of length k starting at x,

|: x w�
b1 x1 w�

b2 } } } w�
bk xk=: end(|),

with no descents, that is b1�b2� } } } �bk , and also satisfying the restriction
bk&b1<m+ p. Thus these operators h� k are not an instance of rank-selection
or descent Pieri operators as previously introduced.

These Pieri operators h� k are symmetric as they model the Pieri formula
in the quantum cohomology ring [7] of the Grassmannian of p-planes in
Cm+ p. This commutative quantum cohomology ring has a basis qa_* for
(a, *) # Cm, p , and

qa_* } _k= :
(b, +)

qb_+ ,

where the sum is over all indices (b, +) appearing in the product (a, *) .h� k

(6.4), when it is written in terms of pairs. Thus we have the following
formula,

K[(b, +), (a, *)]=:
&

c*
+, &S& ,
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where the sum is over all partitions & of rk(a, *)&rk(b, +) with &p+1=0
and m�&1 . Here, c*

+, & is the quantum Littlewood�Richardson coefficient
[8], the coefficient of qa_* in the product qb_+ } _& .

These Pieri operators also model the fusion product in the Verlinde
algebra (see [8] for a discussion) and the Pieri formula in the representa-
tion rings of Hecke algebras at roots of unity [15]. Geometry and
representation theory show that these coefficients c*

+, & are nonnegative, but
a combinatorial proof of this fact is lacking.

7. PEAK ENUMERATION AND EULERIAN PIERI OPERATORS

Definition 7.1. Let | be a labelled ordered chain; that is

|: x0 w�
b1 x1 w�

b2 } } } w�
bk xk .

We say that | has a peak at i if bi&1�bi>bi+1 . Let 4(|) be the peak
composition of |, that is the composition of k associated to the peak set
[i | bi&1�bi>bi+1] of |. Let P be a labelled poset. To enumerate chains
in intervals [x, y] of P according to their peaks, we use the peak
enumerator

K� [x, y] :=:
|

%4(|) ,

where the sum is over all saturated chains | in the interval [x, y]. We
show this peak enumerator is the quasi-symmetric function K$[x, y] associated
to the descent Pieri operators on an enriched structure $P defined on the
labelled poset P.

Given a labelled poset P, where (for simplicity) we assume that the labels
bi are positive integers, we define $P, the doubling of P, to be the labelled
directed graph with vertex set P, where every edge x w�b y of P is doubled,
but with one label the negative of the original label, that is

x ww�ww�
b

&b
y.

Such a poset whose Hasse diagram has multiple edges is called a re� seau.
The re� seau $P is the doubled re� seau of P. To define descent Pieri operators
on the re� seau $P, we say that there is a descent at i if consecutive labels
bi , bi+1 satisfy either bi>b i+1 or else bi=b i+1<0. We then adjust the
definitions of descent set and descent composition accordingly. The following
theorem is a generalization of Theorem 3.6 [28], as will become apparent
from Example 7.5.
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Theorem 7.2. Let P be any labelled poset and $P its doubled re� seau.
Then the modified descent Pieri operators on $P are Eulerian, and we have

K$[x, y]=K� [x, y]=: c y
x, : %: ,

where the sum is only over peak compositions :.

These combinatorial invariants c y
x, : of $P enumerate the chains of P

whose peak sets have composition :.
Before we prove Theorem 7.2, we make some definitions and prove two

auxiliary lemmas. For a composition : of n, let :+ be the composition of
n+1 obtained from : by increasing its last component by 1, and let : } 1
be the composition of n+1 obtained by appending a component of size 1
to :. Define linear maps �, .: Qsymn � Qsymn+1 by

�(M;) :=M;++2M; } 1 ,

.(M;) :=$1, ;l
M;++2M; } 1 ,

where ;l is the last component of ; and $1, ;l
is the Kronecker delta func-

tion. Using the relation F;=�:P; M: between the two bases of Qsym, we
see that

�(F;)=F;+ +F; } 1 .

Lemma 7.3. �(%:)=%:+ and .(%:)=%: } 1 .

Proof. The function %: } 1 is the sum of terms 2k(;)M; for each ; satisfy-
ing ;*P: } 1. Suppose ;*P: } 1. If ;=# } 1, then ;*=#* } 1 and we have
#*P:. Conversely, if #*P:, then ; :=# } 1 satisfies ;*P: } 1. Thus every
summand 2k(#)M# of %: contributes a summand 2 } 2k(#)M# } 1 to %: } 1 .

The other summands ; have ;=# } ;l with ;l>1. Then ;*=#* } 1 }
(;l&1). If ;*P: } 1, then we must have ; l=2, so that ;=# } 2. Then
;*=#* } 1 } 1P: } 1, which implies that (# } 1)*P:. Conversely, if (# } 1)*
P:, then (# } 2)*P: } 1. Thus every summand 2k(# } 1)M# } 1 of %: contributes
a summand 2k(# } 2)M# } 2 to %: } 1 .

This shows that %: } 1=.(%:). The arguments for %:+ are similar, but
simpler. K

The key lemma relating the peak enumerator on P and the modified
descent Pieri operators on the re� seau $P concerns the case when P is a
chain.

Lemma 7.4. Suppose | is a chain. Then K$|=%4(|) .
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Proof. We prove this by induction on the length of the chain |. The
initial cases are easy calculations. Let b1 , ..., bk be the word of |, and set
u to be the truncation of | at the penultimate cover, so that b1 , ..., bk&1 is
the word of u.

Consider first the case where bk&1�bk . Then every chain # in $u gives
two chains # .bk and # .bk in $|. Since D(# .bk)=D(#)+ and D(# .b� k)=
D(#) } 1, we see that K$|=�(K$u). Similarly, if bk&2>bk&1>bk , then
considering the last three labels of a chain in $| shows that K$|=�(K$u).
In both cases, 4(|)=4(u)+ (as the peak sets are the same), and the
lemma follows by Lemma 7.3.

Now suppose bk&2�bk&1>bk . Let v be the truncation of | at the
(k&2)th position. Let # be a chain of $v with descent composition :. Then
# has four extensions to chains in $|, and two have descent composition
:+ } 1 and two have descent composition : } 2. Thus if we define ,: F: [
2F:+ } 1+2F: } 2 , then ,(K$v)=K$| . A straightforward calculation shows
,(M;)=2M;+ } 1+2M; } 2+4M; } 1 } 1 , which is .(�(M;)). Thus K$|=
.(�(K$v))=.(K$u). Since | has a peak at n&1, we have 4(|)=4(u) } 1,
and so this case follows by Lemma 7.3. K

Proof of Theorem 7.2. Given an interval [x, y] in a poset or re� seau, let
ch[x, y] be the set of saturated chains in [x, y]. Let K be the quasi-sym-
metric function given by the descent Pieri operators on the re� seau $P. Let
x� y in P. Given a chain | # ch $[x, y], we obtain a chain ||| # ch[x, y]
by replacing each cover in $[x, y] with a negative integer label by the
corresponding cover in [x, y] whose label is positive. Then, by Eq. (6.1),
we have

K$[x, y]= :
| # ch $[x, y]

FD(|)

= :
; # ch[x, y]

:
|: |||=;

FD(|)

= :
; # ch[x, y]

K$;= :
; # ch[x, y]

%4(;)=K� [x, y] . K

Example 7.5 (Enriched P-partitions). Stembridge enriches the theory
of P-partitions [28] giving a new class of quasi-symmetric generating func-
tions. Let (P, #) be a labelled poset and let P=[1� , 1, 2� , 2, 3� , 3, ...] be two
copies of the positive integers ordered as follows: 1� <1<2� <2<3� <3< } } } .
An enriched (P, #)-partition is an order-preserving map f : P � P such that
for x< y in P and k # Z+

�� if f (x)= f ( y)=k� , then #(x)<#( y),

�� if f (x)= f ( y)=k, then #(x)>#( y).
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Let E(P, #) be the set of all enriched (P, #)-partitions and define the weight
enumerator

2(P, #)= :
f # E(P, #)

`
x # P

zf (x) ,

where zk� =zk for all positive integers k. The analogue of Eq. (6.3) for
enriched P-partitions is

2(P, #)= :
w # L(P)

2(w, #).

We thus need to characterise the quasi-symmetric function corresponding
to a linear extension (w, #) of (P, #). A peak of the linear extension (w, #)
is an index i with 1<i<|w| where #(wi&1)<#(wi)>#(wi+1). Stembridge
shows that

2(w, #)=%4(w, #) ,

where 4(w, #) is the peak composition associated to the peak set of the
linear extension (w, #). We can then generalise the construction we have for
P-partitions. This time we proceed as in Definition 7.1 and consider the
descent Pieri operators on the doubled re� seau $IP. By Lemma 7.4, every
maximal chain of IP contributes exactly 2(w, #) to K$IP , where w is the
linear extension of L(P) corresponding to that chain. This shows that

K$IP=2(P, #).

Example 7.6 (Isotropic Pieri formula). The Pieri-type formulas for the
flag manifolds SO(2n+1, C) and Sp(2n, C) of [5] each give symmetric
Eulerian Pieri operators. These are defined on enrichments of the same
subposet of the Bruhat order on the group Bn of signed permutations. For
an integer i, let @� denote &i.

We regard Bn as a subgroup of the group of permutations on [n� , ..., 2� ,
1� , 1, ..., n]. Let l be the length function on the Coxeter group Bn . The
0-Bruhat order <0 on Bn is the labelled poset B0

n with covers u<}0 w if
l(u)+1=l(w) and u&1w is a reflection with either the form (@� , i) or the
form (@� , j)(}� , i) for some 0<i, j. When u<}0 w, either wu&1=(;� , ;) for some
0<; or else wu&1=(;� , :� )(:, ;) for some 0<:<;�n. We label such a
cover with the (positive) integer ;.

Consider the Eulerian descent Pieri operators on the doubled re� seau
$B0

n . These operators are symmetric, as 1
2 h� k models the action of the Schur

P-polynomial pk on the basis of Schubert classes (indexed by Bn) in the
cohomology of the flag manifold SO(2n+1, C)�B [5]. (This is because
there are twice as many increasing chains in a doubled interval $[x, y] as
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peakless chains in the interval [x, y], and the coefficient of y in x .pk is this
number of peakless chains.)

We modify this descent action of NC on $B0
n by identifying hk with 1

2 h� k ,
which is still integral. These new Pieri operators are symmetric, as they
model the action of pk , and they are Eulerian, as 2hk satisfies the Euler
relations (5.2). In exact analogy to how the Skew Schubert functions are
shown in [6] to be the generating functions for the coefficients cw

u, (*, k) ,
given by descent Pieri operators, we have the following formula,

K[u, w]=:
*

bw
u, *Q* ,

where the sum is over all strict partitions * of l(w)&l(u). Here bw
u, * is the

coefficient of the Schubert class Bw in the product Bu } P* , and P* , Q* are
Schur P- and Q-polynomials, which form dual bases for the self-dual
symmetric Hopf algebra 6Q & 4. The polynomials Q* appear as �* P*�
Q* is the Cauchy element of 6Q & 4.

For the symplectic flag manifold, we modify the re� seau $B0
n by erasing

the negative edge in a cover u ww�ww�
;

&;
w when wu&1=(;� , ;). Write LB0

n for

the resulting re� seau. It is a slight modification of the 0-Bruhat re� seau of
[5], and may be used in its place for the combinatorics therein. Let [h� k]
be the descent Pieri operators on LB0

n . This family of Pieri operators is
symmetric and Eulerian, as h� k models the action of the Schur Q-polyno-
mial qk on the Schubert basis of the cohomology of the flag manifold
Sp(2n, C), and the Schur Q-polynomials qk satisfy the Euler relations. As
before, we have the following formula,

K[u, w]=:
*

cw
u, * P* ,

where the sum is over all strict partitions * of l(w)&l(u). Here cw
u, * is the

coefficient of the Schubert class Cw in the product Cu } Q* .
Since every chain in an interval of B0

n has the same number of covers of
the form (;� , ;)��these count the number s(wu&1) of sign changes between
u and w��we have

K$[u, w]=2&s(wu&1 ) KL[u, w] .

Geometry shows these coefficients bw
u, * and cw

u, * are nonnegative. It is an
important open problem to give a combinatorial or algebraic proof of this
fact.
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Example 7.7 (Stanley symmetric functions of types B, C, and D). In
[10], Billey and Haiman describe the Stanley symmetric functions of types
B and D in terms of peaks of reduced words of elements in the correspond-
ing Coxeter groups.

For Bn , the simple transpositions are s0 , s1 , ..., sn&1 , where s0=(1� , 1)
and if i>0, then si=(i+1, @� )(i, i+1). The weak order on Bn is the labelled
poset whose covers are w<}wsi with label i+1 if l(w)+1=l(wsi).
A reduced word a for w is a sequence of labels of a chain in Bn from the
identity e to w. Billey and Haiman define the Stanley symmetric function
of type B to be

F B
w := :

a # R(w)

%4(a) ,

where R(w) is the set of reduced words for w and 4(a) is the peak composi-
tion of the reduced word a. By Theorem 7.2, F B

w is the function K$[e, w]

obtained from the Eulerian descent operators on the doubled re� seau $Bn .
Billey and Haiman establish the formula

F B
w=:

*

f w
* Q* ,

where the sum is over all strict partitions * of l(w), and f w
* counts the

reduced words that satisfy a condition imposed by the partition * (coming
from the shifted Edelmann�Greene correspondence [16]). Thus the Eulerian
descent Pieri operators on $Bn are also symmetric.

While Billey and Haiman do not define Stanley functions of type C, one
reasonably sets F C

w :=2&s(w)F B
w , where s(w) is the number of sign changes

in the permutation w. This is just the number of s0 's appearing in any
reduced word of w. Let the re� seau LBn be the modification of the doubled
re� seau $Bn where we erase the edge with negative label 1� for covers
w<}ws0 . Then every chain in an interval L[e, w] of LBn gives rise to 2s(w)

chains in $[x, y], each with the same descents as the original chain. Then
Eq. (6.1) and Theorem 7.2 show that

KL[x, y]=2&s(w)K$[x, y]=2&s(w)F B
w=F C

w .

This shows these descent Pieri operators are Eulerian and symmetric.

The Coxeter group Dn has simple reflections s1 , s1� , s2 , ..., sn&1 . The weak
order on Dn is the labelled poset with cover w<}wsi labelled by i if l(w)+1
=l(wsi). Here, we set 1� <1. A reduced word a for w as before is a chain
in Dn from e to w. Since s1 and s1� commute, there are no occurrences of
11� 1 or 1� 11� in a reduced word, so changing all occurrences of 1� to 1 does
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not change the peaks in a reduced word, and the type D Stanley symmetric
functions of Billey and Haiman satisfy

F D
w = :

a # R(w)

2&o(a)%4(a) ,

where o(a) counts the number of occurrences of 1 and 1� in the reduced
word a. Let $Dn and LDn be the doubled re� seau and its modification,
erasing all edges with (negative) labels &1 and &1� .

Theorem 7.8. F D
w =KL[e, w] .

Proof. By Theorem 7.2, we have

F D
w = :

a # R(w)

2&o(a)K$a .

The theorem follows from Eq. (6.1) and the following 1 to 2o(a) map from
chains in La to chains in $a, which preserves descents. When there are no
subwords 11� or 1� 1 in a chain in La, simply make all possible substitutions
of negative and positive labels for each occurrence of 1 and 1� . If, however,
there is a subword 11� , then there is another chain differing from the first
only in that subword (having 1� 1 instead), and the map uses the substitu-
tions in both chains

1� 1 [ 1� 1, 1�� 1, 1� 1� , 1� 1��

11� [ 11� , 11�� , 1� 1� , 1�� 1� . K

Last, we remark that these descent operators on LDn are Eulerian and
symmetric, as Billey and Haiman give a formula

F D
w =:

*

e*
wQ* ,

where e*
w is a rational number that counts certain weighted reduced words.

APPENDIX

Hopf Algebras

A Hopf algebra is an algebra whose linear dual is also an algebra, with
some compatibility conditions. They are important in representation theory
(and in this paper) because they act on tensor products of their representa-
tions. The usefulness of Hopf algebras in combinatorics is apparent from
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the ubiquity of their applications. In this section, we summarize the basic
notions of Hopf algebras.

A Z-module H is a coalgebra if there are two maps 2: H � H�H

(coproduct) and =: H � Z (counit or augmentation) such that the follow-
ing diagrams commute

where 1 is the identity map on H.

Remark A.1. The first of these diagrams is the coassociativity property,
which is the statement that the dual of 2 defines an associative product on
the linear dual of H, and the second asserts this linear dual has a unit,
induced by the dual of =.

If H is also an algebra, then it is a bialgebra if 2, = are algebra morphisms.
While some authors call this structure a Hopf algebra, we define a Hopf
algebra to be a bialgebra with a map s: H � H (coinverse or antipode)
such that the following diagram commutes.

Here +: H�H � H is the map induced by the multiplication of H and
u: Z � H is the map induced by mapping 1 to the unit of H. The above
diagram implies that s is an algebra antihomomorphism; i.e., s(hh$)=
s(h$) s(h) for all h, h$ # H.

The existence of an antipode s may seem to be a strong restriction on a
bialgebra; however, as we will see, it is no restriction for graded bialgebras.
A graded bialgebra is a graded algebra H=}n Hn where 2 is graded and
H0=Z. Given x # Hn , the n th graded component, we have

2(x)=x�1+ :
n

i=1

yi �zn&i ,

where yi and zi have degree i. The first term is always present due to the
counit diagram. With this in mind, Ehrenborg proved the following.
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Proposition A.2 (Lemma 2.1 [11]). Given a graded bialgebra H there
is a unique Hopf algebra with antipode s defined recursively by s(1)=1, and
for x # Hn , n�1,

s(x)=& :
n

i=1

s( yi) } zi .

Last, we remark on the useful Sweedler notation, which is an elegant
solution to the following quandary. Given h # H, how do you efficiently
represent 2h as an element of H�H? Carefully indexing this element
would confuse even the writer. Sweedler notation sidesteps this by omitting
the indices of summation entirely,

2h=: h1 �h2 .

It is this notation that is normally used when dealing with Hopf algebras.
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