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Summary: We consider Constrained Semi-Assignment Problems, where one has to optimally
assign discrete values to decision variables, and where furthermore logical constraints restrict the
set of feasible assignments. We present a heuristic approach based on a continuous relaxation.
More precisely, we consider a discrete dynamical system evolving in the interior of a polytope whose
extremal points correspond to all possible (both feasible and infeasible) assignments. The constructed
dynamical system combines the effects of two dynamics: The first one, being of gradient-type, has
the task of attracting the system towards assignments with high objective value, the second dynamic
should give a rejecting power to forbidden assignments. Local properties of the system and numerical
experiments are discussed.

1. Introduction

The constrained maximization problem considered in this paper generalizes the well known pseu-
doboolean optimization and satisfiability (SAT) problems. Instead of boolean variables we consider
decision variables having a finite set of possible values. Asin SAT, a set of logical clauses is given and
those assignments satisfying all given clauses constitute the set of feasible solutions of our problem.
Furthermore, each assignment is given an objective value by means of a set of weighted clauses:
the value of an assignment is the sum of the weights of the clauses it satisfies. The constrained
semi-assignment problem (C-SAP) consists in finding a feasible assignment of maximal value. For
the formal definition let (4,7) stand for the predicate: value r is assigned to variable ;.

Constrained semi-assignment problem (C-SAP): Given
e a set of decision variables z;,4 € N := {1,...,n} with possible values in K := {1,2,...,k},
e a set of clauses R, where R € R is of the form

R==((t1,m1) A (i, m9) Ao A (G, 7))

for some 2 < u < n,i; € N,r; € K, for all j < u. For convenience, R will be used to denote
the set R = {(i1,71), (i2,72), ..., (tu,7y)} as well.

e a set of weighted clauses 7 with weights wr > 0,T € T, where T is of the form
T = (’[;1,7'1) A (7:2,7'2) FANAN (iu,ru)

for some v < n,i; € N,r; € K, for all j < u. Again, T is identified with the set T =
{(Zl L, T )7 (i27 T2)7 “ ey (Zua Tu)}



Find an assignment of values in K to the variables satisfying all clauses of R and maximizing
> {wr|T € T,T satisfied by the assignement}.

Note that for £ = 2 and 7 = @ C-SAP reduces to the classical satisfyability problem; for k = 2
and R = () we have a pseudo-boolean optimization (see formulation (1)-(3)). Many other combi-
natorial problems can be stated in this form, like max k-cut, k-coloring and max clique. C-SAP
contains therefore many NP-hard problems, including some for which even finding a poor approx-
imate solution is NP-hard. Moreover, we believe that C-SAP is an adequate formalism for many
interesting applications, like for example the label placement problem where a finite set of possible
positions is defined for each label and additionaly to the natural non intersecting clauses for the
labels, a valuation is introduced according to aesthetical criteria or to the ambiguities resulting from
the placements.

A common and often successful approach for such problems are local search (LS) heuristics, like
Simulated Annealing or Tabu Search. However, due to their inherent myopy, such heuristics can
hardly deal with a C-SAP of the following paradigmatic type:

Let D C K¥ be given and y € D be a unique isolated global optimum with objective value z2(y) =
M > 0. Moreover, let z(x) =0 for all z € D\{y} (C-SAP with 7 := {T := {(1, 51), (2, %2), - - -, (n, yn) }}
and R := {{(1, z1)y- oy (0, 20) Hz € KN\ D}) Our goal is to present a heuristic with some ability to
‘orient itself” even in such problems and which therefore offers an alternative approach for instances,
where LS algorithms have problems of orientation. In fact, we will show that if M is big enough in
the above instance our algorithm will find the global optimum (see Theorem 2.1).

Our approach is to embed the set of feasible solutions in the continuous space and to develop a
heuristic based on a discrete time dynamical system. The concept of our approach can be formulated

as follows: We represent the set of (a priori) possible assignments z € KV as points in

p
A= {pe {0,1}"V*|3 p; =1 for all i € N},

r=1

where p € A’ corresponds to the assignment x; = r iff p;. = 1. Then a C-SAP problem (with sets R

and 7) can be written as

max z(p) = Y (wT II pir> (1)

TeT (i,r)eT
st. [ pr=0 foral Re R (2)
(ir)eR
pe A (3)
Let now A := Conv(A’) and A° be its interior. Our approach consists in defining a mapping

F : A% - A% and to use the discrete time dynamical system resulting by iteration of F for our
algorithm which runs essentially as follows: Choose a point p® € A and compute the sequence
p = F(p~'),i=1,2,...t for some t. Return as solution p € A’ the solution p ”closest” to p'.

The underlying philosophy is that optimal solutions of the combinatorial problem should correspond

to attractors of the dynamical systems. The definition of F' is of course central and we would be



already happy to have the sequence p* converging to one of those points in Af corresponding to a
'good’ feasible solution for a reasonably large proportion of starting points. The list of desirable
properties of such a dynamic includes furthermore the instability of non interpretable fixed points in
A°, the escape from some neighborhood of non feasible assignments (in particular of those having a
feasible neighbor), no matter the value of the assignment.

The application of dynamical systems in combinatorial optimization is definitely not a popular ap-
proach, however the works of [2] for Maxclique, [4] for Maxsat, and [10] for combinatorial problems
reducible to proper assignment problems (i.e assignment in the sense of permutation) show that it
has some potential to be explored (see also the book of [6]).

In the first part of this paper we address the design of a mapping F for C-SAP and discuss some of

its basic properties. In the second part we shall report on some numerical experiments.

2. Algorithm

The Algorithm consists in defining an adequate operator F' : A% — A for a given C-SAP problem
and to generate a sequence of points p°,p! = F(p°),...,p! for some ¢ and to round p to a solution
p in A, For F we consider mappings defined by

r

i
where the so-called fitness functions &;,(p) > 0 are given. As we shall consider different possibilities for
&, we shall use the notation F[¢] for the mapping defined by (4). In the setting of multi-population
dynamic where n populations are considered whose members can adopt one of k possible strategies,
this kind of dynamic is referred to as ”adjusted replicator dynamic” and describes the evolution of
the proportion of individuals in population ¢ adopting strategy r (see [9]). This evolution equation
expresses the fact that the relative increase (F/(p)ir — Dir)/Pir Of pir equals the relative excess fitness
-5——(7\),—_—1\[— of subpopulation (i,7) over the average fitness of population 3.
We shall combine in our fitness function the effects of two dynamics: The first, being of gradient-type,
has the task of attracting the system towards assignments with high objective values, the second dy-
namic should care for making logically forbidden assignments repellors. Ideally, in the combined
dynamic, the effect of the first dynamic should be stronger in the neighborhood of admissible assign-
ments, and "vice versa”. For the gradient-type dynamic we choose F[['*] with
Ty = 0z/0piw= > wr [] pjs
T:(ir)eT  (5,8)ET\(ixr)
where 2 is the objective function (1). For the special case = 1, this dynamic has been studied in
[1] and it has been shown that in this case 2(F[[](p)) > z(p),p € A, with equality for fixed points
only. (In fact this result remains true, if & < 1, see Theorem 2.4.)
For the second dynamic, similarly to [4] we choose F[©F), where
O = I - TII »ps)-
R:(ir)ER (4,5)ER\(4,7)
Note that if p is near p € Al and p violates some constraint R, then for (i,r) € R the fitness ©;,(p)

is as desired very small, what should contribute to make p;, smaller.



The combined dynamic F is then defined as

. . a. 1 A
F(p)iy := F[T*0°)(p)ir = Z’“Zf: ;‘frl(“?)(p)“@ -W(E)I-))(p)ﬂ K

In Figure 1 the effects of the three dynamics are shown for the C-SAP with n = k = 2

max z(p) = 4puipa1 + Sp1aPae + 2p12pa1 + 3p11Pae
s.t. pupan =0, pupe=0 pec Al

In the first picture we show the trajectories for the gradient-type dynamic F[I'%5] used to maximize
z(p) (without satisfyability constraints). The dynamic F[O] adequate to ”flow away” from the
forbidden assignments (without optimization) is represented in the second picture and the trajectories

of a combined dynamic F[['?©%°] are shown in the last picture.
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Figure 1: Trajectories of F[['%®], F[©] and of the combined dynamic F[['2©%9]

Note that F[O] cannot be extended to the boundary of A for some denominator may vanish at
infeasible assignments. For theoretical reasons (see Theorem 2.2) we shall restrict the domain of all

the operators involving © to

k
A :i={pele, 1 - (k—1e]V¥|Y pir=1forallie N}
r=1
If not discussing the current value of ¢ we consider € as fixed. The range of our operator must
be A® as well and we define ¥ : A — A® as follows: If p; < ¢ then ¥(p);, = €, ¥(pir)) =
min{p;;), 1 — (k — 1)e}, where pi.iy > pis, s < (i) and pirgy > pis, s > r(i) and finally for the
remaining components V(p);, := € + u(pir — €), with p chosen appropriate to fulfill ¥(p) € A®. We

denote

Flg] =¥ o Flg] (6)

and define Round : A — A! by Round(p);y = 1 iff r = r(3).
As mentioned in the introduction, one motivation for considering such a heuristic is that if a C-SAP

problem has a very big isolated optimum, our heuristic should be able to find it. This is stated in

the following theorem.



Theorem 2.1 Let (R, T) be a C-SAP instance with p a feasible point in {0, 1}Y>*K  For the extended
instance (R, T UT') with T' := {(i,7(i))|i € N,r(i) such that Py = 1} and weight

21/ YTeT WT
8(n—1)+|R|ﬂ/a+1/a ’

Wy 1= C 1=

any sequence p°, p' = F(p°) = W(F(p®)),... with p° € A® converges to U(p).

Proof: Let p := p/ and p' := F(p) for some j > 0. Moreover, assume w.l.o.g. that p;; = 1 for all

1 € N. Then
I (p)a : @ir(p)ﬁ
Y pislis()* - Os(p)?

I -
Dir = Uir * Dir with Usp =

We show that u,, < 1/2forallie N,r e K\ {1}.

Therefore we need that for alli € N, I';(p) < Ererwr forallr € K\{1};Ti(p) > cIljzipj > ce™ !
and ©;1(p) = [p.e1yer(1 — I seran) Pis) = €™ The last inequality is true, since p is feasible and
therefore (i,1) € R implies that there exists (j',s') € R,s' # 1. Hence (1 — [,s)er i) Pis) =

1 — Pys > E.
Note that for i € N,r #1

Usy

Lu0) 000 . (Srerwn)®
Zf:l pislis(P)* - O45(p)# ~ Tu(p)® - ©ir(p)Ppin

(Xrer wr)® >reT Wr)® _ 1
cxea(n—1)¢|R[Bg

< ( =
T 2(Xrerwr)® 2

Since u;, < 1/2 for all i € N,7 # 1 and ¥(p'); < pl, if pj, > € we have plt < 3 T oor pit! = ¢,
which ensures convergence of p°, p! := F(p°),... to ¥(p). &

Clearly the factor I' in our dynamic is responsible for the nice behavior just discussed and we shall
return later to the specific nature of the dynamic F[I].

The above theorem shows that if the objective value of a feasible point p € A is high enough, all
trajectories lead to it. What happens, however, if an infeasible point p has such a high objective
value? In fact, the repelling part of our operator acts nicely if p has a neighbor (with respect to

change one value of one variable), for which less clauses in R are violated.

Theorem 2.2 Let 'y, > 1 fori e N,r € K, 3> 1 and p € A! be such that there ezists a neighbor

q € A" of p which satisfies strictly more clauses in R than p. Then there exists a neighborhood U of

U(p) such that Round(F(p)) # Round(p),p € U.

Proof: Note first that the condition I';, > 1 is not restrictive, since for zZ := z + 3, p;» we have
Z:=z+n,Vp € A and % satisfies the hypothesis on I". The proof is similar to that of Proposition
3.1 in {4] and we give here just the main ideas. Let p € Al be an assignment for which u, clauses
are not satisfied and ¢, obtained from p by changing the value of one decision variable, for which
up < u; clauses are not satisfied. W.l.o.g. we assume that p;; = 1, Vi and ¢ = 1. For simplicity we
assume that all clauses have cardinality two. For p = ¥(p) those factors of ©11(p) := [1g.1,1)er(l —
[1(j.s)er\(1.1) Pjs) corresponding to clauses satisfied by p are equal to 1 — € and their product can be
approximated by 1 for our purpose (Actually we chose ¢ > 0 small enough for our needs). The other

factors (corresponding to violated clauses) are equal to £ and there are © < u; of them, so that



O11(p) ~ £*. Similarly, O15(p) ~ e¥2~(¥1=%) and therefore ©12(p)/O11(p) ~ e¥>~¥i, Let e be an
upper bound for I';,,7 € N,r € K, then

F(p)i2 > @'fzpm > 9?25 1

~ ﬂ(uz —u1)+1 .
F (p) n F?naa: ellilpll anaz @[131 F'?naz

3

By a good choice of € > 0 this can be made as large as needed to ensure that F(p)12 > F(p)11-
This can be done a priori for each instance of C-SAP (on the basis of the number of the variables,
maximal size of the clauses, and upper bound for the ratio of the I';, all assumed to be greater than
one). By continuity, the result holds also in some U(p). &

These two theorems describe nice properties of our combination of the ”I-part” and the ”©-part”.

If for example we construct a penalized objective function of the form

Z(p) =z(p) - K(Y_ I pa)

RER (i,;r)eR

and maximize it by some gradient procedure, we loose these properties, if we want K to be large
enough for a hill climbing procedure to prefer a feasible assignment with objective value 0 to any non
feasible neighbor with value ¢ > 0. In this respect a reasonable choice for K would be the sum of the
coefficients of z. Consider now the (n = 2, k = 2) instance max cpy1pg; S.t. p1iper = 0, piapa1 = 0

and p € A. Our choice gives

Z(p) = cpripar — c(pP11p2a + PraPa1)-

The direction of the resulting gradient has then no dependency on ¢, as well as the basin of attraction
of (0,0) and (1,1). Hence the property of Theorem 2.1 is lost.

By Theorem 2.2 we can not converge to an infeasible point having better neighbors, from the feasibility
point of view. How about convergence in general? The following example shows that cycling is

possible: For the problem

max  z(p) = p1z + paz + 5000(p11pa1)
st. pupn =0, peA!

consider F' of (5) with & = 1 and = 4. Note that {p € A|p11 = po1} is invariant under F' due to
the symmetry of the instance and let f(pi1) := F'(p11,1 — p11, P21 = p11,1 — pa1). It can be shown
that f has a cycle of period 3 (f(0.174) ~ 0.9979, f(0.9979) ~ 41075, f(4-107°) ~ 0.174) and
therefore cycles of any period exists by Sarkovskii’s theorem [5].

Nevertheless, in our numerical experiences convergence of the algorithm was observed and a useful
stopping criterion can be given for testing if for each ¢ € N the biggest component is going to increase
for ever given that the fitness functions &;,,7 € N,r € K are polynomials. We show it for functions
& with positive coefficients (the necessary modifications for negative coefficients is straightforward).
The stopping criterion works as follows: Given p € A® (w.l.o.g. we assume that p;; > ps, Vr > 1)
we want to test if the sequence of iterates F*[¢](p),t > 1 converges to p* where pj; = 1 for all .
Decompose now for i € N,r € K &, as &, = £, + . where £, consists of those monomials in &;, for

which all variables have second index equal to 1. Note that &,(p*) = &, (p*). Finally let ¢ € RN*K

r



with ¢;; =1 and ¢;, =1 — psrr, Vr > 1.
Stopping criterion: If

&q1(p) > &,.(p*) + &L(q) for all i € N,r > 1 then STOP. (7)

Note simply that under the assumption that p;; is not decreasing for ¢ € N, &}, (p) is and will remain
a lower bound for & (F[€]*(p)), t > 1 and fori € N,r > 1, &,.(p*) +£%(q) is and will remain an upper
bound for &, (F[€]*(p)) for t > 1. Therefore we have for all ¢ > 1, & (F[£](p)) > &, (F[€)t(p)), 7 > 1
and F[¢]*(p);n will remain greater than F[¢]'(p)ir, 7 > 1. Moreover, if (F[£]!(p°), t > 1) converges
to p* € Al and furthermore &;(p*) > &, (p*) for all i € N and r > 1, simple continuity arguments
show that there exist n > 1 and p = F[¢]"(p°) for which this test is successful.

We discuss now the stability of a fixed point p in the interior of A€ for an operator F[¢] with the
property that 9(&,)/0(pir) = 0 for all ¢ € N,r € K (which we have in our approach): Since p is
a fixed point, &;-(p) = Ni(p) = 3, pirir(p). Moreover, O(F[E)ir)/0(pir) = 1/N} - (& N; — pir€l) =
1/NZ-(N2(1—ps)) = 1 —pir. It follows that the trace of the differential DF (p) of F[€] at p is n(k—1),
viewing F'[£] as a mapping with domain R™. Note that A® (actually the range of F[¢]) has dimension
n(k—1) and that DF(p) has by construction n vanishing eigenvalues. So the sum of the eigenvalues is
at least the number of non vanishing eigenvalues. It follows that unless all non vanishing eigenvalues
are equal to one, at least one of them will have modulus strictly greater than one, a criterion sufficient
to imply that the fixed point p is unstable. The following slight modification of F[£] implies this
desirable property for all fixed points in the interior of A® [4]. Let Q. =TI 1gosk (1—pis) and take now
as fitness function &, Q. with 0 < h. The trace of the corresponding differential is then n(k —1) +nh
and all fixed points in the interior are unstable. Furthermore, kA can be chosen small enough to have
otherwise a negligible effect and not alter our results in A°. This Q-modification is a theoretical
artefact and was not implemented.

To conclude this section, we present some results for the special case of C-SAP without feasibility

constraints, i.e. R = 0.

Let V, be the vector field associating to every p € A® the vector V,(p) := F['](p) — p.

Proposition 2.3 Let A" be equipped with the Riemannian metric corresponding to the scalar product

given by the nk x nk diagonal matriz Q(p) = (Girjs(p)) with (Girir(P)) = Xp PirLir (D) /Dir, then V, is
the gradient of z with respect to Q.

Proof: This metric is a straightforwad extension of the so-called Shahshahani metric (see for instance
[8]). The proof consists in verifying directly that for every p € A® and for every vector v in the tangent

space of A at p (i.e 3, v; = 0 for all 4) we have

V.(p)'Q(p)v = Dz(p)(v)

where on the right-hand side we have the differential Dz(p) of z at p applied to v (see [6] for the
relevant background). &
An pleasant feature of our formulation (1) is that the objective is expressed as a harmonic function

and therefore has no local optima in A if not constant. Recall on the other hand that gradient



trajectories may not converge to a point. In our case however, it can be shown that if a trajectory
has an accumulation point which is a local optima in the interior of a face, then it converges to it.
Note furtermore that different functions on R™ have the same restriction to A and induce different
dynamics.

The introduction of our exponent « in (5) rests on the following generalization of [1] and can be

proven similarly.

Proposition 2.4 Let ¢ : Ry — R, be monotone and concave and let Gi.(p) := g(Tir(p)) p €
A i€ N,re K. Then

2(F[G(p)) 2 2(p) p € A

and z(F|G](p)) = z(p) only if F|G](p) = p.

3. Implementation and empirical results

We tested our algorithm for two different problem classes. The first class is max-cut. The second
contains randomly generated C-SAP instances for which finding feasible solutions is neither too easy
nor too hard. In order to accelerate the evolution of the system, F' of (5) is applied in a sequentially
deterministic block Gauss-Seidel fashion, i.e. for 7 € N let

pirLir (p)*-Oir (p)? i=j

Fi(p)iy = LemiPuTisp)"Ois(p)? o
Pir otherwise

Instead of F' of (5) we apply F' := F,,0...0 F}.

3.1 Empirical results for the max-cut problem

Given a graph G = (V| E) and non-negative weights w;; for (¢, j) € E. The max-cut problem consists
in finding

max E Wi
SCV  ©
=" (iJ)EE
i€5,j¢S

This problem can be formulated as a C-SAP with n := |V| and k£ = 2 with: p;; = 1 if nodei € S

and p;o = 1 otherwise. The set of weighted clauses 7T is

T :=Ugjer ({(i,42)} V{02, 1)})  and R =0.

The objective function of the C-SAP is therefore

z(p) = . wij(pupje + pj1pi2)- (9)

(i,.7)EE
To solve the max-cut problem we use the operator F’, where we choose o = 0.5 and of course 3 = 0.
Moreover, we use a slightly stronger stopping criterion as (7): for a strict local optima p* a region,
so-called guarenteed basin of attraction GBA(p*), can be determined, which is contained in the
basin of attraction of p*. Our algorithm runs as follows: we take the best solution found from 10

starting points with components randomly chosen from a given interval J = [0.4995,0.5005]. For



each starting point we iterate p°,p! := F'(p°),... until a generated point, say p* is either in the
guaranteed basin of attraction GBA(p}) for some p} € Al or for all i € N the biggest component
max{pf;, ply} > 1 — 107> or the number of iteration k attains a given iteration limit (= 1000).

We tested the algorithm on 10 randomly generated max cut instances with n = 50 vertices, edge
probability of 0.2 and weights w;, uniformly distributed in the interval [1,100] for i € N,r € {1,2}.
These instances have been solved optimally using an interior point algorithm in a branch and bound
framework [3] and therefore the optima are known.

Each of the 10 instances has been solved 20 times (=20 runs). In all runs we were at most 2% off the
optimum and on the average only 0.25%. Moreover, for all 10 problem instances the optimum has
been found in the 20 runs (5 times at least for each instance, 11 times in the average). One run took
about 5 seconds on a Pentium Pro 200 processor. Compared with the case where the GBA part of

the stopping criteria is omitted the GBA criterion gives a speed up of about 80%.
3.2 Empirical results for a class of C-SAP

We tested our algorithm on randomly generated instances of C-SAP and compared it with the results
of a Tabu Search (TS) [7]. This TS is in a working stage and possibly the results there can still
be improved. The generated instances have n = 100 and k£ = 5 and R contains 10’000 randomly
generated clauses of cardinality 3. Moreover T contains randomly generated clauses with cardinality
between 1 and 5: 500 clauses of cardinality 1 with weights unifomly distributed in [10,20], 800
of cardinality 2 with weights in [100, 200], 1000 of cardinality 3 with weights in [500, 750], 800 of
cardinality 4 with weights in [750,1500] and 200 of cardinality 5 with weights in [1500,2500}. This
choice was motivated by the following observations: first, there is no apparant relation between the
best solutions found for this problem and the ones with R = §); second, the mixture of the clauses in

7T satisfied by the best found solutions has no apparent pattern.

DSH Tabu

min avg | max min avg | max

P1 | 42933 | 44914 | 46474 || 44436 | 46725 | 49809
P2 | 50329 | 52918 | 55491 || 51932 | 53449 | 55623
P3 | 52174 | 52795 | 54803 || 51564 | 54843 | 58549
P4 | 50117 | 51593 | 53886 | 53386 | 55526 | 59128
P5 | 51401 | 53959 | 56757 || 54968 | 57035 | 59849
P6 | 50687 | 52583 | 53960 || 50840 | 54159 | 57679
P7 | 49494 | 51631 | 54311 || 48233 | 53465 | 55897
P8 | 49353 | 52028 | 54162 || 50701 | 52428 | 54219
P9 | 50822 | 53273 | 56188 || 53226 | 54729 | 58295
P10 | 48670 | 50454 | 51848 || 51371 | 54895 | 57575

Table 1: Comparison DSH with Tabu

For the implemented algorithm (DSH), we take the best solution found from 100 starting points

(this number has been chosen in order to use equal CPU-time to TS from one starting point.) For



each starting point we essentially iterate p°, p' := W(F(p)),...,pa0o- In order not to get stuck at
the boundary of A® we recenter the points every 10 iterations (i.e. add a constant to all variables
and normalize). Moreover, the encountered solutions will be improved by a greedy algorithm (first
priority: satisfyability, second priority: objective value).

Table 1 shows the results of our heuristic DSH compared with TS for 10 instances. Each instance
was solved 10 times (= 10 runs) and the minimum (min), average (avg) and maximum (max) over
these 10 runs are given in the table for the 10 instances. Our heuristic gives slightly worse results
compared to Tabu (for the average 3.7%). However, we are confident that there is still some room
for improvement, in particular the order of the variables in our Gauss-Seidel procedure could take
advantage of the available information. Moreover, DSH is less sensitive to shortage of the available
CPU time. To conclude, DSH is not the best heuristic, but it is an interesting alternative which

could be combined with other LS heuristics, due to its completely different approach.
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