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Chapter 1

Introduction

Extremal graph theory is a branch of graph theory that seeks to explore the
properties of graphs that are in some way extreme. The classical extremal
graph theoretic theorem and a good example is Turán’s theorem. This theo-
rem reveals not only the edge-density but also the structure of those graphs
that are ‘extremal’ without a complete subgraph of some fixed size, where
extremal means that upon the addition of any edge the forbidden subgraph
will appear. This is the type of question we study in extremal graph the-
ory, for finite as well as for infinite graphs. In general one asks whether
some invariant – which instead of the edge-density might be the minimum
degree, or the chromatic number, etc – has an influence on the appearance
of substructures, or on another graph invariant.

A typical example of modern extremal graph theory is the Loebl–Komlós–
Sós conjecture (LKS-conjecture for short) from 1992. This conjecture is
about whether the existence of subtrees in a graph can be forced by as-
suming a large median degree. More precisely, the LKS-conjecture states
that every graph G that has at least |G|/2 vertices of degree at least some
k ∈ N, contains as subgraphs all trees with k edges. We shall discuss the
LKS-conjecture and steps towards a solution, as well as an application of the
conjecture in Ramsey theory, in Chapters 2, 3, 4 and 5.

Our main contribution to this field is an approximate version of the
LKS-conjecture, which will be presented in Chapter 3. The proof of this
version builds on work of Ajtai, Komlós and Szemerédi [1] and features an
application of Szemerédi’s regularity lemma. This chapter is based on work
from [74].

In Chapter 4, which is based on work from [75], we shall solve the LKS-
conjecture for special classes of trees. In Chapter 5 we discuss the impact of
the conjecture in Ramsey theory.
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2 Introduction

A theory belonging to extremal graph theory in a broader sense will
be the topic of Chapters 6 and 7. The much studied perfect graphs (those
for which the chromatic number of every induced subgraph H equals the
clique number of H) were introduced by Berge in the early 1960’s. One can
characterise perfect graphs in terms of their stable set polytope (SSP for
short), and in this context Chvátal [25] proposed the concept of t-perfect
graphs. These are defined via properties of their SSP, in fact, by a slight
modification of the properties which the SSP of a perfect graph must have,
involving a second polytope, namely TSTAB.

We will be concerned with colourings and characterisations of t-perfect
graphs by forbidden t-minors. So, if the relation of the SSP and the TSTAB
of a graph (both to be formally defined in Chapter 6) is viewed as one of
the graph’s invariants, then what we are studying is this invariant’s impact
on the chromatic number, and if we should succeed in a characterisation, we
would indeed force substructure via an invariant. We discuss t-perfect and
the closely related strongly t-perfect graphs in Chapters 6 and 7, which are
based on [13, 15].

In general, extremal graph theory has been a very active area of graph
theory during the last decades. However, until recently, an extremal branch
of infinite graph theory did practically not exist. The reason for this is
that in general, the behaviour of infinite graphs is not as well understood as
the behaviour of finite graphs. Often it is not clear how certain invariants
translate ‘correctly’ to infinite graphs. For example, how does a condition on
the edge-density translate to an infinite graph? How should one define the
average degree of an infinite graph?

Even for parameters that appear to have an obvious counterpart in in-
finite graph theory, it may happen that they lose the power they have in
finite graphs. One example is the minimum degree. In finite graphs, a high
minimum degree can imply the existence of large complete subgraphs (this is
a corollary of Turán’s theorem mentioned above). But in infinite graphs, the
assumption of a high minimum degree loses its strength, as any minimum
degree condition can be met by an infinite tree which is not ‘dense’ enough
to contain an interesting substructure.

A solution to this dilemma are the end degrees, to be defined in Chapter 8
(and a variant in Chapter 10), which, if large enough, provide a certain
denseness ‘at infinity’ and thus make it possible to force substructure in
infinite graphs. The most interesting of these substructures are doubtlessly
large complete minors. With weaker assumptions, we can still force highly
connected subgraphs and grid minors. These and related topics will be the
subject of Chapters 8, 9 and 10, which are based on work from [83, 86].
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We shall encounter another application of the end degrees in infinite ex-
tremal graph theory in Chapter 11. The topic of this chapter, which is based
on work from [82], are minimally k-connected graphs. For finite graphs,
mainly two types of minimality have been investigated: minimality with re-
spect to edge-deletion, which we shall call edge-minimality, and with respect
to vertex-deletion, which we shall call vertex-minimality (In the literature,
one often encounters the terms minimality for the former and criticality for
the latter type). In finite such graphs bounds on the minimum degree and
on the number of vertices which attain it have been much studied. We give
an overview of the results known for finite graphs and show that basically all
of the results carry over to infinite graphs if we consider ends of small degree
as well as vertices.

Chapter 12 is on duality of infinite graphs. This chapter is based on work
from [14]. The main interest will be the end space of a graph in relation to
the ends space of its dual. (Duals of certain classes of infinite graphs have
been introduced in [11].) We shall see in Chapter 12 that a duality also exists
between the sets of ends of two dual graphs, in form of a homeomorphism
between the two end spaces. Moreover, the degrees of the ends are preserved
under this homeomorphism.
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Chapter 2

The Loebl–Komlós–Sós
conjecture

2.1 History of the conjecture

A typical question in extremal graph theory is one of the following type:
Making certain assumptions on some global parameters of a graph, can we
force certain substructures. The Loebl–Komlós–Sós conjecture is good ex-
ample for such an extremal question: It asks for the appearance of all trees
of a given size as subgraphs, imposing a minimal degree condition on part of
the vertex set of the graph.

The conjecture was formulated by Komlós and Sós in 1992; the back-
ground which led to its formulation was the study of the discrepency of
trees [37]. Earlier, Loebl had conjectured the following preliminary form,
sometimes called the n/2–n/2–n/2 conjecture.

Conjecture 2.1.1 (Loebl conjecture [37]). Let n ∈ N, and let G be a graph
of order n so that at least n/2 vertices of G have degree at least n/2. Then
every tree with at most n/2 edges is a subgraph of G.

The conjecture was then generalised by Komlós and Sós, and in this
new form became known as the Loebl–Komlós–Sós conjecture (or short LKS-
conjecture).

Conjecture 2.1.2 (Loebl–Komlós–Sós conjecture [37]). Let k, n ∈ N, and
let G be a graph of order n so that at least n/2 vertices of G have degree at
least k. Then every tree with at most k edges is a subgraph of G.

We discuss the bounds of Conjecture 2.1.2 in Section 2.4.
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A solution to Conjecture 2.1.1 has been given by Zhao [96] for large
graphs, see Section 2.3.

2.2 Special cases of the Loebl–Komlós–Sós

conjecture

Observe that for stars, that is, trees of diameter 2, Conjecture 2.1.2 is trivial.
Furthermore, it is not difficult to see that the LKS-conjecture holds for trees
of diameter 3.

In fact, trees of diameter 3 are exactly those that consist of two stars
with adjacent centres. So, it is enough to realise that the set L ⊆ V (G) of
vertices of degree at least k cannot be independent. But, if this is not the
case, then one easily reaches a contradiction by double-counting the number
of edges between L and the set S := V (G) \ L.

Barr and Johansson [3], and independently Sun [87], proved Conjec-
ture 2.1.2 for all trees of diameter 4. In Chapter 4, we shall show Conjec-
ture 2.1.2 for all trees of diameter at most 5.

On the other extreme of the spectrum of the trees (as opposed to stars)
are paths. Paths and path-like trees constitute another class of trees for
which Conjecture 2.1.2 has been solved. Bazgan, Li, and Woźniak [4] proved
the conjecture for paths and for all trees that can be obtained from a path
and a star by identifying one of the vertices of the path with the centre of
the star. In Chapter 4, we shall extend their result to a larger class of trees,
allowing for two stars instead of one, under certain restrictions.

2.3 The regularity approach

A completely different approach towards a solution of Conjectures 2.1.1
and 2.1.2 has first been proposed by Ajtai, Komlós and Szemerédi [1]. Their
approach makes use of the regularity method, together with a Gallai-Edmonds
decomposition of the cluster graph. This allowed Ajtai, Komlós and Sze-
merédi to prove an approximate version of Conjecture 2.1.1.

Theorem 2.3.1 (Ajtai, Komlós and Szemerédi [1]). For every η there is an
n0 ∈ N such that for every graph G on n ≥ n0 vertices the following is true.

If at least (1 + η)n/2 vertices of G have degree at least (1 + η)n/2, then
G contains all trees with at most n/2 edges.
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Zhao [96] extended this approach adding some stability arguments, and
could thus verify the exact form of Conjecture 2.1.1 for large graphs.

Theorem 2.3.2 (Zhao [96]). There is an n0 ∈ N such that each graph G of
order at least n ≥ n0 with at least n/2 vertices of degree at least n/2 contains
every tree with at most n/2 edges as a subgraph.

In [1], it is conjectured that an extension of Theorem 2.3.1, namely the
approximate dense version of the Loebl–Komlós–Sós conjecture, also holds.
We prove this approximate version in Chapter 3, which is based on work
from [74].

Theorem 2.3.3. [74] For every η, q > 0 there is an n0 ∈ N such that for
every graph G on n ≥ n0 vertices and every k ≥ qn the following is true.

If at least n/2 vertices of G have degree at least (1+η)k, then G contains
all trees with at most k edges.

Observe that we do not need the approximation factor (1 + η) for the
number of vertices of large degree. This is due to a not overly complicated
reduction, for details see Chapter 3.

Combining the stability arguments also used by Zhao, and our methods
exposed in Chapter 3, a sharp version of Conjecture 2.1.2 for n = O(k) has
been proved very recently by Hladký and Piguet [57], and independently by
Cooley [27].

The sparse case (i.e. the case when k is not linear in n) of the Loebl–
Kómlos–Sós conjecture remains open. It is not surprising that this should
be the most difficult case to solve, as in fact it implies the dense case.

Let us give a short sketch of this folklore observation. Assume that there
is a counterexample to Conjecture 2.1.2 for the dense case, i. e., there exists
a graph G of order n with half of its vertices of degree k, where n = O(k),
that does not contain some tree of order k+ 1. By taking many copies of G,
we could then construct a counterexample to Conjecture 2.1.2 for the sparse
case.

2.4 Discussion of the bounds

In this chapter, we shall discuss the bounds from Conjecture 1. As T could
be a star, it is clear that we need that G has a vertex of degree at least k.

On the other hand, we also need a certain amount of vertices of large
degree. In fact, the amount n

2
we require cannot be lowered by a factor of
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k−1
k+1

. We shall show now that if we require only k−1
k+1

n
2

= n
2
− n

k+1
vertices to

have degree at least k, the conjecture becomes false whenever k + 1 is even
and divides n.

To see this, construct a graph G on n vertices as follows. Divide V (G)
into 2n

k+1
sets Ai, Bi, so that |Ai| = k−1

2
, and |Bi| = k+3

2
, for i = 1, . . . , n

k+1
.

Insert all edges inside each Ai, and insert all edges between each pair Ai, Bi.
Now, consider the tree T we obtain from a star with k+1

2
edges by subdividing

each edge but one. Clearly, T is not a subgraph of G.

A similar construction shows that we need more than n
2
− 2n

k+1
vertices

of large degree, when k + 1 is odd and divides n. By adding some isolated
vertices, our example can be modified for arbitrary k. This shows that at
least n

2
−2b n

k+1
c−(n mod (k+1)) vertices of large degree are needed, for each

k. Hence, when max{n
k
, n mod k} ∈ o(n), the bound n

2
is asymptotically

best possible.



Chapter 3

An approximate version of the
LKS conjecture

3.1 An approximate version and an extension

In this chapter, which is based on work from [74], we shall prove an approx-
imate version of the Loebl–Komlós–Sós conjecture for large, dense graphs,
which has been conjectured in [1].

Our proof of Theorem 2.3.3 is inspired by the proof of the approximate
version of the Loebl conjecture by Ajtai, Komlós and Szemerédi [1]. We
use the regularity lemma followed by a Gallai-Edmonds decomposition of
the reduced cluster graph. This enables us to find a certain substructure in
the cluster graph, which contains a large matching, and captures the degree
condition on G. The tree is then embedded mainly into the matching edges.

We shall see that in the case that k ≥ n/2, it is not difficult to obtain
the same structure as in [1]. Our proof then follows [1], providing all details.

In the case that k < n/2, however, the situation is more complex. We
will have to content ourselves with a less favourable structure in the cluster
graph, which complicates the embedding of the tree. For a brief outline of
the crucial ideas we then employ, see Section 3.3.1. The full proof is given in
the remainder of Section 3.3.

Using similar ideas, we extend Theorem 2.3.3 in a different direction.
We pursue the question which other subgraphs are contained in our graph G
from Theorem 2.3.3.

Our second result of this chapter asserts that we can replace the trees
with bipartite graphs that may have a few more edges than trees. It will be
proved in Section 3.4
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Theorem 3.1.1. [74] For every η, q > 0 and for every c ∈ N there is an
n0 ∈ N so that for each graph G on n ≥ n0 vertices and each k ≥ qn the
following is true.

If at least n/2 vertices of G have degree at least (1 + η)k, then each
connected bipartite graph Q on k + 1 vertices with at most k + c edges is a
subgraph of G.

In particular, the condition of Theorem 2.3.3 allows for embedding even
cycles in G:

Corollary 3.1.2.[74] For every η, q > 0 there is an n0 ∈ N so that for all
graphs G on n ≥ n0 vertices and each k ≥ qn the following is true.

If at least n/2 vertices of G have degree at least (1+η)k, then G contains
all even cycles of length at most k + 1.

Observe that a sharp version of Theorem 3.1.1 does not hold, as is wit-
nessed by the following example. Take the complete graph on k vertices and
the empty graph on k vertices. Connect these two graphs with a matching
of order k. The graph we obtain satisfies the condition of the sharp version
of Theorem 3.1.1, but does not contains the cycle of length k + 1.

Also, the condition that Q is bipartite is necessary. This can be seen by
considering the complete bipartite graph K(1+η)k,(1+η)k. This graph satisfies
the condition of Theorem 3.1.1, but all its subgraphs are bipartite.

3.2 Preliminaries

The purpose of this section is to introduce the two main tools used in the
proofs of Theorem 2.3.3 and Theorem 3.1.1. The first of these tools is
the well-known regularity lemma. The second is Lemma 3.2.3, which will
give structural information on our graph G from Theorem 2.3.3 (and Theo-
rem 3.1.1). We derive it from the Gallai-Edmonds matching theorem.

3.2.1 Regularity

In this subsection, we introduce the notion of regularity, state Szemerédi’s
regularity lemma, and review a few useful properties of regularity. All of this
is well-known, so the advanced reader is invited to skip this section. For an
instructive survey on the regularity lemma and its applications, consult [58].

Let us first go through some necessary notation. For a graph G = (V,E),
with W ⊆ E and S ⊆ V , we will write G−W for the subgraph (V,E \W ) of
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G, and G−S the subgraph of G which is obtained by deleting all vertices of
S and all incident edges. For subsets X and Y of the vertex set V (G), define
NY (X) as the set of all neighbours of X in Y \X. If X and Y are disjoint,
then let e(X, Y ) denote the number of edges between X and Y . The density

of the pair (X, Y ) is d(X, Y ) := e(X,Y )
|X||Y | .

A bipartite graph G with partition classes C1 and C2 is called ε-regular
if for all subsets C ′1 ⊆ C1, C ′2 ⊆ C2 with |C ′1| ≥ ε|C1| and |C ′2| ≥ ε|C2|, it is
true that |d(C1, C2)− d(C ′1, C

′
2)| < ε.

A partition C0 ∪ C1 ∪ · · · ∪ CN of V (G) is called (ε,N)-regular, if

• |C0| ≤ εn and |Ci| = |Cj| for i, j = 1, . . . , N ,

• all but at most εN2 pairs (Ci, Cj) with i 6= j are ε-regular.

We are now ready to state Szemerédi’s regularity lemma.

Theorem 3.2.1 (Regularity lemma, Szemerédi [88]). For every ε > 0 and
m0 ∈ N, there exist M0, N0 ∈ N so that every graph G of order n ≥ N0

admits an (ε,N)-regular partition of its vertex set V (G) with m0 ≤ N ≤M0.

Call the partition classes Ci of G clusters. Now, for each graph G, for
each (ε,N)-regular partition of V (G), and for any density p define the cluster
graph (sometimes called reduced graph) in the following standard way.

First, we construct an auxiliary graph Gp obtained from G by deleting
all edges inside the clusters Ci, all edges that are incident with C0, all edges
between irregular pairs, and all edges between regular pairs (Ci, Cj) of density
d(Ci, Cj) < p. Set s := |Ci|, and observe that

|E(G−Gp)| ≤ N
s2

2
+ εn2 + εN2s2 +

N2

2
ps2 ≤ (

1

2m
+ 2ε+

p

2
)n2. (3.1)

Now, the cluster graph H = Hp on the vertex set {Ci}1≤i≤N has an edge
CiCj for each pair (Ci, Cj) of clusters that has positive density in Gp. We
shall prefer to work with the weighted cluster graph H̄ = H̄p which we obtain
from H by assigning weights

w(CiCj) := d(Ci, Cj)s

to the edges CiCj ∈ E(H).

In the setting of weighted graphs, the (weighted) degree of a vertex v is
defined as

dēg(v) :=
∑

u∈N(v)

w(vu),
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and the degree into a subset U ⊆ V (H̄), where we only count the weights
of v–U edges, is denoted by dēgU(v). We shall adopt this notation for our
weighted cluster graph H̄. For a subset X ⊆ Cj, we write

dēgX(Ci) :=
e(X,Ci)

s
.

For a set Y of subsets of distinct clusters from Gp−Ci, we shall write dēgY(Ci)
for
∑

Y ∈Y dēgY (Ci).

We shall often use edges of H̄ to represent the respective subgraph of
Gp, or its vertex set. For example, an edge e = CD ∈ E(H̄), might refer
to the subgraph of Gp induced by C ∪D, or to C ∪D itself. And for a set
U ⊆ C ∪D, we sometimes use the shorthand e ∩ U for (C ∪D) ∩ U .

Let us review some basic properties of Gp and H̄. Let C,D ∈ V (H̄): We
call a set D′ ⊆ D significant, if |D′| ≥ εs. A vertex v ∈ C is called typical to
a significant set D′ if degD′(v) ≥ dēgD′(C)− 2εs. Observe that

At most εs vertices of C are not typical to a given significant set D′.
(3.2)

Similarly, we have that

all but at most εs vertices v of C have degree degGp
(v) ≤ dēg(C) + 2εs.

(3.3)

Also, almost all vertices of any cluster C ∈ V (H̄) are typical to almost
all significant sets, in the following sense.

If Y is a set of significant subsets of clusters in V (H̄), then

|{Y ∈ Y : degY (v) ≥ dēgY (C)− 2εs}| ≥ (1−√ε)|Y|, (3.4)

for all but at most
√
εs vertices v ∈ C.

To see this, assume that the set C ′ ⊆ C of vertices not satisfying (3.4)
is larger than

√
εs. Then∑

Y ∈Y

|{v ∈ C : v is not typical to Y }| ≥
∑
v∈C′
|{Y ∈ Y : v is not typical to Y }|

≥ |C ′|√ε|Y|
> εs|Y|.

Thus there is a Y ∈ Y such that more than ε|C| vertices in C are not typical
to Y , a contradiction to (3.2).
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3.2.2 The matching

The main interest in this subsection is Lemma 3.2.3, which will give us im-
portant structural information on the cluster graph H that corresponds to
the graph G from Theorem 2.3.3 (or later Theorem 3.1.1). A weaker variant
of this lemma, Lemma 3.2.4 below, appeared in [1].

For the proof of Lemma 3.2.3, we need a simplified version of the Gallai-
Edmonds matching theorem, a proof of which can be found for example
in [31].

A 1-factor, or perfect matching, of a graph G is a 1-regular spanning
subgraph of G. We call G factor-critical, if for each v ∈ V (G), there exists a
perfect matching of G− v.

Theorem 3.2.2 (Gallai, Edmonds). Every graph G contains a set S ⊆ V (G)
so that each component of G − S is factor-critical, and so that there is a
matching in G that matches the vertices of S to vertices of different compo-
nents of G− S.

We are now ready for one of the key tools in the proof of Theorem 2.3.3.
(Recall that we write dēgM∪L(v) for dēgV (M)∪L(v).)

Lemma 3.2.3.[74] Let H̄ be a weighted graph on N vertices, and let K ∈ R.
Let L be the set of those vertices v ∈ V (H̄) with dēg(v) ≥ K. If |L| > N/2,
then there are two adjacent vertices vA, vB ∈ L, and a matching M in H̄
such that one of the following holds.

(a) M covers N({vA, vB}),

(b) M covers N(vA), and dēgM∪L(vB) ≥ K/2. Moreover, each edge in M
has at most one endvertex in N(vA).

Proof. Observe that we may assume that Y := V (H̄)\L is independent. (In
fact, otherwise we simply delete the edges in E(Y ), which will not affect the
degree of the vertices in L.)

Theorem 3.2.2 applied to the unweighted version of H̄ yields a set S ⊆
V (H̄). Among all matchings M ′ satisfying the conclusion of Theorem 3.2.2,
choose M ′ so that it contains a maximal number of vertices of Y . Extend
M ′ to a maximal matching M of H̄.

Set L′ := L \ S. Clearly, if there is an edge vAvB with endvertices
vA, vB ∈ L′, then (a) holds. Therefore, we may assume that L′ is independent.

Then, each edge of H̄ that is not incident with S has one endvertex in L′,
and one in Y . Consider any component C of H̄−S. Since C is factor-critical,
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S

L’’

X

S’

L’ Y

 M

Figure 3.1: The graph H̄ with the matching M , and sets L, S and Y .

we have that |(C − u) ∩ Y | = |(C − u) ∩ L′|, for every u ∈ V (C). Hence, C
consists of only one vertex, and so must every component of H̄ − S.

Denote by X the subset of Y that is not covered by M . Set L̃ :=
N(L′) ∩ L ⊆ S (see Figure 1). Now, if there is a vertex vB ∈ L̃ whose
weighted degree into H̄ − X is at least K/2, then vB, together with any of
its neighbours vA in L′, satisfies (b). So, we may assume that for each u ∈ L̃,

dēgH̄−X(u) < K/2, (3.5)

and hence dēgX(u) ≥ K/2.

On the other hand, dēgL̃(w) < K for each w ∈ X. Thus, by double
(weighted) edge-counting, it follows that

|X| ≥ |L̃|
2
. (3.6)

Set S ′ := S ∩ Y . By (3.5), the total weight of the edges in E(L̃∪ S ′, L′)
is less than |L̃|K/2 + |S ′|K, while each vertex of L′ has weighted degree at
least K into L̃ ∪ S ′. Thus, again by double edge-counting, and by (3.6),

|X|+ |S ′| ≥ |L̃|
2

+ |S ′| > |L′|. (3.7)

Furthermore, since Y is independent, M matches S ′ ⊆ Y to L′. Thus
|L′| ≥ |S ′|+ |L \M |, and so, by (3.7),

|X| > |L \M |.
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Since |L| > N
2

, this implies that M contains an edge uv with both

u, v ∈ L. We may assume that v ∈ L′ and u ∈ L̃. By (3.5), u has a
neighbour w in X. Hence, the matching M ′ ∪ {uw} \ {uv} covers more
vertices of Y than M ′ does, a contradiction to the choice of M ′.

Note that in the case K ≥ N/2 the situation in Lemma 3.2.3 is less
complicated. In that case, observe that clearly |S| ≤ |V (H̄ − S)|. So, either
|S| = |V (H̄ − S)| (in which case conclusion (a) of Lemma 3.2.3 holds), or
there is a component C of H̄ − S that has more than one vertex. Thus, as
C is factor-critical, there exists an L′–L′ edge in C, and (a) holds again.

This proves the following lemma, which appeared in [1].

Lemma 3.2.4. If K ≥ N/2, then Lemma 3.2.3 always yields case (a).

In the case k ≥ n/2, this observation simplifies our proof of Theo-
rem 2.3.3 considerably, as then only the simplest case needs to be treated.
We shall not make use of Lemma 3.2.4 in our proof of Theorem 2.3.3.

3.3 Proof of Theorem 2.3.3

The organisation of this section is as follows. The first subsection is devoted
to an outline of our proof, highlighting the main ideas, leaving out all details.
In Subsection 3.3.2, assuming that we are given a host graph G and a tree
T ∗ as in Theorem 2.3.3, we shall first apply the regularity lemma to G. We
then use Lemma 3.2.3 to find a substructure of the corresponding weighted
cluster graph H̄, which will facilitate the embedding of T ∗.

We shall prepare T ∗ for this by cutting it into small pieces in Subsec-
tions 3.3.3 and 3.3.4. Then, in Subsection 3.3.5, we partition the matching
given by Lemma 3.2.3, according to the decomposition of the tree T ∗. In
Subsection 3.3.6, we expose tools that we need for our embedding. What re-
mains is the actual embedding procedure, which we divide into the two cases
given by Lemma 3.2.3, and treat separately in Subsections 3.3.7 and 3.3.8.

3.3.1 Overview

In this subsection, we shall give an outline of our proof of Theorem 2.3.3.
So, assume that we are given η > 0 and q > 0. The regularity lemma
applied to parameters depending on η and q yields an n0 ∈ N. Now, let
n ≥ n0, let k ≥ qn, let G be a graph of order n that satisfies the condition of
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Theorem 2.3.3, and let T ∗ be a tree with k edges. We wish to find a subgraph
of G that is isomorphic to T ∗, i.e. we would like to embed T ∗ in G.

In order to do so, consider the weighted cluster graph H̄ corresponding
to G that is given by the regularity lemma. Denote by L ⊆ V (H̄) the set of
those clusters that have degree at least (1+π′)k in H̄, where π′ = π′(η, q) > 0.
Apply Lemma 3.2.3 to H̄ and K := (1 + π′)k which yields vertices A,B ∈
V (H̄) and a matching M . The rest of our proof will be divided into two cases,
corresponding to the two possible conclusions (a) and (b) of Lemma 3.2.3.

As the technical details for these two cases overlap, we will not com-
pletely separate them later on in the proof. In this outline, however, we
think it is more instructive to present first the easier proof for case (a), and
then turn our attention to case (b).

If the output of Lemma 3.2.3 is Case (a), then we shall decompose T ∗

into small subtrees (of order much below ηk) and a small set SD of vertices
(of constant order in n), so that between any two of our subtrees lies a vertex
from SD (the name SD stands for ‘seeds’). In fact, SD is the disjoint union
of two sets SDA and SDB, and each tree of T ∗−SD is adjacent to only one
of these two sets. Denote the set of trees adjacent to SDA by TA, and the
set of trees adjacent to SDB by TB. The formal definition of SD, TA and TB
can be found in Section 3.3.3.

Next, in Section 3.3.5, we partition the matching M from Lemma 3.2.3
into MA and MB. This is done in a way so that dēgMA

(A) is large enough
so that FA :=

⋃ TA fits into MA, and dēgMB
(B) is large enough so that

FB :=
⋃ TB fits into MB.

Finally, in Section 3.3.7, we embed SDA in A and SDB in B and use the
regularity of the edges in H̄ to embed the small trees of TA ∪ TB, one after
the other, levelwise, into MA ∪MB. The order of this embedding procedure
will be such that the already embedded part of T ∗ is always connected.

Moreover, the structure of our decomposition of T ∗, and the fact that
we embed the trees from TA ∪ TB in the matching edges, ensures that the
predecessor of any vertex r ∈ SDA ∪ SDB is embedded in a cluster that is
adjacent to A, respectively to B (in which we wish embed r). This enables
us to embed all of SD in A ∪B, as planned.

An important detail of our embedding technique is that we shall always
try to balance the embedding in the matching edges, in the sense that the
used part of either side should have about the same size. We only allow
for an unbalanced embedding if the degree of A resp. B into one of the
endclusters of the concerned edge is already ‘exhausted’ (cf. Property (�) in
Section 3.3.6). In practice, this means that whenever we have the choice
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into which endcluster of an edge e ∈ M we embed the root of some tree of
TA ∪ TB, we shall choose the side carefully.

In this manner, we can ensure that all of T ∗ will fit into M (or more
precisely into the corresponding subgraph of G). This finishes the embedding
of T ∗ in case (a) of Lemma 3.2.3.

In case (b) of Lemma 3.2.3, it is not possible to partition the matching
M into MA and MB so that FA fits into MA and FB fits into MB, as in
case (a). More precisely, for any partition of M into MA and MB, if dēgMA

(A)
allows for the embedding of a forest of order t, say, in MA, then dēgMB∪L(B)
only guarantees for the embedding of a forest of order at most (k − t)/2 in
the subgraph of Gp induced by MB and the edges incident with L′, where
L′ := L \M . For more details on this, see Lemma 3.3.1.

We use a combination of two strategies to overcome this problem. Firstly,
we shall embed T ∗ in two phases, leaving for the second phase some subtrees
that are (each) adjacent to only one vertex from SD. Secondly, we shall
embed some of the trees from TB in part of the matching reserved for FA.
This means that we ‘switch’ some of our trees to TA.

Let us explain the two strategies in more detail. We modify our sets
TA ∪ TB, in the following way. Denote by T̄A the set of those trees from
TA that are adjacent to only one vertex from SDA, and similarly define T̄B.
(Observe that thus the deletion of any tree in T̄A ∪ T̄B leaves T ∗ connected.)

We may assume that

|V (
⋃
T̄A)| ≥ |V (

⋃
T̄B)|.

Finally, set T ′ := (TA ∪ TB) \ (T̄A ∪ T̄B). Our plan now is to first embed the
trees from T ′ ∪ T̄B together with the vertices from SD and to postpone the
embedding of F̄A :=

⋃ T̄A to a later stage. As the part of the tree embedded
in the first phase is connected, we avoid the difficulty of having to connect
already embedded parts of T ∗ in the second phase.

Now, we shall partition M into MF and M̄B so that dēgMF
(A) allows for

the embedding of
⋃ T ′, and dēgM̄B∪L(B) allows for the embedding of F̄B :=⋃ T̄B. This actually means that the place we reserved for the embedding of

FB − V (F̄B) lies in MF . Therefore, we shall ‘switch’ this forest to TA (which
is the second of our strategies).

Let us explain what we mean by switching. For each tree T ∈ TB \ T̄B,
delete all vertices from T that are adjacent to SDB in T ∗ and add them to
SDA. Put the components of what remains of T into TA. Denote the thus
enlarged SDA by S̄D

A
and set S̄D := S̄D

A ∪ SDB.
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After switching all trees T ∈ TB \ T̄B, denote by TF the (enlarged) set
TA \ T̄A. That is, TF consists of all trees from the original TA \ T̄A, together
with all trees we generated by switching. It will be easy to verify that the
switching procedure does not increase too much the number of seeds.

Also, each tree from TF and T̄A is adjacent only to the enlarged S̄D
A

,
and each tree from T̄B is still adjacent only to SDB. For details on the
switching procedure, consult Section 3.3.4.

It remains to embed T ∗ in G, which is done in Section 3.3.8. We first
embed the vertices from S̄D

A∪SDB in A∪B, embed FF :=
⋃ TF in MF , and

embed part of T̄B in M̄B, in the same way as in case (a). In a second phase,
we embed the remaining trees from T̄B into edges of H that are incident with
L′. For each tree, we are able to find a free space in a suitable edge because
of the high degree of the clusters from L′.

In the remaining third phase we wish to embed F̄A. We shall now use
all of M , forgetting about the partition into MF and M̄B. The neighbours
of the trees from T̄A in S̄D

A
have already been embedded in the first phase.

Having chosen their images carefully then, ensures that now they have still
large enough degree into what is not yet used of M . Hence, there is enough
place for F̄A in M .

Also, it is essential here that each edge of M meets N(A) in at most one
cluster. The reason is that parts of these clusters might have been used in
the first and second phases of the embedding. So, some of the edges involved
might be unbalanced, in the sense above, because e. g. the degree of B was
such that we were not able to choose the endcluster in which we embedded
the roots of the trees from T̄B. However, as each edge of M has at most one
endcluster in N(A), it is irrelevant whether the embedding is balanced or not
in these edges.

The embedding itself of F̄A is done as before. This finishes the sketch of
our proof in case (b).

3.3.2 Preparations

We shall now prove Theorem 2.3.3. First of all, we fix a few constants
depending on η and q. Set

π := min{η, q}, ε :=
π7q

25 · 107
and m0 :=

500

qπ3
.

The regularity lemma (Theorem 3.2.1) applied to ε, and m0 yields nat-
ural numbers M0 and N0.
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Fix

β :=
ε

M0

, p :=
π3q

250
and n0 := max

{
N0,

8M0

β
· 8

p

}
.

Thus our constants satisfy the following relations

1

n0

� β � ε � 1

m0

< p � π ≤ q,

where a � b stands for the fact that a < π
100
b.

In particular, p satisfies

4ε+
1

m0

< p =
π3q

250
. (3.8)

Let n ≥ n0, let k ≥ qn, and let G be a graph of order n which has at least
n
2

vertices of degree at least (1+η)k. Suppose T ∗ is a tree of order k+1. Our
aim is to find an embedding ϕ : V (T ∗)→ V (G) that preserves adjacency.

Now, by Theorem 3.2.1 there exists an (ε,N)-regular partition of V (G),
with m0 ≤ N ≤ M0. As in Section 3.2.1, let Gp be the subgraph of G that
preserves exactly the edges between regular pairs of density at least p.

By (3.1) and by (3.8),

|E(G−Gp)| < pn2 ≤ π3

250
kn.

Thus, for all but at most π2

50
n vertices v, we have that degGp

(v) ≥ degG(v)−
π
5
k. Hence,

Gp has at least (1− π2

25
)
n

2
vertices of degree at least (1 +

4π

5
)k.

Let H̄ = H̄p be the weighted cluster graph corresponding to Gp. Denote
by L the set of those clusters in V (H̄) that contain more than εs vertices
of degree at least (1 + 4π

5
)k in Gp. A simple calculation shows that |L| >

(1− π2

5
)N

2
.

Now, delete min{π2N/5, |V (H̄) \ L|} clusters in V (H̄) \ L to obtain
a subgraph of the cluster graph H̄. As this subgraph is very similar (or
identical) to H̄, in the rest of the text we shall denote it as well by H̄. So
from now on, by H̄, we shall always refer to this subgraph. Each cluster in
L drops its degree by at most π2

5
Ns ≤ πk

5
. Thus, by (3.3), each cluster X in

L has degree

dēgH̄(X) > (1 +
3π

5
)k − 2εn > (1 +

π

5
)k. (3.9)
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Then Lemma 3.2.3 applied to H̄ andK := (1+π
5
)k yields an edgeAB ∈ E(H̄)

with A,B ∈ L, together with a matching M ′ of H̄, which satisfy (a) or (b)
of Lemma 3.2.3. Obtain M from M ′ by deleting all edges that are incident
with A or with B. In case (a) of Lemma 3.2.3, we calculate that

min{dēgM(A), dēgM(B)} ≥ (1 +
π

5
)k − 3n

N

≥ (1 +
π

5
− 3

qm0

)k

≥ (1 +
π

10
)k. (3.10)

Similarly, in case (b) it follows that

dēgM(A) ≥ (1 +
π

10
)k and dēgM∪L(B) ≥ (1 +

π

10
)
k

2
. (3.11)

Thus, for the remainder of our proof of Theorem 2.3.3 we shall work with
the assumption that there is a matching M of H̄ and vertices A,B /∈ V (M)
so that

1. dēgM(A), dēgM(B) ≥ (1 + π
10

)k, or

2. dēgM(A) ≥ (1 + π
10

)k, dēgM∪L(B) ≥ (1 + π
10

)k
2
, and each cluster in N(A)

meets a different edge of M .

We shall refer to these two cases as ‘Case 1’ and ‘Case 2’, respectively.
We will embed the tree T ∗ in the subgraph G′p ⊆ Gp corresponding to H̄,
using two different strategies in Case 1 and in Case 2.

3.3.3 Partitioning the tree

In this section, we shall cut our tree into small pieces. More precisely, we
shall define a set SD ⊆ V (T ∗), and sets TA and TB of disjoint small subtrees
of T ∗ which are connected through the vertices from SD. Moreover, SD
together with the union of all trees from TA ∪ TB will span T ∗.

Fix a root R of T ∗, and regard T ∗ as a poset having R as the minimal
element. For a vertex x of a subtree T ⊆ T ∗, denote by T (x) the subtree
of T induced by x and all vertices y greater than x in the tree-order of T ∗.
(That is, T (x) contains all vertices y such that the path between the root R
and y contains the vertex x.) If R /∈ V (T ), then define the seed sd(T ) of T
as the maximal vertex of T ∗ which is smaller than every vertex of T .

Our sets SD = SDA ∪ SDB, TA and TB will satisfy:
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(I) SDA ∩ SDB = ∅,
(II) r ∈ SD lies at even distance toR if and only if r ∈ SDA, andR ∈ SDA,

(III) TA ∪ TB consists of the components of T ∗ − SD,

(IV) |V (T )| ≤ βk, and sd(T ) ∈ SD, for each T ∈ TA ∪ TB,

(V) max{|SDA|, |SDB|} ≤ 2
β
, and

(VI) eT ∗(V (FA), SDB) = 0, and eT ∗(V (FB), SDA) = 0,

where FA :=
⋃
T∈TA

T and FB :=
⋃
T∈TB

T are the forests spanned by TA
and TB.

Let us first define SD. To this end, we shall inductively find vertices xi,
and define auxiliary trees T i ⊆ T ∗. Set T 0 := T ∗.

In step i ≥ 1, let xi ∈ V (T ∗) be the maximal vertex in the tree-order of
V (T i−1) with

|V (T i−1(xi))| > βk, (3.12)

as illustrated in Figure 3.2(a), and define

T i := T i−1 − (T i−1(xi)− xi).

If there is no vertex satisfying (3.12), then set xi := R, and stop the
definition process.

Say our process stops in some step j. Let A′ be the set of all xi, i ≤ j,
with even distance to the root R, and let B′ be the set of all other xi.

Note that, because of (3.12), at each step i ≤ j − 1,

|V (Ti)| ≤ |V (Ti−1)| − (βk − 1),

and thus, by the definition of n0,

j − 1 ≤ |V (T ∗)|
βk − 1

≤ k + 1

βk − 1
≤ 3

2β
.

Hence,

|A′ ∪B′| ≤ 2

β
. (3.13)

For the sake of condition (VI), we shall now add a few more vertices to
our sets A′ and B′, which will result in the desired SD.
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xi

T i−1(xi)

x1

x5

x9

x7

x4

(a) In step i, we find vertex xi.

T i−1(xi)
xi ∈ A′

x5

x9

y

z
x1 ∈ B′

x7 ∈ B′

x4 ∈ B′

(b) Say xi ∈ A′. We add y and z to
A(T ).

T i−1(xi)
xi ∈ SDA

x5

x9z

y

x1 ∈ B′

x7 ∈ B′

x4 ∈ B′

(c) T i−1(xi)− SD ⊆ TA.

Figure 3.2: Phases of the partition of T ∗.

Let C be the set of the components of T ∗ − (A′ ∪ B′). For each T ∈ C
with sd(T ) ∈ A′, denote by A(T ) the set of vertices adjacent to B′. Simi-
larly, if sd(T ) ∈ B′, then denote by B(T ) the set of vertices adjacent to A′

(cf. Figure 3.2(b)). Set

SDA := A′ ∪
⋃
T∈C

A(T ), and SDB := B′ ∪
⋃
T∈C

B(T )

and set SD := SDA ∪ SDB.

Since each vertex in B′ has at most one neighbour in the union of the
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A(T ), it follows that
|SDA \ A′| ≤ |B′|,

and analogously,
|SDB \B′| ≤ |A′|.

Thus,
max{|SDA|, |SDB|} ≤ |A′ ∪B′|. (3.14)

Finally, we shall define TA and TB. Let C ′ be the set of the components
of T ∗ − SD. Set

TA := {T ∈ C ′ : sd(T ) ∈ SDA} and TB := {T ∈ C ′ : sd(T ) ∈ SDB},

as shown in Figure 3.2(c), and define the forests

FA :=
⋃
T∈TA

T and FB :=
⋃
T∈TA

T.

Observe that Conditions (I)–(IV) and (VI) are clearly met and that (V)
holds because of (3.13) and (3.14).

This finishes our manipulation of the tree T ∗ in Case 1.

3.3.4 The switching

In Case 2 from Section 3.3.2, we shall not only cut our tree to small pieces
(cf. Section 3.3.3), but also switch some of our small subtrees from one of the
two sets TA, TB to the other. We achieve this by adding some more vertices
to SD, thus naturally refining our partition of T ∗.

Set

T̄A :={T ∈ TA : e(V (T ), SD − sd(T )) = ∅}, and

T̄B :={T ∈ TB : e(V (T ), SD − sd(T )) = ∅}.

We may assume that

|
⋃
T∈T̄A

V (T ) | ≥ |
⋃
T∈T̄B

V (T ) |. (3.15)

Now, consider a tree T ∈ TB \ T̄B as in Figure 3.3(a). Denote by S(T )
the set of all vertices in V (T ) that in T ∗ are adjacent to some vertex of SDB.
For illustration see Figure 3.3(b).
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T

sd(T )

v1 v2 v3

v4

(a) A tree T ∈ TB \ T̄B , with
sd(T ), x1, x2, x3, x4 ∈ SDB .

T

sd(T )

v1 v2 v3

v4

u2 u3

u4

u1

(b) The set S(T ) = {y1, . . . , y4}, and
the subtrees of T generated by the
switching.

Figure 3.3: The switching procedure.

Set

S̄D
A

:= SDA ∪
⋃

T∈TB\T̄B

S(T ) and S̄D := S̄D
A ∪ SDB.

Finally, define

T ′A :=
⋃

T∈TB\T̄B

{C : C is a component of T − S(T )}

and
TF := (TA \ T̄A) ∪ T ′A.

(The F in TF stands for ‘first’, as this part of the tree is to be embedded
first.) Finally, set

FF :=
⋃
T∈TF

T,

F̄A :=
⋃
T∈T̄A

T and F̄B :=
⋃
T∈T̄B

T.
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Observe that our sets S̄D = S̄D
A ∪ SDB, TF ∪ T̄A, and T̄B still satisfy

conditions (I)-(IV) and (VI) from Section 3.3.3 (with SD, SDA, TA, TB,

FA, and FB replaced by S̄D, S̄D
A

, TF ∪ T̄A, T̄B, F̄A, and F̄B, respectively).
Instead of (V), we now have the similar

(V)’ |S̄D| ≤ 8
β
,

since by the definition of S̄D
A

we know that for each vertex x of SDB, we
have created at most 2 vertices of S̄D

A\SDA (between x and the next vertex
of SDB in direction of the root R). Thus,

|S̄DA| ≤ |SDA|+ 2|SDB| ≤ 6

β
,

as needed for (V)’.

3.3.5 Partitioning the matching

In this subsection, we shall divide the matching M into two parts, into which
we will later embed the two forests FA, FB, respectively FF and F̄B, of T ∗

that we defined in Subsection 3.3.3, resp. in Subsection 3.3.4. (The forest F̄A
will be embedded later).

For this, we will need the following number-theoretic lemma, which ap-
peared also in [1]. We give a short proof.

Lemma 3.3.1. Let I be a finite set, and let a, b,∆ > 0. For i ∈ I, let
ai, bi ∈ (0,∆]. Suppose that

a∑
i∈I ai

+
b∑
i∈I bi

≤ 1. (3.16)

Then there is a partition of I into Ia and Ib such that
∑

i∈Ia ai > a−∆ and∑
i∈Ib bi ≥ b.

Proof. Define a total order � on I in a way that i � j implies ai

bi
≤ aj

bj
for all

i, j ∈ I. Let ` ∈ I be minimal in this order with a ≥∑i�` ai.

Set Ia := {i ∈ I : i � `} and set Ib := I \ Ia. It is clear that
∑

i∈Ia ai >
a−∆, by the definition of ` and as a` ≤ ∆. So, all we have to show is that∑

i∈Ib bi ≥ b.
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Indeed, suppose otherwise. Then by (3.16), and by the definition of `,
we have that ∑

i∈Ib bi∑
i∈I bi

<
b∑
i∈I bi

≤ a−∑i∈Ia ai∑
i∈I ai

+
b∑
i∈I bi

≤ 1−
∑

i∈Ia ai∑
i∈I ai

=

∑
i∈Ib ai∑
i∈I ai

.

Multiply the two sides of this inequality with
∑

i∈I ai ·
∑

i∈I bi, subtract
the term

∑
i∈Ib ai ·

∑
i∈Ib bi, and divide by

∑
i∈Ia bi

∑
i∈Ib bi to obtain

a`
b`
≤
∑

i∈Ia ai∑
i∈Ia bi

<

∑
i∈Ib ai∑
i∈Ib bi

≤ a`
b`
,

(where the first and last inequality follow from the definition of �). This
yields the desired contradiction.

We shall now apply Lemma 3.3.1 to partition our matchingM = {ei}i≤|M |.
We do this separately for the two cases from Section 3.3.2.

In Case 1, we set

a := |V (FA)|+ πk

20
, b := |V (FB)|+ πk

20
, and ∆ := 2s.

For i ≤ |M |, set ai := dēgei
(A) ≤ ∆, and bi := dēgei

(B) ≤ ∆. Now, (3.10)
implies that

a∑|M |
i=1 ai

+
b∑|M |
i=1 bi

≤ |V (FA)|+ |V (FB)|+ πk
10

(1 + π
10

)k
≤ 1.

Hence, Lemma 3.3.1 yields a partition of M into MA and MB such that

dēgMA
(A) > |V (FA)|+ πk

40
and dēgMB

(B) > |V (FB)|+ πk

40
. (3.17)

In Case 2, set

a := |V (FF )|+ πk

20
, b := |V (F̄B)|+ πk

40
, and ∆ := 2s.
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For i = 1, . . . , |M |, again set ai := dēgei
(A), and bi := dēgei

(B). Set L′ :=
L \M . For i = |M | + 1, . . . , |M | + |L′|, set ai := 0, and set bi := dēgCi

(B),
where Ci is the ith cluster in L′.

Observe that by (3.15),

|V (F̄B)| ≤ k − |V (FF )|
2

. (3.18)

Now, let us check that the conditions of Lemma 3.3.1 hold. Clearly,
ai, bi ≤ ∆ for all i ≤ |M |+ |L′|.

Moreover, Condition (3.16) holds since (3.11) and (3.18) imply that

a∑|M |+|L′|
i=1 ai

+
b∑|M |+|L′|

i=1 bi
≤ |V (FF )|+ πk

20

(1 + π
10

)k
+
|V (F̄B)|+ π

40

(1 + π
10

)k
2

≤ |V (FF )|+ 2|V (F̄B)|+ πk
10

(1 + π
10

)k

≤ 1.

We thus obtain a partition of M into MF and M̄B such that

dēgMF
(A) > |V (FF )|+ πk

40
and dēgM̄B∪L′(B) ≥ |V (F̄B)|+ πk

40
. (3.19)

Let T MB ⊆ T̄B be maximal with

dēgM̄B
(B) ≥ |

⋃
T∈TM

B

V (T )|+ πk

40N
|M̄B|. (3.20)

Set T LB := T̄B \ T MB . Let FM
B :=

⋃
T∈TM

B
T and let FL

B := F̄B − V (FM
B ).

Observe that if T MB 6= T̄B, then the maximality of T MB ensures that

dēgM̄B
(B) < |V (FM

B )|+ πk

40N
|M̄B|+ βk.

Hence, by (3.19), either T LB = ∅, or

dēgL′(B) ≥ |V (FL
B )|+ πk

80N
|L′|. (3.21)
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3.3.6 Embedding lemmas for trees

In this section, we shall prove some preparatory lemmas on embedding trees
in regular pairs of H̄.

Let C,D ∈ V (H̄), and let U,N ⊆ C∪D. We say that U has Property (?)
in CD for N if it satisfies the following.

(?) If ||C ∩ U | − |D ∩ U || > βk + εs, then
min{|N ∩ C|, |N ∩D|} ≤ min{|C ∩ U |, |D ∩ U |}+ 2εs+ βk.

Lemma 3.3.2. Let (T, r) be a rooted tree of order at most βk. Let CD ∈
E(H̄). Suppose that U,N ⊆ C ∪D are such that

min{|N ∩ C \ U |, |D \ U |} > 2

p
(εs+ βk).

Then there is an embedding ϕ of T in (C ∪D) \ U such that ϕ(r) ∈ N and
such that the following holds.

(??) If U has Property (?) in CD for N ,
then also Uϕ := U ∪ ϕ(V (T )) has Property (?) in CD for N .

Proof. Write V (T ) = r ∪ L1 ∪ L2 ∪ . . ., where L` is the `th level of T (i. e.
the set of vertices at distance ` to r).

First, suppose that |N∩D\U | ≤ εs. In this case, choose ϕ(r) ∈ N∩C\U
typical w. r. t. D \ U . (This is possible, as by (3.2), there are at most εs
vertices that are not typical.)

Embed the rest of V (T ) levelwise, choosing for ϕ(L`) unused vertices of
D\U that are typical with respect to C \U , if ` is odd; and choosing vertices
of C \ U that are typical with respect D \ U , if ` is even.

Now, suppose that |N ∩D \ U | > εs. In this case, we may alternatively
wish to embed r in N ∩D. We do so in either of the following cases

1. |⋃`∈N L2`−1| > |
⋃
`∈N L2`| and |C \ U | ≥ |D \ U |, or

2. |⋃`∈N L2`−1| < |
⋃
`∈N L2`| and |C \ U | ≤ |D \ U |,

and otherwise embed r in N ∩C, as before. After having thus chosen a place
for the root r, the rest of T is embedded analogously as above (possibly
swapping the roles of C and D). We have thus completed the embedding of
T .

It remains to prove (??). So assume that Uϕ has Property (?) for N in
some edge CD. Furthermore, assume that

||C ∩ Uϕ| − |D ∩ Uϕ|| > βk + εs. (3.22)
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Now, if ||C ∩U | − |D ∩U || > βk+ εs, then Property (?) for Uϕ follows from
Property (?) for U . So suppose otherwise, that is

||C ∩ U | − |D ∩ U || ≤ βk + εs. (3.23)

By (3.22), this means that we could not choose into which of N ∩ C and
N ∩D we would embed the root of T . Hence,

min
Y=C,D

{|N ∩ Y \ U |} ≤ |N ∩D \ U | ≤ εs.

Using (3.23), this gives

min{|N ∩ C|, |N ∩D|} ≤ max{|C ∩ U |, |D ∩ U |}+ min
Y=C,D

{|N ∩ Y \ U |}
≤ max{|C ∩ U |, |D ∩ U |}+ εs

≤ min{|C ∩ U |, |D ∩ U |}+ 2εs+ βk

≤ min{|C ∩ Uϕ|, |D ∩ Uϕ|}+ 2εs+ βk,

as desired.

Let C,D,X ∈ V (H̄), let X ′ ⊆ X, let Z ⊆ V (H̄), let U ⊆ ⋃V (H̄), let
m ∈ N, and let (T, r) be a rooted tree.

We say that U has Property (�) in (C,D) with respect to X if it satisfies
the following.

(�) If ||C ∩ U | − |D ∩ U || > βk, then
min{dēgC(X), dēgD(X)} ≤ min{|C ∩ U |, |D ∩ U |}+ 5εs+ βk.

An embedding ϕ of T is a (v,X ′, U)-embedding in Z, if ϕ(V (T ) \ {r}) ⊆⋃Z \ U , if ϕ(r) = v, and if each vertex at odd distance to the root r is
mapped to a vertex that is typical to X ′.

A vertex is Z-typical, if it is typical to each cluster from Z.

The set Z is said to be (m,U)-large for X, if

dēgZ(X) > m+ |U ∩
⋃
Z|+ πk

100N
|Z|.

Lemma 3.3.3. Let (T, r), X ′, X and U be as above with |X ′| ≥ |X|/2.
A) Suppose MX is a matching in H̄ −X so that V (MX) is (|V (T )|, U)-large
for X, so that v ∈ X is V (MX)-typical, and so that U has Property (�) in
(C,D) with respect to X, for each CD ∈MX .
Then, there is a (v,X ′, U)-embedding ϕ of T in V (MX) such that U∪ϕ(V (T ))
has Property (�) with respect to X for every CD ∈MX .
B) Let LX , NLX

⊆ V (H̄) be such that LX is (|V (T )|, U)-large for X, and
NLX

is (|V (T )|, U)-large for each Y ∈ LX . If v ∈ X is LX-typical, then there
is a (v,X ′, U)-embedding ϕ of T in LX ∪NLX

.
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Proof. We map r to v and embed the trees from the forest F := T − {r}
inductively. In each step j ≥ 1, we embed a tree T j of the forest F . Denote
by V <j ⊆ V (F ) the set

⋃
i<j V (T i) of vertices we have already embedded

before step j. Let S be the set of vertices in
⋃
V (H̄) that are not typical to

X ′. Set U<j := U ∪ S ∪ ϕ(V <j). In particular, U<1 = U ∪ S.

For Part A), we shall moreover use two properties of U during our
embedding. Firstly, if CD ∈MX satisfies ||C ∩ U | − |D ∩ U || ≤ βk, then we
require that in each step j ≥ 1

(I) U<j has Property ( ? ) for N(v) ∩ (C ∪D).

This property holds for j = 1, as the condition of Property (?) is void, and
we shall check it for each later step.

Secondly, for the edges with ||C ∩ U | − |D ∩ U || > βk, observe that, as
the sets U<j are growing, Property (�) ensures that for all j ≥ 1

(II) minY ∈{C,D}{dēgY (X)} ≤ minY ∈{C,D}{|Y ∩ U<j|}+ 5εs+ βk.

So, assume now that we are in step j ≥ 1, that is, ϕ(x) has been defined
for all x ∈ V <j, and we are about to embed T j.

Claim 3.3.4. There is an edge CD, with CD ∈ MX for Part A) and with
C ∈ L, for Part B), such that

min{|(N(v) ∩ C) \ U<j|, |D \ U<j|} ≥ 2

p
(εs+ βk).

Before proving Claim 3.3.4, we shall show how we complete our embed-
ding of T j under the assumption that the claim holds for the edge e = CD.

Set N := N(v) ∩ e and let rj := N(r) ∩ V (T j) be the root of T j. Apply
Lemma 3.3.2 to embed (T j, rj) in e\U<j, mapping rj to N(v). Lemma 3.3.2
together with (I) for j ensures (I) for j + 1. As our embedding avoids S, all
vertices in ϕ(T ) are typical to X ′. This terminates step j.

Say we terminate the embedding procedure in step `. Then ϕ is a
(v,X ′, U)-embedding. So, for Part B), we are done. For Part A), however,
we still have to prove that U<` \ S has Property (�) in each CD ∈MX .

To this end, assume that ||C ∩ (U<` \ S)| − |D ∩ (U<` \ S)|| > βk. If
||C ∩ U | − |D ∩ U || ≤ βk, then by (I), U<` has Property (?) in CD for
N(v) ∩ (C ∪D). Hence,

min
Y=C,D

{dēgY (X)} ≤ min
Y=C,D

{degY (v)}+ 2εs

≤ min
Y=C,D

{|Y ∩ (U<`)|}+ 4εs+ βk

≤ min
Y=C,D

{|Y ∩ (U<` \ S)|}+ 5εs+ βk.
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On the other hand, if ||C ∩ U | − |D ∩ U || > βk, then (II) ensures that

min
Y ∈{C,D}

{dēgY (X)} ≤ min
Y ∈{C,D}

{|Y ∩ (U<` \ S)|}+ 5εs+ βk.

This shows that U<` \ S has Property (�) in each CD ∈MX for Part A). It
only remains to prove Claim 3.3.4.

Proof of Claim 3.3.4: First, suppose we are in Case A). Let us start
by showing that there is an edge e = CD ∈MX which satisfies

dēge(X)− |e ∩ U<j| ≥ 8

p
(εs+ βk) + 2εs. (3.24)

Indeed, suppose there is no such edge. Then, as V (MX) is (V (T ), U)-large,
we have that

8

p
(εs+ βk)|MX | >

∑
e∈MX

(dēge(X)− |e ∩ U<j| − 2εs)

= dēgMX
(X)− |U ∩

⋃
MX | − |U<j \ U | − 2εs|MX |

≥ dēgMX
(X)− |U ∩

⋃
MX | − |V (T )| − |S ∩MX | − 2εs|MX |

≥ πk

100N
|V (MX)| − 4εs|MX |

>
πk

100N
|MX |,

which, as βk ≤ ε
M0
n ≤ εs, implies that 16ε/p > πq/100, a contradiction.

So, assume now that we have chosen an edge e for which (3.24) holds.
Clearly, we can write e = CD such that

4

p
(εs+ βk) ≤ dēgC(X)− 2εs− |C ∩ U<j| ≤ |N(v) ∩ C \ U<j|. (3.25)

We claim that

|D \ U<j| ≥ 2

p
(2εs+ βk). (3.26)

Indeed, suppose for contradiction (3.26) does not hold. Then (3.25) implies
that

|C ∩ U<j| ≤ s− 4

p
(εs+ βk)

= |D ∩ U<j|+ |D \ U<j| − 2

p
(2εs+ βk)− 2

p
βk

≤ |D ∩ U<j| − 2

p
βk.
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Hence, either by (I), or by (II), it holds that

min{dēgC(X), dēgD(X)} ≤ |C ∩ U<j|+ 5εs+ βk.

Thus, by (3.24),

8

p
(εs+ βk) + 2εs ≤ dēge(X)− |C ∩ U<j| − |D ∩ U<j|

≤ dēge(X)−min{dēgC(X), dēgD(X)}+ 5εs+ βk − |D ∩ U<j|
≤ s+ 5εs+ βk − |D ∩ U<j|
< |D \ U<j|+ 5εs+ 2βk.

So, |D\U<j| > (8
p
−3)(εs+βk), a contradiction to our assumption that (3.26)

does not hold. This proves (3.26), which together with (3.25) then implies
Claim 3.3.4 for Case A).

Now, assume that we are in Case B). First we show that if some Z ⊆
V (H̄) is (|V (T )|, U)-large for some Y ∈ V (H̄), then there is a Z ∈ Z ∩N(Y )
such that

dēgZ(Y )− |Z ∩ U<j| ≥ 2

p
(εs+ βk) + 2εs.

Indeed, otherwise

2

p
(εs+ βk)|Z| >

∑
Z∈Z

(dēgZ(Y )− |Z ∩ U<j| − 2εs)

≥ dēgZ(Y )− |U<j ∩
⋃
Z| − 2εs|Z|

> (
πk

100N
− 4εs)|Z|

≥ πk

200N
|Z|,

a contradiction, as above.

So there is a C ∈ LX and a D ∈ NLX
∩N(C) such that

|N(v) ∩ C \ U<j| ≥ dēgC(X)− |C ∩ U<j| − 2εs ≥ 2

p
(εs+ βk)

and

|D \ U<j| ≥ dēgD(C)− |D ∩ U<j| ≥ 2

p
(εs+ βk),

as desired for Claim 3.3.4.
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3.3.7 The embedding in Case 1

In this subsection, we shall complete the proof of Theorem 2.3.3 under the
assumption that Case 1 of Section 3.3.2 holds. So, we assume that there are
an edge AB ∈ E(H̄) and a matching M = MA ∪MB in H̄ − {A,B} as in
Section 3.3.5. These, together with the sets SD = SDA ∪ SDB, TA and TB
from Section 3.3.3, satisfy (3.17).

Our embedding ϕ will be defined in |SD| steps. In each step i ≥ 1, we
choose a suitable vertex ri ∈ SD and embed it together with all trees from

Ti := {T ∈ TA ∪ TB : sd(T ) = ri}.

Set V0 := ∅ and for i ≥ 1, let

Vi := Vi−1 ∪ {ri} ∪
⋃
T∈Ti

V (T ).

We start with r1 := R, and in each step i > 1, we shall choose a vertex
ri ∈ SD \ Vi−1 that is adjacent to Vi−1. The seed ri will be embedded in
a vertex vi ∈ A ∪ B, while Ti will be mapped to edges from M (or more
precisely, to the corresponding subgraph of G′p). Set U0 := ∅, and once ϕ is
defined on Vi, set Ui := ϕ(Vi).

For each i ≥ 0, the following conditions will hold.

(i) |(A ∪B) ∩ Ui| ≤ i,

(ii) if x ∈ Vi ∩N(SDA), resp. x ∈ Vi ∩N(SDB), then ϕ(x) has at least p
4
s

neighbours in A, resp. in B,

(iii) for CD ∈MA, the set Ui has Property (�) in CD with respect to A.

(iv) for CD ∈MB, the set Ui has Property (�) in CD with respect to B.

Observe that properties (i)–(iv) trivially hold for i = 0.

So, suppose now that we are in some step i ≥ 1 of our embedding process.
Choose ri ∈ SD as detailed above. Let us assume that ri ∈ SDA, the case
when ri ∈ SDB is analogous.

We embed ri in a vertex vi = ϕ(ri) ∈ A that is typical with respect to
B and typical w. r. t. all but at most 2

√
ε|MA| clusters of MA. Properties (i)

and (ii) for i− 1 ensure that if x is the predecessor of ri in T ∗, then ϕ(x) has
at least ps

4
− i neighbours in A \ Ui−1. By (3.2) and (3.4), at most 2

√
εs of
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these vertices do not have the required properties. Hence, there are at least
(p

4
− 2
√
ε)s− i ≥ 1 suitable vertices we may choose vi := ϕ(ri) from.

LetM i
A ⊆MA be a maximal submatching such that vi is typical w. r. t. each

of the end-clusters of each edge of M i
A. Then by (3.4) and (3.17) we obtain

dēgM i
A

(A) ≥ dēgMA
(A)− 4

√
ε|MA|s

> |V (FA)|+ πk

40
− 4
√
ε|MA|s

> |V (FA)|+ πk

80

> |V (
⋃
Ti)|+ |Ui−1 ∩

⋃
V (MA)|+ πk

80N
|V (M i

A)|.

Now we use Lemma 3.3.3 Part A) letting (T, r) be the tree induced by
ri and the trees from Ti, and setting MX := M i

A, U := Ui−1, v := vi, and
X = X ′ = A. It is easy to see that (i), (ii), and (iv) hold for i, as they hold
for i− 1, and by our choice of ϕ(Vi \Vi−1). Lemma 3.3.3 Part A) ensures (�)
for all edges CD ∈M i

A. As we did not embed anything in the edges outside
M i

A, (iii) for i− 1 implies (iii) for i, for all CD ∈MA.

This completes the embedding of the tree T ∗ in G′p ⊆ G in Case 1.

3.3.8 The embedding in Case 2

We shall now complete the proof of Theorem 2.3.3 under the assumption that
Case 2 of Section 3.3.2 holds. That is, there are an edge AB ∈ E(H̄) and a

matching M = MF∪M̄B in H̄−{A,B} together with sets S̄D = S̄D
A∪SDB,

TF , T̄A, T MB and T LB from Sections 3.3.3 and 3.3.4 satisfying (3.20) and (3.21)
from Section 3.3.5.

Our embedding will be defined in three phases. In the first phase, we
shall embed all vertices from S̄D in A ∪ B, embed FF in edges of MF , and
embed FM

B in edges of M̄B. In the second phase, we shall embed FL
B in edges

incident with L′ ∩ N(B), and in the third phase, we shall embed F̄A in the
remaining space inside edges from M .

Denote by A′ the set of vertices in A that are typical to all but at most
2
√
ε|M | clusters of V (M), and denote by B′ the set of vertices in B that are

typical to all but at most
√
ε|L′| clusters of L′.

The first phase is done analogously as in Case 1, always considering A′

and B′ instead of A and B. In each step, Lemma 3.3.3 Part A) is used in
the following setting.



3.3 Proof of Theorem 2.3.3 35

The rooted tree (T, r) is the tree induced by ri and the trees from

Ti := {T ∈ TF ∪ T MB : sd(T ) = ri}.

We set either (X ′, X) = (A′, A) or (X ′, X) = (B′, B), and let v = ϕ(ri). The
matching MX is a maximal submatching either of MF or of M̄B, so that ϕ(ri)
is V (MX)-typical. Finally, the set U is the set of the vertices used before
step i.

For the second phase, assume that V (FL
B ) 6= ∅ (otherwise we shall skip

the second phase). We define the second phase of our embedding process in
|SDB| steps.

In each step i ≥ 1, we embed the trees T i := {T ∈ T LB : sd(T ) = ri}
in edges incident with L′. (Recall that L′ = L \M .) Suppose that we are
at step i of this procedure, i. e. that we have already embedded the trees
from T 1, . . . , T i−1. Denote by Ui−1 the set of vertices used so far for the
embedding. Let L′i be the set of those clusters of L′ to which ϕ(ri) is typical.
As ϕ(ri) ∈ B′, (3.4) and (3.21) imply that

dēgL′i(B) ≥ |V (
⋃
T i)|+ |Ui−1 ∩ L′i|+

πk

100N
|L′i|.

Furthermore, by (3.9), for all Y ∈ L′i we have that

dēg(Y ) ≥ |V (
⋃
T i)|+ |Ui−1|+ πk

100
.

Use Lemma 3.3.3 Part B) to embed Ti, letting the rooted tree be the
tree induced by ri and the trees from T i, and setting X := B, X ′ := B′,
v := ϕ(ri), LX := L′i, NLX

:= N(L′i), and U := Ui−1.

The third phase of our embedding process takes place in |S̄DA| steps,
where in each step i ≥ 1, we embed the trees from T i := {T ∈ T̄A : sd(T ) =
ri}. Suppose that we are at step i of this procedure, i. e. that we have already
embedded the trees from T 1, . . . , T i−1. Denote by Ūi−1 the set of vertices
used so far for the embedding. Let Mi be the maximal submatching of M
such that ϕ(ri) is typical to all cluster of V (Mi). As ϕ(ri) ∈ A′, we have
by (3.4) and (3.10) that

dēgMi
(A) ≥ |V (

⋃
T i)|+ |Ūi|+ πk

100
.

Observe that, as each edge CD ∈ M meets N(A) in at most one end-
cluster, the set Ui trivially has Property (�) in CD with respect to A. We
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use Lemma 3.3.3 Part A) to embed Ti, letting (T, r) be the tree induced by
ri together with the trees from T i, and setting X := A, X ′ := A′, v := ϕ(ri),
MX := Mi, and U := Ūi−1.

This terminated our embedding of T ∗, and thus the proof of Theo-
rem 2.3.3.

3.4 Proof of Theorem 3.1.1

Our proof of Theorem 3.1.1 follows closely the lines of the proof of Theo-
rem 2.3.3. We embed a rooted spanning tree (T ∗, R) of Q, and choosing ϕ
carefully, we ensure the adjacencies for the edges from E(Q) \ E(T ∗).

Proof of Theorem 3.1.1. Set π := min{η, q} and set

ε′ :=
εc+1

c+ 4
, and m0 :=

500

π2q
,

where ε is the constant from the proof of Theorem 2.3.3. As in the proof
of Theorem 2.3.3, the regularity lemma applied to ε′, and m0, yields natural
numbers N0 and M ′

0. Set M0 := max{M ′
0, c}, define β and p accordingly,

and set

n0 := max

{
N0,

9M0

β
·
(

8

p

)c+1
}
.

Now, let G be a graph on n ≥ n0 vertices which satisfies the condition of
Theorem 3.1.1, let k ≥ qn, and let Q be a connected bipartite graph of order
k+ 1 with at most k+ c edges, with a spanning tree T ∗. Fix a root R in T ∗.
Denote by M∗ the subgraph of Q induced by the edges in E(Q) \E(T ∗) and
let N∗ be the set of predecessors of V (M∗) in the tree order of T ∗.

We decompose T ∗ as in Section 3.3.3, with the difference that we now
add the vertices from V (M∗)∪N∗ to the sets A′ and B′ (from the definition
of SD), depending on the parity of their distance in T ∗ to R. In this way,
and since Q is bipartite, we obtain, after the switching, two independent
sets S̄D

A
and SDB so that

|S̄DA|+ |SDB| ≤ 8

β
+ 8c <

9

β
,

which is constant in n.

The definition of our the embedding ϕ is similar as in the proof of
Theorem 2.3.3, except for some extra precautions we take for vertices from
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V (M∗) ∪N∗. At step i, for each vertex r ∈ S̄DA
, define

N i
r :=

j⋂
`=1

N(ϕ(x`)) ∩ A,

where x1, . . . xj are the already embedded neighbours of r in S̄D
A

. If none of

the neighbours of r in S̄D
A

has been embedded before step i, then set N i
r :=

A. Analogously define N i
r for r ∈ SDB.

In each step i of our embedding process, we shall ensure the following.

(i) If r ∈ V (M∗) is not yet embedded, then |N i
r| ≥

(
p
4

)j
s,

where j = j(r, i) is the number of neighbours of r in S̄D
A

resp. SDB

that have already been embedded before step i.

Observe that in step i = 0, either N0
r = A or N0

r = B, and therefore
condition (i) is met.

Suppose that at step i ≥ 1 of our embedding process, we are about to
embed a vertex r = ri ∈ V (M∗)∪N∗. Assume that r ∈ S̄DA

(the case when
r ∈ SDB is analogous). Denote by x1, . . . , x` the neighbours of r in V (M∗)
that have not been embedded yet.

Now, embed r in a vertex from N i−1
r that satisfies the at most 3 con-

ditions of typicality from the proof of Theorem 2.3.3, except the typicality
w. r. t. B, which we replace with typicality w. r. t. each N i−1

xj
, for 1 ≤ j ≤ `.

This is possible, since our embedding scheme and the condition on the num-
ber of edges of Q ensure that r has at most c + 1 neighbours in Q that are
already embedded. Thus, it follows from (i) for i − 1 and for r, from (3.2),
and from the choice of n0 that there are at least

((p
4

)c+1

− (c+ 3)ε′
)
s− |S̄D|+ 1 ≥ 1

2

(p
4

)c+1

s− 9

β
+ 1 ≥ 1

unused typical vertices we can choose ϕ(r) from.

Finally, observe that since we chose ϕ(r) typical w. r. t. each N i−1
xj

, we
have ensured property (i) for i and for every r′ ∈ V (M∗) that is not yet
embedded. This completes the proof of Theorem 3.1.1.
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Chapter 4

Solution of the LKS conjecture
for special classes of trees

4.1 Trees of small diameter and caterpillars

In this section, which is based on work from [75] we will prove the Loebl–
Kómlos–Sós conjecture for two classes of trees.

The first class of trees for which we shall prove Conjecture 2.1.2, is the
class of all tress that have diameter at most 5. Our result implies the results
of Barr and Johansson [3], and Sun [87].

Theorem 4.1.1.[75] Let k, n ∈ N, and let G be a graph of order n so that
at least n/2 vertices of G have degree at least k.
Then every tree of diameter at most 5 and with at most k edges is a subgraph
of G.

The second of the classes for which we shall prove Conjecture 2.1.2
is a subclass of the caterpillars. This extends results of Bazgan, Li, and
Woźniak [4].

Let T (k, `, c) be the class of all trees with k edges which can be obtained
from a path P of length k − `, and two stars S1 and S2 by identifying the
centres of the Si with two vertices that lie at distance c from each other onP .

Theorem 4.1.2. [75] Let k, `, c, n ∈ N such that ` ≥ c. Suppose that c is
even, or that ` + c ≥ bn/2c + 1. Let T ∈ T (k, `, c), and let G be a graph of
order n so that at least n/2 vertices of G have degree at least k.
Then T is a subgraph of G.
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4.2 Proof of Theorem 4.1.1

We shall prove the Theorem 4.1.1 by contradiction. So, assume that there are
k, n ∈ N, and a graph G with |V (G)| = n, such that at least n/2 vertices of
G have degree at least k. Furthermore, suppose that T is a tree of diameter
at most 5 with |E(T )| ≤ k such that T 6⊆ G.

We may assume that among all such counterexamples G for T , we have
chosen G edge-minimal. In other words, we assume that the deletion of any
edge of G results in a graph which has less than n/2 vertices of degree k.

Denote by L the set of those vertices of G that have degree at least k,
and set S := V (G) \ L. Observe that, by our edge-minimal choice of G,
we know that S is independent. Also, we may assume that S is not empty
(otherwise T ⊆ G trivially).

Clearly, our assumption that T 6⊆ G implies that for each set M of leaves
of T it holds that

there is no embedding ϕ of V (T ) \M in V (G) so that ϕ(N(M)) ⊆ L.
(4.1)

In what follows, we shall often use the fact that both the degree of a
vertex and the cardinality of a set of vertices are integers. In particular,
assume that a, b ∈ N, and x ∈ Q. Then the following implication holds.

If a < x+ 1 and b ≥ x, then a ≤ b. (4.2)

Let us now define a useful partition of V (G). Set

A := {v ∈ L : degL(v) <
k

2
},

B := L \ A,
C := {v ∈ S : deg(v) = degL(v) ≥ k

2
}, and

D := S \ C.

Let r1r2 ∈ E(T ) be such an edge that each vertex of T has distance at
most 2 to at least one of r1, r2. Set

V1 := N(r1) \ {r2}, V2 := N(r2) \ {r1},
W1 := N(V1) \ {r1}, W2 := N(V2) \ {r2}.

Furthermore, set

V ′1 := N(W1) and V ′2 := N(W2).
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Observe that |V1 ∪ V2 ∪W1 ∪W2| < k. So, without loss of generality
(since we can otherwise interchange the roles of r1 and r2), we may assume
that

|V2 ∪W1| < k

2
. (4.3)

Since |V ′1 | ≤ |W1|, this implies that

|V ′1 ∪ V2| < k

2
. (4.4)

Now, assume that there is an edge uv ∈ E(G) with u, v ∈ B. We shall
conduct this assumption to a contradiction to (4.1) by proving that then we
can define an embedding ϕ so that ϕ(V ′1 ∪ V2 ∪ {r1, r2}) ⊆ L. Define the
embedding ϕ as follows. Set ϕ(r1) := u, and set ϕ(r2) := v. Map V ′1 to a
subset of N(u)∩L, and V2 to a subset of N(v)∩L that is disjoint from ϕ(V ′1).
This is possible, as (4.2) and (4.4) imply that |V ′1 ∪ V2|+ 1 ≤ degL(v).

We have thus reached the desired contradiction to (4.1). This proves
that

B is independent. (4.5)

Set
N := N(B) ∩ L ⊆ A.

We claim that each vertex v ∈ N has degree

degL(v) <
k

4
. (4.6)

Then, (4.5) and (4.6) together imply that

|B|k
2
≤ e(N,B) ≤ |N |k

4
,

and hence,

|N | ≥ 2|B|. (4.7)

In order to see (4.6), suppose otherwise, i. e., suppose that there is a
vertex v ∈ N with degB(v) ≥ k

4
. Observe that by (4.4), |V ′1 ∪ V ′2 | < k

2
and

hence we may assume that at least one of |V ′1 |, |V ′2 |, say |V ′1 |, is smaller than
k
4
. The embedding ϕ is defined as for the proof of (4.5), by embedding first
V ′1 ∪{r2} in N(v) and then V ′2 in a subset N(ϕ(r2))∩L, that is disjoint from
ϕ(V ′1). The case when |V ′2 | < k

4
is done analogously. This yields the desired

contradiction to (4.1), and thus proves (4.6).
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Now, set

X := {v ∈ L : degC∪L(v) ≥ k

2
} ⊇ B.

We claim that the number of edges between X and C

e(X,C) = 0. (4.8)

Observe that then
X = B, (4.9)

and,
e(B,C) = 0. (4.10)

In order to see (4.8), suppose for contradiction that there exists an edge
uv of G with u ∈ X and v ∈ C. We define an embedding ϕ of V ′1 ∪ V2 ∪
WC

1 ∪ {r1, r2} in V (G), where WC
1 is a certain subset of W1, as follows.

Set ϕ(r1) := u, and set ϕ(r2) := v. Embed a subset V C
1 of V ′1 in N(u)∩C,

and a subset V L
1 = V ′1 \ V C

1 in N(u) ∩ L. We can do so because of (4.2)
and (4.4), which implies that |V ′1 | < k

2
.

Next, map WC
1 := N(V C

1 ) ∩W1 and V2 to L, preserving all adjacencies.
Indeed, observe that by the independence of S, each vertex in C has at least
k
2

neighbours in L, while by (4.3), we have that

|V L
1 ∪WC

1 ∪ V2 ∪ {u}| ≤ |W1 ∪ V2|+ 1 <
k

2
+ 1.

We have hence mapped V ′1 , V2,W
C
1 and the vertices r1 and r2 in a way

so that the neighbours of (V1 \V ′1)∪ (W1 \WC
1 )∪W2 are mapped to L. This

yields the desired contradiction to (4.1). We have thus shown (4.8), and
consequently, also (4.9) and (4.10).

Observe that D 6= ∅. Indeed, otherwise C 6= ∅ and thus by (4.8), we have
that A 6= ∅. By (4.9), this implies that D 6= ∅, contradicting our assumption.

Next, we claim that there is a vertex w ∈ N with

degC∪L(w) ≥ k

4
. (4.11)

Indeed, suppose otherwise. By (4.9) and since D is non-empty, we obtain
that1

|A \N |k
2

+ |N |3k
4
≤ e(A,D) < |D|k

2
.

1e(A, D) is defined as neither A nor D can be empty.
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Dividing by k
4
, it follows that

2|A|+ |N | < 2|D|.

Together with (4.7), this yields

|D| > |A|+ |B| ≥ n

2
,

a contradiction, since by assumption |D| ≤ |S| ≤ n
2
. This proves (4.11).

Using a similar argument as for (4.8), we can now show that

|V ′1 | ≥
k

4
. (4.12)

Indeed, otherwise by (4.11), we can map r1 to w, r2 to any u ∈ N(w)∩B,
and embed V ′1 in C ∪ L, and V2 and WC

1 (defined as above) in L, preserving
the adjacencies. This yields the desired contradiction to (4.1).

Observe that (4.12) implies that k
4
≤ |V ′1 | ≤ |W1|, and hence, by (4.3),

|V2| < k

4
. (4.13)

We claim that moreover

|V ′1 ∪W2| ≥ k

2
. (4.14)

Suppose for contradiction that this is not the case. We shall then define
an embedding ϕ of V ′1 ∪V ′2 ∪{r1, r2}∪WC

2 in V (G), for a certain WC
2 ⊆ W2,

as follows.

Set ϕ(r2) := w, and choose for ϕ(r1) any vertex u ∈ N(w) ∩ B. Map a
subset V C

2 of V ′2 to N(w) ∩ C, and map V L
2 := V ′2 \ V C

2 to N(w) ∩ L. This
is possible, as by (4.2), by (4.11), and by (4.13), we have that degC∪L(w) ≥
|V ′2 |+ 1.

Let WC
2 := N(V C

2 ) ∩W2. Then

|V L
2 | ≤ |W2 \WC

2 |,

and by our assumption that |V ′1 ∪W2| < k
2
, we obtain that

|V ′1 ∪ V L
2 ∪WC

2 ∪ {r2}| ≤ |V ′1 ∪W2|+ 1 <
k

2
+ 1.
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Thus, by (4.2), for each v ∈ C, we have that deg(v) ≥ |V L
2 ∪WC

2 | + 1.
Observe that (4.10) implies that u /∈ N(C). So, we can map WC

2 to L,
preserving all adjacencies, and V ′1 to a subset of N(u) ∩ L which is disjoint
from ϕ(V L

2 ∪WC
2 ∪ {v}).

We have thus embedded all of V (T ) except (V1 \ V ′1) ∪ (W2 \WC
2 ) ∪W1

whose neighbours have their image in L. This yields a contradiction to (4.1),
and hence proves (4.14).

Now, by (4.14),

|W2| ≥ k

2
− |V ′1 |,

and since |W1| ≥ |V ′1 |, and |V (T ) \ {r1, r2}| < k,

|V1 ∪ V2| < k − |W1| − (
k

2
− |V ′1 |)

≤ k

2
. (4.15)

The now gained information on the structure of T enables us to show
next that for each vertex v in Ñ := N(B ∪ C) ∩ L it holds that

degL(v) <
k

4
. (4.16)

Suppose for contradiction that this is not the case, i. e., that there exists
a v ∈ Ñ with degL(v) ≥ k

4
. We define an embedding ϕ of V (T ) \ (W1 ∪W2)

in V (G) so that N(W1 ∪W2) is mapped to L.

Set ϕ(r2) := v and choose for ϕ(r1) any vertex u ∈ N(v) ∩ (B ∪ C).
By (4.13), and since we assume that (4.16) does not hold, we can map V2 to
N(v) ∩ L. Moreover, since by (4.2) and (4.15) we have that

degL(u) ≥ |V1 ∪ V2 ∪ {r2}|,
we can map V1 toN(u)∩L. We have hence mapped all of V (T ) butW1∪W2 to
L, which yields the desired contradiction to (4.1) and thus establishes (4.16).

We shall finally bring (4.16) to a contradiction. We use (4.5), (4.9), (4.10)
and (4.16) to obtain that

|D|k
2
≥ e(D,L)

≥ |A \ Ñ |k
2

+ |Ñ |3k
4
− e(C, Ñ) + |B|k − e(B, Ñ)

≥ |A|k
2

+ |Ñ |k
4

+ |B|k − e(B ∪ C, Ñ).



4.3 Proof of Theorem 4.1.2 45

Since |S| ≤ |L| by assumption, this inequality implies that

|B|k
2

+ |C|k
2

+ |Ñ |k
4
≤ |B|k

2
+ (|A|+ |B| − |D|)k

2
+ |Ñ |k

4
≤ e(B ∪ C, Ñ)

≤ |Ñ |k
2
,

where the last inequality follows from the fact that Ñ ⊆ A = L \ X,
by (4.9).

Using (4.16), a final double edge-counting now gives

(|A|+ |B|+ |C|)k
2
≤ |A|k

2
+ |Ñ |k

4
≤ e(A, S)

< |D|k
2

+ |C|k

= |S|k
2

+ |C|k
2
,

implying that |L| < |S|, a contradiction. This completes the proof of
Theorem 4.1.1.

4.3 Proof of Theorem 4.1.2

In this section, we shall prove Theorem 4.1.2. We shall actually prove some-
thing stronger, namely Lemmas 4.3.2 and 4.3.3.

A caterpillar is a tree T where each vertex has distance at most 1 to
some central path P ⊆ T . In this paper, we shall consider a special subclass
of caterpillars, namely those that have at most two vertices of degree greater
than 2. Observe that any such caterpillar T can be obtained from a path P
by identifying two of its vertices, v1 and v2, with the centres of stars. We
shall write T = C(a, b, c, d, e), if P has length a + c + e, and v1 and v2 are
the (a+ 1)th and (a+ c+ 1)th vertex on P , and have b, resp. d, neighbours
outside P . Therefore, if a, e > 0, then C(a, b, c, d, e) has b+ d+ 2 leaves.

We call P the body, and v1 and v2 the joints of the caterpillar. For
illustration, see Figure 4.1.

So T (k, `, c), as defined in the introduction, denotes the class of all
caterpillars C(a, b, c, d, e) with b+d = `, and a+b+c+d+e = k. We can thus
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Figure 4.1: The caterpillar C(2, 3, 4, 2, 1) or C(2, 3, 4, 3, 0).

state the result of Bazgan, Li, and Woźniak mentioned in the introduction
as follows.

Theorem 4.3.1 (Bazgan, Li, Woźniak [4]). Let k, `, c ∈ N, and let T =
C(a, 0, c, d, e) be a tree from T (k, `, c). Let G be a graph so that at least half
of the vertices of G have degree at least k. Then T is a subgraph of G.

Theorem 4.1.2 will follow from the following two lemmas. The first deals
with even c, the second with odd c.

Lemma 4.3.2. Let k, `, c ∈ N so that c is even and ` ≥ c. Let T ∈ T (k, `, c),
and let G be a graph such that at least half of the vertices of G have degree
at least k. Then T is a subgraph of G.

Proof. Observe that we may assume that ` ≥ 2. Let v1 and v2 be the joints
of T , and let P be its body. As above, denote by L the set of those vertices
of G that have degree at least k and set S := V (G) \ L. We may assume
that S is independent.

By Theorem 4.3.1, there is a path Pk := {x0, x1, . . . , xk} of length k in
G. Let ϕ be an embedding of V (P ) in V (Pk) which maps the starting vertex
of P to x0.Now, if both u1 := ϕ(v1) and u2 := ϕ(v2) are in L, then we can
easily extend ϕ to V (T ).

On the other hand, if both u1 and u2 lie in S, then let ϕ′(v) = xi+1

whenever ϕ(v) = xi. The embedding ϕ′ maps both v1 and v2 to L, and can
thus be extended to an embedding of V (T ). We call ϕ′ a shift of ϕ(V (P )).

To conclude, assume that one of the two vertices u1 and u2 lies in L and
the other lies in S. As c is even and S is independent, it follows that there
are two consecutive vertices xj and xj+1 on u1Pku2 which lie in L.

Similarly as above, shift ϕ(V (P )) repeatedly until u1 is mapped to xj. If
the iterated shift ϕ′ maps v2 to L, we are done. Otherwise, we shift ϕ′(V (P ))
once more. Then both v1 and v2 are mapped to L, and we are done.

Observe that in total, we have shifted ϕ(V (P )) at most c times. We
could do so, since |Pk| − |P | = ` ≥ c by assumption.
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Lemma 4.3.3. Let k, `, c, n ∈ N be such that ` ≥ c. Let T = C(a, b, c, d, e)
be a tree in T (k, `, c), and let G be a graph of order n such that at least n/2
vertices of G have degree at least k. Suppose that

(i) k ≥ bn/2c+ 2 min{a, e}+ 1, if max{a, e} ≤ k/2, and

(ii) k ≥ bn/4c+ a+ e+ 2, if max{a, e} > k/2.

Then T is a subgraph of G.

Observe that in case (ii) of Lemma 4.3.3 it follows that

k ≥ bn/4c+ min{a, e}+ max{a, e}+ 1 > bn/4c+ min{a, e}+ k/2 + 1,

and hence, because 2bn
4
c+ 1 ≥ bn

2
c, similar as in (i),

k ≥ bn/2c+ 2 min{a, e}+ 1.

Proof of Lemma 4.3.3. As before, set L := {v ∈ V (G) : deg(v) ≥ k} and
set S := V (G) \ L. We may assume that S is independent, and that that
a, e 6= 0. Because of Theorem 4.3.1, we may moreover assume that b, d > 0
(and thus ` ≥ 2), and by Lemma 4.3.2, that c is odd. Assume that a ≤ e
(the case when a < e is similar).

Suppose that T 6⊆ G. Using the same shifting arguments as in the proof
of Lemma 4.3.2, we know that for any path in G of length m, we can shift
its first (a+ c+ e) vertices at least m− (a+ c+ e) times. So we may assume
that every path in G of length at least k zigzags between L and S, except
possibly on its first a and its last e edges. In fact, as c is odd, we can even
assume that every path in G of length at least k−1 zigzags between L and S,
except possibly on its first a and its last e edges.

As paths are symmetric, we may actually assume that every path Q =
x0 . . . xm in G of any length m ≥ k− 1 zigzags on its subpaths xaQxm−e and
xeQxm−a. Observe that these subpaths overlap exactly if e ≤ m/2. Our aim
is now to find a path that does not zigzag on the specified subpaths, which
will yield a contradiction.

So, let Q be the set of those subpaths of G that have length at least k−1
and end in L. Observe that by Theorem 4.3.1, and since S is independent,
Q 6= ∅. Among all paths in Q, choose Q = x0 . . . xm so that it has a maximal
number of vertices in L.

This choice of Q guarantees that N(xm) ⊆ S ∪ V (Q). Observe that the
remark after the statement of Lemma 4.3.3 implies that in both cases (i) and
(ii) ,
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deg(xm) ≥ k ≥ bn/2c+ 2a+ 1

≥ |S|+ 2a+ 1.

Since a > 0, we thus obtain that xm has a neighbour xs ∈ L∩V (Q) with

s ∈ [a,m− a− 1].

Moreover, in the case that e > m/2, condition (ii) of Lemma 4.3.3 implies
that

deg(xm) ≥ k ≥ 2(bn/4c+ a+ e+ 2)− k
≥ bn/2c − 1 + 2a+ 2e+ 4− (m+ 1)

= |S|+ 2a+ 2e+ 2−m.

Hence, in this case we can guarantee that

s ∈ [a,m− e− 1] ∪ [e,m− a− 1].

Consider the path Q∗ we obtain from Q by joining the subpaths x0Qxs
and xs+1Qxm with the edge xsxm. Then Q∗ is a path of length m ≥ k − 1
which contains the L − L edge xsxm. Note that xsxm is neither one of the
first a nor of the last a edges on Q∗. Furthermore, in the case that e > m/2,
we know that xsxm is none of the middle 2e−m edges on Q∗. This contradicts
our assumption that every path of length at least k − 1 zigzags between L
and S except possibly on these subpaths.

Now it is easy to prove Theorem 4.1.2.

Proof of Theorem 4.1.2. Assume we are given graphs G and T ∈ T (k, `, c)
as in Theorem 4.1.2. If c is even, it follows from Lemma 4.3.2 that T ⊆ G.
So assume that ` + c ≥ bn/2c. We shall now use Lemma 4.3.3 to see that
T ⊆ G. Suppose that T = C(a, b, c, d, e). We have

k − 2 min{a, e} ≥ k − a− e = `+ c ≥ bn/2c+ 1 ≥ bn/4c+ 2,

since we may assume that n ≥ 4, as otherwise Theorem 4.1.2 holds trivially.



Chapter 5

An application of the LKS
conjecture in Ramsey Theory

5.1 Ramsey numbers

Conjecture 2.1.2 has an important application in Ramsey theory. The Ram-
sey number r(H,H ′) of two graphs, H and H ′, is defined as the minimum
integer n such for every graph G of order at least n either H is a subgraph
of G, or H ′ is a subgraph of the complement Ḡ of G. One can reformulate
this definition using edge-colourings. Then r(H,H ′) is the minimum integer
n such for every edge-colouring of the complete graph Kn of order n with
two colours, say red and blue, we either find a red copy of H or a blue copy
of H ′ in Kn.

Originally, Ramsey numbers were introduced only for complete graphs
H and H ′. Even for this class, they are very difficult to compute. This is
the reason why there are few other classes for graphs for which the Ramsey
number has been studied. These classes include trees, mainly paths and
stars, and cycles, also wheels.

Ramsey numbers of trees of small maximum degree have been studied
for instance in [54]). For a more general overview see [47].

For our purposes here, let us extend the definition given above. We
denote by r(H,H′) the Ramsey number of two classes of graphs, H and H′,
that is, r(H,H′) is the minimum integer n such for every graph G of order at
least n either each graph H ∈ H is a subgraph of G, or each graph H ′ ∈ H′
is a subgraph of the complement Ḡ of G. We write r(H) as shorthand for
r(H,H).
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5.2 Ramsey numbers of trees

We are here interested in the Ramsey number classes of trees. For i ∈ N, let
Ti denote the class of all trees of order i.

Zhao’s result [96] that Conjecture 2.1.1 holds for large graphs (see Chap-
ter 2 implies almost at once that for large k, the Ramsey number r(Tk+1) of
the class of all graphs of order at most k + 1 is at most 2k.

In fact, for any colouring of the edges of the complete graph Km+k with
two colours, either half of the vertices have degree k in the subgraph induced
by the first colour, or half of the vertices have degree m in the subgraph
induced by the second colour. Hence, if m + k is large enough so that the
Loebl conjecture holds, it follows that r(Tk+1) ≤ k.

In the same way we can deduce from Conjecture 2.1.2, if true, a bound
on r(Tk+1, Tm+1). Indeed with the same argument as above we would get
that r(Tk+1, Tm+1) ≤ k+m. This upper bound has been conjectured in [37],
and it is not difficult to see that the bound is best possible.

So, in particular, the bound k + m holds for all classes of trees for
which Conjecture 2.1.2 is known to hold. Our results for special cases, The-
orem 4.1.1 and Theorem 4.1.2, thus have the following corollary.

Corollary 5.2.1. Let T1, T2 be trees with k resp. m edges such that, for
i = 1, 2, either Ti is as in Theorem 4.1.2 or has diameter at most 5 (or
both). Then r(T1, T2) ≤ k +m.

Furthermore, we may use Theorem 2.3.3, to prove that the conjectured
bound is asymptotically correct. Our proof is based on ideas from [37].

Proposition 5.2.2. r(Tk+1, Tm+1) ≤ k +m+ o(k +m), as k +m→∞.

Let us remark that the argument of the proof of Proposition 5.2.2 would
apply also for the graphs from Theorem 3.1.1, if we use Theorem 3.1.1 instead
of Theorem 2.3.3. We thus obtain an upper bound of k + m + o(k + m) for
the Ramsey numbers of graphs Qk, Qm as in Theorem 3.1.1. However, the
sharp bound does not hold. This can be seen considering the example given
in Chapter 3.

Finally, we remark that the exact bound of r(Tk+1, Tm+1) ≤ k + m also
follows from a positive answer to the Erdős–Sós conjecture. This well-known
conjecture states that each graph with average degree greater than k − 1
contains all trees with at most k edges as subgraphs. For partial results on
the Erdős–Sós conjecture, see e.g. [8, 78, 95]. Ajtai, Komlós, Simonovits and
Szemerédi have announced a proof of the Erdős–Sós conjecture for large n.
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5.3 Proof of Proposition 5.2.2

Given 0 < ε < 1/4, we apply Theorem 2.3.3 to η = q = ε/4 to obtain an
n0 ∈ N. Now, let n ≥ n0, and let G be a graph on n′ = (1+2ε)n+1 vertices.
Let k and m be such that k +m = n.

Clearly, either at least half of the vertices of G have degree at least k+εn,
or in the complement Ḡ of G, at least half of the vertices have degree at least
m+ εn.

First, suppose that the former of these assertions is true. Then it is easy
to calculate that

k + εn ≥ (1 + η)(k + qn′).

Thus, we may apply Theorem 2.3.3, which yields that each tree in Tk+qn′+1

is a subgraph of G. Hence, also each tree in Tk+1 is a subgraph of G.

Now, assume that the second assertion from above holds, that is, in the
complement Ḡ of G, there are at least 1

2
(1 + ε)n vertices of degree at least

m + ε
2
n. We then find all trees from Tm+1 as subgraphs in Ḡ. This is done

analogously.

We have thus shown that for every ε > 0 there is an n0 so that for all
k,m with k + m ≥ n0, we have that r(Tk+1, Tm+1) ≤ (1 + 2ε)(k + m) + 1.
This proves Proposition 5.2.2.
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Chapter 6

t-perfect graphs

6.1 An introduction to t-perfect graphs

Perfect graphs can be determined by the structure of their stable set poly-
tope. The stable set polytope, or SSP for short, is the convex hull of the
characteristic vectors of independent vertex sets, the stable sets. In the case
of a perfect graph, the SSP is fully described by non-negativity and clique
inequalities. Vice versa, if the SSP of some graph is given by these types of
inequalities then the graph is perfect.

In analogy to the relationship between perfect graphs and the SSP,
Chvátal [25] proposed to investigate a class of graphs now called t-perfect:
the class of graphs whose SSP is determined by non-negativity, edge and
odd-cycle inequalities. (For precise definitions see next section.) The class
of t-perfect graphs includes the series-parallel graphs (Boulala and Uhry [7])
and the almost bipartite graphs, i.e. those graphs that become bipartite
upon deletion of a single vertex (Fonlupt and Uhry [38]). Gerards and Shep-
herd [45] characterise the graphs with all subgraphs t-perfect. A prime ex-
ample of graph that is not t-perfect is the complete graph on four vertices,
the K4. Indeed, this graph will play an important role in what follows.

In this chapter, which is based on work from [13], we prove two theorems
for t-perfect graphs that are, in addition, claw-free. We show that these
graphs can be 3-coloured and we characterise them in terms of forbidden
substructures.

Standard polyhedral methods assert that the fractional chromatic num-
ber of a t-perfect graph is at most 3. Shepherd suggested that t-perfect
graphs might always be k-colourable for some fixed small k. As Laurent and
Seymour found a t-perfect graph with χ = 4 (see [81, p. 1207]), this number
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k has to be at least 4.

Conjecture 6.1.1. Every t-perfect graph is 4-colourable.

We prove that if the graphs are additionally claw-free then three colours
suffice.

Theorem 6.1.2.[13] Every claw-free t-perfect graph is 3-colourable.

Moreover, such a 3-colouring can be computed in polynomial time (Corol-
lary 6.6.1).

We remark that compared to a result of Chudnovsky and Ovetsky [22]
our Theorem 6.1.2 yields an improvement of 1. Indeed, Chudnovsky and
Ovetsky show that the chromatic number of a quasi-line graph G is bounded
by 3

2
ω(G). As no t-perfect graph can contain a clique of at least four vertices

and, furthermore, as a claw-free t-perfect graph is quasi-line, Chudnovsky
and Ovetsky’s bound is applicable and yields χ ≤ 4 for all claw-free t-perfect
graphs.

The celebrated strong perfect graph theorem of Chudnovsky, Robertson,
Seymour and Thomas [23] characterises perfect graphs in terms of forbidden
induced subgraphs: a graph is perfect if and only if it does not contain
odd holes or anti-holes. We prove an analogous, although much more mod-
est, result for claw-free t-perfect graphs. While, in order to describe per-
fect graphs, induced subgraphs are suitable as forbidden substructures, for
t-perfect graphs a more general type of substructure, called a t-minor, is
more appropriate. Briefly, a t-minor is any graph obtained from the original
graph by two kinds of operations, both of which preserve t-perfection: vertex
deletions and simultaneous contraction of all the edges incident with a vertex
whose neighbourhood forms an independent set. With this notion our second
result is as follows.

Theorem 6.1.3.[13] A claw-free graph is t-perfect if and only if it does not
contain any of K4, W5, C2

7 and C2
10 as a t-minor.

Here, K4 denotes the complete graph on four vertices, W5 is the 5-wheel,
and for n ∈ N we denote by C2

n the square of the cycle Cn on n vertices, see
Figure 6.1. (The square of a graph is obtained by adding edges between any
two vertices of distance 2.)

The graphs from Theorem 6.1.3 already appear implicitly in Galluccio
and Sassano [42]. They showed that every rank facet in a claw-free graph
comes from a combination of inequalities describing cliques, line graphs of
2-connected factor-critical graphs, and circulant graphs Cω−1

αω+1. However, as



6.2 The polytopes SSP and TSTAB 55

10
C 2

7
C 2W

5
K
4

Figure 6.1: The forbidden t-minors.

a claw-free graph may have non-rank facets we will not be able to make use
of these results.

Ben Rebea’s conjecture describes the structure of the stable set polytope
of quasi-line graphs. As the conjecture has been solved (see Eisenbrand et
al [36] and Chudnovsky and Seymour [24]), and as claw-free t-perfect graphs
are quasi-line, it seems conceivable to use Ben Rebea’s conjecture to prove
Theorem 6.1.3. We have not pursued this approach for three reasons. First,
Theorem 6.1.3 does not appear to be a direct consequence of the conjecture.
Second, the solution of the conjecture rests on Chudnovsky and Seymour’s
characterisation of claw-free graphs, which is far from trivial. Finally, our
proof of Theorem 6.1.3 (with a little extra effort) yields a 3-colouring of
claw-free t-perfect graphs.

6.2 The polytopes SSP and TSTAB

Let G = (V,E) be a graph. The stable set polytope SSP(G) ⊆ RV of G is
defined as the convex hull of the characteristic vectors of stable, i.e. indepen-
dent, subsets of V . We define a second polytope TSTAB(G) ⊆ RV for G,
given by

x ≥ 0,

xu + xv ≤ 1 for every edge uv ∈ E, (6.1)

x(C) ≤ b|C|/2c for every induced odd cycle C in G.

These inequalities are respectively known as non-negativity, edge and odd-
cycle inequalities. Clearly, it holds that SSP(G) ⊆ TSTAB(G).

We say that the graph G is t-perfect if SSP(G) and TSTAB(G) coincide.
Equivalently, G is t-perfect if and only if TSTAB(G) is an integral polytope,
i.e. if all its vertices are integral vectors.
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Neither the complete graph on four vertices K4 nor the 5-wheel W5 are
t-perfect. Indeed, for K4 the vector (1

3
, 1

3
, 1

3
, 1

3
) lies in TSTAB but not in the

SSP of K4 as the sum of over all entries is larger than α(K4) = 1. The vector
that assigns a value of 2

5
to each vertex on the rim and a value of 1

5
to the

centre shows that 5-wheel is t-imperfect. Again, the vector lies in TSTAB
but the sum of all entries is larger than α(W5) = 2.

The following fact is well-known:

bipartite graphs are t-perfect. (6.2)

In fact, the SSP of a bipartite graph is fully described by just non-negativity
and edge inequalities.

It is easy to check that vertex deletion preserves t-perfection (edge dele-
tion, however, does not). A second operation that maintains t-perfection is
described in Gerards and Shepherd [45]:

for a vertex v for which N(v) is a stable set contract all edges
in E(v).

(∗)

We call this operation a t-contraction at v. Let us say that H is a t-minor
of G if it is obtained from G by repeated vertex-deletion and t-contraction.
Then, if G is t-perfect, so is H. We call a graph minimally t-imperfect if it is
not t-perfect but every proper t-minor of it is t-perfect. Obviously, in order
to characterise t-perfect graphs in terms of forbidden t-minors it suffices to
find all minimally t-imperfect graphs.

The following simple lemma ensures that we stay within the class of
claw-free graphs when taking t-minors. (For a proof, observe that a claw
in a t-minor can only arise from an induced subdivided claw in the original
graph.)

Lemma 6.2.1. Every t-minor of a claw-free graph is claw-free.

For more on t-perfect and claw-free graphs we refer the reader to Schri-
jver [81, Chapters 68 and 69].

6.3 t-perfect line graphs

We begin by proving our main results for line graphs (Lemma 6.3.3 and
Lemma 6.3.4). Cao and Nemhauser [20], among other results, already char-
acterise t-perfect line graphs in terms of forbidden subgraphs. Unfortunately,
their characterisation appears erroneous. While we therefore cannot make
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use of their theorem, we will pursue an approach that is inspired by their
work. In particular, we take advantage of Edmonds [35] celebrated theorem
on the matching polytope.

For a graph G, define the matching polytope M(G) ⊆ RE(G) to be the
convex hull of the characteristic vectors of matchings. Recall that a graph G
is factor-critical if G− v has a perfect matching for every vertex v.

Theorem 6.3.1 (Edmonds [35], Pulleyblank and Edmonds [77]). Let G be
a graph and x ∈ RE(G). Then x ∈M(G) if and only if

x ≥ 0 (6.3)∑
e∈E(v)

xe ≤ 1 for each v ∈ V (G) (6.4)

∑
e∈E(F )

xe ≤ b|V (F )|
2
c for each 2-connected factor-critical F ⊆ G. (6.5)

We say that G has a proper odd ear decomposition if there is a sequence
G0, G1, . . . , Gn so that G0 is an odd cycle, Gn = G and Gk is obtained from
Gk−1 for k = 1, . . . , n by adding an odd path between two (distinct) vertices
of Gk−1 whose interior vertices are disjoint from Gk−1.

Theorem 6.3.2 (Lovász [61]). A graph is 2-connected and factor-critical if
and only if it has a proper odd ear-decomposition.

For the proof of the next two lemmas, we define C+
5 to be the 5-cycle

plus an added chord, and a totally odd subdivision of C+
5 to be a subdivision

of C+
5 in which every edge is replaced by a path of odd length.

Lemma 6.3.3. Let H be a line graph (of a simple graph). Then H is t-perfect
if and only if H does not contain K4 as a t-minor.

Proof. One direction is clear, so assume that H does not contain K4 as a
t-minor, and let G be such that L(G) = H. Since M(G) =SSP(H), all
we have to show is that TSTAB(H) is a subset of the polytope described
by (6.3), (6.4), and (6.5) from Theorem 6.3.1. That is, we have to check that
the inequalities from Theorem 6.3.1 are valid for TSTAB(H).

Condition (6.3) is clear, and for (6.4), pick a (non-isolated) vertex v of
G. If v has degree 2 then (6.4) follows from an edge inequality in H, and
if d(v) = 3 then (6.4) follows from an odd-cycle inequality for a triangle.
This shows (6.4), since clearly, ∆(G) ≤ 3 as otherwise H contains K4 as a
subgraph.



58 t-perfect graphs

For (6.5), suppose that G contains a 2-connected factor-critical subgraph
F , which, by Theorem 6.3.2, has an odd ear-decomposition. So either F is
an odd cycle, or F contains a totally odd subdivision X of C+

5 . But in the
latter case, L(X) is an induced subgraph of H, from which we obtain a K4 as
t-minor by performing t-contractions at vertices of degree 2, a contradiction.

Hence F is an odd cycle, and (6.5) follows from some odd-cycle inequality
in H. Thus, we have shown that SSP(H) coincides with TSTAB(H), as
desired.

Let G be a claw-free graph with an edge-colouring, and let i, j be two
colours. Denote the subgraph consisting of the edges coloured i or j together
with their incident vertices by Gi,j. Note that the components of Gi,j are
paths or cycles.

Lemma 6.3.4. Let H be a t-perfect line graph of a graph. Then χ(H) ≤ 3.

Proof. Let G be a graph such that H = L(G). We do induction on |E(G)|.
Pick an edge e = uv. Then clearly, we may apply the induction hypothesis
to the t-perfect line graph L(G − e) to deduce that the edges of G − e can
be coloured with three colours.

So, let c be a colouring of the edges of G−e with colours {1, 2, 3}. If there
is a colour that is not used by the edges adjacent to e, then we can colour
e with that colour and we are done. Thus, assume that all colours {1, 2, 3}
are used by edges adjacent to e. Since H does not contain K4 as a subgraph
we know that ∆(G) ≤ 3. We may therefore assume that u is incident with
two edges f1, f2 with c(fi) = i and that v is incident either with one edge g3,
or with two edges g1, g3, so that c(gi) = i. We suppose that E(G) cannot be
coloured with three colours, which will lead to a contradiction.

Let P ′ be the component of G2,3 containing f2. If g3 does not lie in P ′,
then we can swap colours along P ′, such that e is no longer incident with
any edge coloured 2, a contradiction. Thus, g3 ∈ E(P ′), and the subpath
P := uP ′v has even length. Hence P + e is an odd cycle.

Next, let Q1 be the component of G1,3 containing f1. In fact, Q1 is a
path. Suppose Q1 meets P outside u, and let w be the first vertex after
u in Q1 that also lies in P . Then the last edge of Q1w is coloured 1, and
Q1w therefore of odd length. We see that (P + e) ∪ Q1w is a totally odd
subdivision of C+

5 , which in H induces K4 as a t-minor, which is impossible
as H is t-perfect. Therefore, V (Q1 ∩ P ) = {u}.

We swap colours along Q1 and denote the resulting colouring by c′. Note
that c′(f1) = 3 and that P ′ is still coloured with {2, 3}. Now, if g1 does not
exist, then we can colour e with 1. On the other hand, if g1 exists, then in the
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same way as before for Q1, we deduce that the component Q2 of G1,2 (with
respect to c′) containing g1 meets P only in v. In particular, by recolouring
along Q2 we obtain a colouring of E(G− e) where no edge incident with e is
coloured with 1, yielding a 3-edge-colouring of G.

The proof of the lemma can easily be turned into an algorithm with
running time O(n3), where n is the number of vertices. (We are cheating
here a bit. The proof supposes that we know the graph G of which H is the
line graph. However, with minor complications, the same induction can be
performed directly in H.)

Corollary 6.3.5. A t-perfect line graph can be coloured with three colours
in polynomial time.

6.4 Squares of cycles

As a preparation for our main lemma we show in this section that most
squares of cycles are t-imperfect. In fact, the only t-perfect squares of cycles
are C2

3 , which is a triangle, and C2
6 , the line graph of K4.

Recall that C2
n denotes the square of a cycle of order n. We shall always

assume that V (C2
n) = {v1, . . . , vn} where the vertices are labelled in cyclic

order.

Lemma 6.4.1. Let n ≥ 4, and let n /∈ {6, 7, 10}. Then K4 is a t-minor of
C2
n. Moreover, for n ≥ 8 the K4-t-minor is already contained in C2

n − v5.

Proof. Since C2
4 = K4 we only need to concern ourselves with C2

n for n ≥ 5.
Depending on n mod 4 we perform vertex-deletions and then t-contractions
as indicated in Figure 6.2 until the only vertices left are v1, . . . , v4. In partic-
ular, we delete the grey vertices in the initial segment (marked by a dashed
box). Outside this segment we delete every other vertex until we reach the
first vertex v1 again. Finally, we contract the odd path between v4 and v1 to
a single edge.

The length of the initial segment poses a constraint on the minimal size
of the graph. For n ≡ 0 (mod 4) the construction is possible for n ≥ 8, for
n ≡ 1 we need n ≥ 5, for n ≡ 2 we need n ≥ 14, and n ≥ 11 is necessary for
n ≡ 3. So the only cases we have not dealt with are n = 6, 7, 10, which are
precisely the exceptions. The second part of the assertion follows directly
from the construction of the subdivision of K4.

Lemma 6.4.2. No square of a cycle of length at least 7 is t-perfect.
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Figure 6.2: K4-t-minors in C2
n depending on n mod 4.

Proof. By Lemma 6.4.1, we only need to check C2
7 and C2

10. However, neither
C2

7 nor C2
10 is t-perfect. Indeed, the vector x ∈ RV (C2

7 ) defined by xv = 1/3
for each v ∈ V (C2

7) clearly lies in TSTAB(C2
7) but not in SSP(C2

7) as 1Tx =
7/3 > 2 = α(C2

7). We get a similar contradiction by assigning a value of 1/3
to every vertex in C2

10.

6.5 The main lemma

Before we prove our main lemma, which will play an essential part in the
proof of both Theorem 6.1.2 and Theorem 6.1.3, we quickly note two facts.

Lemma 6.5.1. Let G be a claw-free graph. If ∆(G) ≥ 5 then G contains K4

or W5 as an induced subgraph.

Proof. Consider a vertex v of G. If v has at least six neighbours, then,
by Ramsey theory, N(v) contains a triangle or three independent vertices.
The former leads to a K4, and the latter to a claw, which is impossible. If
|N(v)| = 5 then G[v ∪N(v)] is a 5-wheel, or contains a K4, since the 5-cycle
is the only triangle-free graph on five vertices with α ≤ 2.

We call a triangle T odd if there is a vertex v outside T that is adjacent
to an odd number of the vertices in T . We need the following theorem.
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Theorem 6.5.2 (Harary [53, Theorem 8.4]). Let G be a claw-free graph.
Then G is a line graph if and only if every pair of odd triangles that shares
exactly one edge induces a K4.

Let us now state the main lemma. It shows that the structure of a claw-
free t-perfect graph is rather restricted, provided the graph is 3-connected.

Lemma 6.5.3 (Main lemma). Let G be a 3-connected claw-free graph with
∆(G) ≤ 4. If G does not contain K4 as t-minor then one of the following
statements holds true:

(i) G is a line graph;

(ii) G ∈ {C2
6 − v1v6, C

2
7 − v7, C

2
10 − v10, C

2
7 , C

2
10}.

Proof. We shall repeatedly make use of the following argument. Assume that
in the neighbourhood of a vertex u we find a path xyz, and assume that u
has a fourth neighbour v /∈ {x, y, z}. As K4 is not a subgraph of G we know
that xz /∈ E(G). Then, because G is claw-free, v has to be adjacent to x or
to z or to both.

First of all, we shall show that

P 2
6 is a subgraph of G. (6.6)

Recall that Pk denotes a path on k vertices.

Indeed, as we may assume that G is not a line graph, there exist by
Theorem 6.5.2 two odd triangles that share exactly one edge, say u1u2u3 and
u2u3u4. As G is 3-connected, {u1, u4} does not separate G, and thus one
of u2 and u3 has a neighbour u5 /∈ {u1, u2, u3, u4}. By symmetry, we may
assume that u3u5 ∈ E(G) and by the argument outlined at the beginning of
this proof, we deduce from u1u2u4 ⊆ G[N(u3)] that u5 is adjacent to u1 or
to u4 (or to both). Symmetry, again, allows us to assume that u5 is adjacent
to u4.

As K4 is not a subgraph of G, u1 and u5 each send exactly two edges
to the triangle u2u3u4. That triangle, however, is odd. Thus there exists
a vertex u6 /∈ {u1, . . . , u5} that is adjacent to an odd number of vertices of
the triangle. Since u3 has four neighbours already among the ui, it follows
that u6 is either adjacent to u2 or to u4. By forgetting that u1u2u3 is odd,
we obtain again a symmetric graph on u1, . . . , u5, which means that we may,
without loss of generality, assume that u6u4 ∈ E(G), and that u6u2 /∈ E(G).
The path u2u3u5 that is contained in the neighbourhood of u4 together with
u6u2 /∈ E(G) ensures that u6 is adjacent to u5. This proves (6.6).
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Next, we prove that

if k ≥ 6 so that P 2
k ⊆ G, then either P 2

k+1 ⊆ G as well, or
V (G) = V (Pk).

(6.7)

Assume that G has a vertex outside Pk = v1 . . . vk. Because G is 3-
connected and ∆(G) ≤ 4, one of v2 and vk−1, let us say the latter, has a
neighbour vk+1 /∈ V (Pk); if not then v1 and vk would separate V (Pk) from the
rest of the graph. From the fact that the path vk−3vk−2vk is contained in the
neighbourhood of vk−1 we deduce that vk+1 is adjacent to vk−3 or to vk. How-
ever, vk−3 is already adjacent to four vertices, namely to vk−5, vk−4, vk−2, vk−1

(recall that k ≥ 6). Thus, ∆(G) ≤ 4 implies that vk+1 is in fact adjacent to
vk. Thus P 2

k+1 ⊆ G and we have proved (6.7).

Now, by repeated application of (6.7) we arrive at a path Pn = v1 . . . vn,
for some n = |V (G)| ≥ 6, whose square is a subgraph of G. Observe that in
the square of Pn every vertex has degree 4, except v2 and vn−1, which have
degree 3, and except v1 and vn, which have degree 2. Since ∆(G) ≤ 4, the
square of Pn and G may only differ in the presence or absence of the edges
v1vn−1, v1vn, v2vn−1 and v2vn in G. As G is 3-connected, each of v1 and vn
is incident with at least one of these edges.

First, assume that v1vn /∈ E(G), which immediately entails that v1vn−1 ∈
E(G) and v2vn ∈ E(G), and hence, as ∆(G) ≤ 4, that v2vn−1 /∈ E(G). Since
v1v3v4 is a path in the neighbourhood of v2, the fourth neighbour vn of v2

must be adjacent to v4. This is only possible if n = 6, and we find that then
G = C2

6 − v1v6, which is as desired.

So, from now on, let us assume that

v1vn ∈ E(G). (6.8)

Next, suppose that v2vn−1 is an edge of G. Then n > 6 as other-
wise v2, v3, v4, v5 = vn−1 span a K4. On the other hand, we find the path
vn−3vn−2vn in the neighbourhood of vn−1, which implies that v2 is adjacent to
vn−3 or to vn. Since v2 already has already four neighbours, namely v1, v3, v4

and vn−1, and since n > 6 it follows that vn−3 = v4 and n = 7.

Consequently, G is isomorphic to C̃2
7 , which we define as the square of P7

plus the edges v1v7 and v2v6. However, Figure 6.3 A shows that C̃2
7 contains

K4 as a t-minor, a contradiction. (Alternatively, we might have argued that
C̃2

7 is the line graph of the graph obtained from K4 by subdividing one edge.)

Thus,

v2vn−1 /∈ E(G). (6.9)
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So, by (6.8) and (6.9), G is isomorphic to one of the following graphs:
G = C2

n, C2
n − v1vn−1, and C2

n − v1vn−1 − v2vn. Let us check these cases
seperately.

First, assume G = C2
n. Since C2

6 = L(K4) and since by Lemma 6.4.1,
for n ≥ 7 every C2

n except C2
7 and C2

10 contains K4 as a t-minor, we find that
G = C2

7 or G = C2
10, which are two of the allowed outcomes of Lemma 6.5.3.

Next, assume that G = C2
n − v1vn−1. Observe that (C2

n − v1vn−1) − v1

is isomorphic to C2
n − v5. Hence, unless n ∈ {6, 7, 10}, Lemma 6.4.1 asserts

that G contains K4 as a t-minor. For n = 7 and n = 10, Figure 6.3 B and
C indicate K4-t-minors of G. So, n = 6, that is, G = C2

6 − v1v5 which is
isomorphic to C2

6 −v1v6, and thus one of the allowed outcomes of the lemma.
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Figure 6.3: K4 as a t-minor of C̃2
7 , C2

7 − v1v6, C2
10 − v1v9.

Finally, we treat the case when G = C2
n − v1vn−1 − v2vn. Observe that

then G is isomorphic to C2
n+1 − vn+1, and thus we may employ Lemma 6.4.1

again to deduce that n+1 ∈ {6, 7, 10}. Of these cases, n+1 = 6 is impossible
as n ≥ 6 by (6.6). Therefore, either G = C2

7 − v7 or G = C2
10 − v10, which is

as desired.

6.6 Colouring claw-free t-perfect graphs

We now prove the first of our two main results.

Proof of Theorem 6.1.2. Let G be claw-free and t-perfect. As every colouring
of all the blocks yields a colouring of G, we may assume that G is 2-connected.
We proceed by induction on |V (G)|.

Observe that we are able to 3-colour G if G is 3-connected. Indeed, by
Lemma 6.5.1, we can then apply Lemma 6.5.3, which implies that either G is
a line graph, or G ∈ {C2

7 , C
2
10} or G is a subgraph of C2

6 (recall that C2
7 − v5

is isomorphic to C2
6 − v1v5 − v2v6), or G = C2

10 − v10. But G ∈ {C2
7 , C

2
10}

is impossible, by Lemma 6.4.2. If G is a line graph then it it follows from
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Lemma 6.3.4 that G is 3-colourable. Finally, C2
6 as well as C2

10−v10 are easily
seen to be 3-colourable.

If G has at most three vertices, we clearly have χ(G) ≤ 3, too. So, let us
assume now that G is not 3-connected and has at least four vertices. Then
there are distinct vertices u, v, and induced proper subgraphs L and R of G
so that V (L) ∩ V (R) = {u, v} and L ∪R = G. As |V (L)| < |V (G)| there is,
by induction, a 3-colouring cL of L. Permuting colours, if necessary, we may
assume that cL(u) = 1 and cL(v) ∈ {1, 2}.

Define R̃ to be the graph we obtain from R by identifying u and v.
Observe that at least one of R̃ and R + uv is a proper t-minor of G, and
thus has a 3-colouring by induction. This colouring can be extended to a
3-colouring cR of R (with cR(u) = cR(v), or with cR(u) 6= cR(v), depending
on the t-minor we found). Now, we can combine cL and cR, if necessary
swapping colours on one side, to a 3-colouring of G. The only two situations
where this is not possible is when cL(v) = 1 and R̃ is not a t-minor of G, or
when cL(v) = 2 and R + uv is not a t-minor of G.

In the former case, this means that there is no induced even u–v path in
L. In particular, the Kempe-chain K at u in colours 1, 2 does not contain v.
We can thus recolour alongK to obtain a colouring c′L of L with c′L(u) 6= c′L(v)
that combines with cR to a 3-colouring of G. In the latter case, i.e. when
cL(v) = 2 and R+uv is not a t-minor of G, we proceed similarly, recolouring
along a Kempe-chain at u to obtain a colouring c′L with c′L(u) = c′L(v) that
combines with cR to a 3-colouring of G

Corollary 6.6.1. Every claw-free t-perfect graph on n vertices can be coloured
with three colours in polynomial time in n.

Proof. Let us sketch how the proof of Theorem 6.1.2 can be turned into an
algorithm. First observe that, by Lemma 6.5.1, Lemma 6.5.3 and Corol-
lary 6.3.5 we can 3-colour any 3-connected claw-free t-perfect graph in poly-
nomial time.

Now, starting with L0 := G we construct a sequence of graphs Li and
Ri. Indeed, if Li−1 fails to be 3-connected and has at least four vertices, we
split Li−1 into two proper induced subgraphs Li and Ri as in the proof above
(with Li−1 in the role of G). Among all choices for Li and Ri, we choose Ri

so that |V (Ri)| is minimal. (This can be accomplished by considering all of
the O(n2) vertex sets of cardinality at most 2.)

We recursively compute a 3-colouring cLi of Li and in order to check
which of the graphs Ri + uv and R̃i is a t-minor of G, we pick an induced
u-v path P i in Li (for instance a shortest path). As we chose Ri minimal,
the t-minor Ri +uv, respectively R̃i, is 3-connected. Hence, we can compute
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its 3-colouring directly with the help of Lemma 6.5.3 and Corollary 6.3.5. If
necessary, we then recolour Li along a Kempe-chain at u. Since Li−1−Li 6= ∅,
the procedure stops after at most n steps.

Let us now turn for a moment to h-perfect graphs, to which our result
on colourings easily carries over. Sbihi and Uhry [79] introduced h-perfect
graphs as a common generalisation of perfect and t-perfect graphs. For the
definition of h-perfect graphs we use the same inequalities as for t-perfect
graphs, only that the edge inequalities are replaced with clique inequalities.
So, a graph is called h-perfect if the SSP is determined by

x ≥ 0

x(K) ≤ 1 for every clique K

x(C) ≤ b|V (C)|/2c for every induced odd cycle C

The proof of the following corollary is due to Sebő [72]. As it has not
been published but contains a nice and useful technique we present it here.

Corollary 6.6.2. Let G be a claw-free h-perfect graph. Then

(i) χ(G) = dχ∗(G)e; and

(ii) χ(G) = ω(G) if ω(G) ≥ 3.

Here, χ∗ denotes the fractional chromatic number. More formally, if S
denotes the set of all stable sets:

χ∗(G) = min 1Ty, y ∈ RS

subject to y ≥ 0 and
∑

S∈S, v∈S

yS ≥ 1 for all v ∈ V (6.10)

Proof of Corollary 6.6.2. Define the polytope

P = {x ∈ RV : x(S) ≤ 1 for each stable set S, x ≥ 0}.

Observe that maxx∈P 1Tx is the dual program of (6.10), so that we get
χ∗(G) = maxx∈P 1Tx. Moreover, it is not hard to check that the anti-blocking
polytope of P coincides with SSP(G). As G is h-perfect, Theorem 2.1 in Fulk-
erson [41] (see also [40]) yields therefore that every vertex 6= 0 of P is either
the characteristic vector χK of a clique K of G or the vertex is of the form

2
|C|−1

χC for an odd cycle C.
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First, assume that ω(G) ≥ 3. We show that

there is a stable set S which intersects every clique of
size ω(G).

(6.11)

Since ω(G) ≥ 3 > 1T ( 2
|C|−1

χC) for every odd cycle C of length ≥ 5, we see

that maxx∈P 1Tx = ω(G) is attained in every clique of size ω(G). Consider
an optimal solution y of (6.10) and a clique K of size ω(G). Then

ω(G) = 1TχK ≤
∑
S

yS χ
T
SχK =

∑
S

yS|S ∩K| ≤
∑
S

yS = ω(G).

Thus, each stable set S with yS > 0 must meet each such clique K, which
proves (6.11).

Next, we find with (6.11) stable sets S1, . . . , Sk where k = ω(G) − 3
such that G′ := G − S1 − . . . − Sk has no clique of size 4. Thus, G′ is t-
perfect and therefore, by Theorem 6.1.2, colourable with three stable sets,
Sk+1, Sk+2, Sk+3 say. Now, we can colour G with S1, . . . , Sω(G). This proves
assertion (ii), and (i), too, for ω(G) ≥ 3 as ω(G) is a lower bound for χ∗(G).

Finally, assume ω(G) < 3. If G is not bipartite, in which case we are
done, then χ∗(G) = maxx∈P 1Tx is attained in 2

|C|−1
χC for some odd cycle C.

Thus, χ∗(G) > 2. On the other hand, G is t-perfect, and we can consequently,
by Theorem 6.1.2, colour it with three colours.

We remark that Sebő developed the arguments above to show that Con-
jecture 6.1.1 on the 4-colourability of t-perfect graphs is implied by the fol-
lowing claim.

Conjecture 6.6.3 (Sebő [72]). Every triangle-free t-perfect graph is 3-colourable.

6.7 Characterising claw-free t-perfect graphs

Lemma 6.5.3 together with Lemma 6.3.3 provides already a full characteri-
sation of claw-free t-perfect graphs if, in addition, the graph is 3-connected.
The task of the next few lemmas is to show that minimally t-imperfect claw-
free graphs are, in fact, 3-connected.

The first of these lemmas is quite similar to Lemma 12 in Gerards and
Shepherd [45]. As that lemma, however, is assembled from results of various
authors, its proof is not easily verified. We therefore give a direct proof that
draws on only two fairly simple facts.
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Lemma 6.7.1. Let G be a minimally t-imperfect graph, and assume u, v ∈
V (G) to separate G. Then G − {u, v} has exactly two components, one of
which is a (possibly trivial) path. Moreover, uv /∈ E(G).

Proof. Let G = G1∪G2 so that {u, v} separates G1−{u, v} from G2−{u, v}.
Suppose that neither of G1 and G2 is a path. Let z be a non-integral vertex of
TSTAB(G), denote by I the set of those non-negativity, edge and odd-cycle
inequalities that are satisfied with equality by z. We define z1 resp. z2 to be
the restriction of z to G1 resp. G2.

As in the proof of Theorem 1 in Gerards and Shepherd [45] we can
deduce that

0 < zw < 1 for all w ∈ V (G) (6.12)

and

every odd cycle whose inequality is in I fails to separate G. (6.13)

The last fact implies, in particular, that each odd cycle in I lies either
completely in G1 or in G2 (recall that neither of G1 and G2 is a path).
Thus, we can partition I in (I1, I2) so that Ik pertains only to Gk. Now,
if there is a j ∈ {1, 2} so that dim Ij = |V (Gj)| then zj is a vertex of
TSTAB(Gj) =SSP(Gj). Since zj is non-integral we obtain a contradiction.

Therefore, we have dim Ik = |V (Gk)| − 1 for k = 1, 2, which means
that Ik describes an edge of TSTAB(Gk). Denote the endvertices of this
edge by sk and tk, i.e. zk = λks

k + (1 − λk)t
k for some 0 ≤ λk ≤ 1. As

TSTAB(Gk) =SSP(Gk) by assumption, it follows that sk is the characteristic
vector of a stable set Sk of Gk; the same holds for tk and a stable set Tk.

By (6.12), z1
u = z2

u > 0 and thus for each k = 1, 2 one of Sk and Tk needs
to contain u. By renaming if necessary we may assume that u ∈ S1 and
u ∈ S2. Then u /∈ Tk for k = 1, 2 as otherwise we obtain zku = λk+(1−λk) = 1
in contradiction to (6.12). This implies that

λ1 = z1
u = zu = z2

u = λ2. (6.14)

If S1∩{v} = S2∩{v} then also T1∩{v} = T2∩{v} as (6.12) implies as above
that v ∈ Sk if and only if v /∈ Tk. In this case, S := S1 ∪S2 and T := T1 ∪ T2

are stable sets of G and we obtain z = λ1χS + (1− λ1)χT , contradicting the
choice of z as a non-integral vertex of TSTAB(G).

So, let us assume that S1 and S2 differ on {v}. Without loss of generality,
let v ∈ S1 but v /∈ S2. Then

S1 ∩ {u, v} = {u, v}, T1 ∩ {u, v} = ∅,
S2 ∩ {u, v} = {u} and T2 ∩ {u, v} = {v}.
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So, λ1 = z1
v = z2

v = 1−λ2, and hence, by (6.14), λ1 = λ2 = 1/2. In particular,
it follows with (6.12) again that zw = 1/2 for all w ∈ V (G).

Now, since bipartite graphs are t-perfect by (6.2), G contains an odd
cycle of length 2k + 1, say. However, adding up z along the cycle yields
k + 1/2, contradicting the odd-cycle inequalities.

Next, let us prove that a minimally t-imperfect claw-free graph has min-
imum degree at least three. We start with a lemma that is a variant of
Theorem 2.5 in Barahona and Mahjoub [2], and can be proved in a very
similar way

Lemma 6.7.2 (Barahona and Mahjoub [2]). Let G be a graph, and let uvw
be a path in G so that deg(v) = 2 and uw /∈ E(G). Furthermore, let aTx ≤ α
be a facet-defining inequality of SSP(G) so that au = av = aw. Denote by
G′ the graph obtained from G by contracting uv and vw, and let ṽ be the
resulting vertex, i.e. V (G′)\V (G) = {ṽ}. If a′ ∈ RV (G′) is defined by a′p = ap
for p ∈ V (G′−ṽ) and aṽ = av then a′Tx ≤ α−av is a facet-defining inequality
of SSP(G′).

The following lemma serves to guarantee that au = av = aw as in
Lemma 6.7.2.

Lemma 6.7.3. Let G be a graph and assume that for a ∈ RV (G), a > 0 the
inequality aTx ≤ α is facet-defining in SSP(G), and that it is not a multiple
of an edge inequality or of an odd-cycle inequality.

(i) If G contains a path uvw so that deg(v) = 2 then av ≤ aw.

(ii) If G contains a triangle wpq and a neighbour v /∈ {p, q} of w so that
deg(w) = 3 then av ≥ aw.

Assertion (i) appears in Mahjoub [71].

Proof. For both cases, observe that as the SSP is full-dimensional there exists
a set S of |V (G)| affinely independent stable sets that satisfy aTx ≤ α with
equality. Since a > 0 it follows that α 6= 0, which, in turn, implies that the
characteristic vectors of the stable sets in S are even linearly independent.
In particular, any inequality satisfied with equality by all S ∈ S is a multiple
of aTx ≤ α.

(i) Since aTx ≤ α is not a multiple of the edge inequality xu + xv ≤ 1
there must exist an S0 ∈ S so that u /∈ S0 and v /∈ S0. As a > 0 this
implies that w ∈ S0. Clearly, S ′0 := S0 \ {w} ∪ {v} is a stable set and thus
aTχS′0 ≤ α = aTχS0 . Hence av ≤ aw.
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(ii) Since aTx ≤ α is not a multiple of the triangle inequality xw + xp +
xq ≤ 1 there must exist an S1 ∈ S so that {w, p, q} ∩S1 = ∅. Then, as a > 0
and N(w) = {v, p, q}, we have that v ∈ S1 and that S ′1 := S1 \ {v} ∪ {w} is
stable. Again, we obtain aTχS′1 ≤ α = aTχS1 and therefore aw ≤ av.

Lemma 6.7.4. Let G be a minimally t-imperfect claw-free graph. Then G
has minimum degree ≥ 3.

Proof. It is easy to see that no vertex can have degree 1. Indeed, such a
vertex would lead to a violation as in (6.12). So suppose there is a path
P = w1 . . . wk with k ≥ 3 so that all internal vertices have degree 2 in G
but w1 and wk have degree > 2. Since G is claw-free and does not properly
contain a K4 we deduce that deg(w1) = deg(wk) = 3, and in fact there
are neighbours p1, q1 of w1 and pk, qk of wk so that w1p1q1 and wkpkqk are
triangles in G.

As G is t-imperfect there exists a facet-defining inequality aTx ≤ α of
SSP(G) with a ≥ 0 that is not a multiple of a non-negativity, edge or odd-
cycle inequality. Since G is minimally t-imperfect under vertex deletion it
follows furthermore that a > 0.

Now, applying (i) of Lemma 6.7.3 we get that aw2 = . . . = awk−1
≤

min{w1, wk}. Then, (ii) yields that aw1 = aw2 = . . . = awk
.

Denote by G′ the graph obtained from G by performing a t-contraction
at w2, and let w̃ be the resulting new vertex. Define a′u = au for u ∈ V (G′−w̃)
and a′w̃ = aw2 . Then, by Lemma 6.7.2, a′Tx ≤ α − aw2 is facet-defining for
SSP(G′). However, as a′ > 0 and as G′ is t-perfect it follows that G′ consists
of a single vertex, a single edge or of a single odd cycle. Then G is such a
graph, too, and thus t-perfect, a contradiction.

In Section 6.8 we will show in Lemma 6.8.1 that C2
7 − v7 as well as

C2
10 − v10 are (strongly t-perfect and thus) t-perfect. Considering Figure 6.4

we see that C2
6−v1v6 is a t-minor of C2

10−v10. Hence, (assuming Lemma 6.8.1)
the following lemma holds:

Lemma 6.7.5. C2
7 − v7, C2

10 − v10 and C2
6 − v1v6 are t-perfect.

We now prove our second main result.

Proof of Theorem 6.1.3. As neither of K4,W5, C
2
7 and C2

10 is t-perfect (note
Lemma 6.4.2), necessity is obvious. To prove sufficiency, consider a claw-free
and minimally t-imperfect graph G.

Lemmas 6.7.1 and 6.7.4 ensure that G is 3-connected. Moreover, as we
are done if G contains K4 or W5 as a t-minor, we obtain with Lemma 6.5.1
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Figure 6.4: C2
6 − v1v6 is a t-minor of C2

10 − v10.

that ∆(G) ≤ 4. Consequently, all preconditions of Lemma 6.5.3 are satisfied,
and we may assume that G is of type (i) or (ii) as listed in Lemma 6.5.3.

Now, if G is a line graph then Lemma 6.3.3 forces G to contain K4 as
a t-minor, as desired. It remains to check the types listed in (ii). As by
Lemma 6.7.5, the graphs C2

6 − v1v6, C2
7 − v7 and C2

10 − v10 are t-perfect, it
follows that G ∈ {C2

7 , C
2
10}, as desired.

6.8 C2
7 and C2

10 are minimally t-imperfect

To conclude the proof of Theorem 6.1.3 it still remains to prove one last
lemma (since we needed for the proof of Lemma 6.7.5 that C2

7 − v7 and
C2

10−v10 are t-perfect). We take this opportunity to show something slightly
stronger, namely that C2

7 and C2
10 are minimally t-imperfect, and, moreover,

minimally strongly t-imperfect.

In order to define strong t-perfection, consider a graph G and w ∈ ZV (G),
and denote by αw(G) the maximum w(S) over all stable sets S in G. Call a
family K of edges and odd cycles a w-cover of G if every vertex v lies in at
least w(v) members of K. If K consists of the subfamily of edges E and the
subfamily of cycles C then it has cost

|E|+
∑
C∈C

|C| − 1

2
.

We say that G is strongly t-perfect if for every w ∈ ZV (G) there is a w-cover
of cost at most αw(G). (Clearly, any w-cover has cost at least αw(G).) This
is equivalent to defining strongly t-perfect graphs as those for which (6.1) is
totally dual integral.

Observe that it suffices to check the existence of the desired cover for all
non-negative vectors w. Moreover, one can show that vertex deletion as well
as t-contraction maintain strong t-perfection.
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Strongly t-perfect graphs have been studied by Gerards [44] and Schrij-
ver [80]; see also Schrijver [81, Chapter 68]. They show that bad resp. odd
K4-free graphs are strongly t-perfect. It is not known whether a t-perfect
graph is necessarily strongly t-perfect, but the converse is true. So, the t-
perfectness of C2

7 − v7 and C2
10 − v10 follows from the following lemma.

Lemma 6.8.1. For j ∈ {7, 10}, the graph C2
j − vj is strongly t-perfect.

The proof of this lemma is a bit involved and given below. Let us first
get to the main result of this section:

Proposition 6.8.2. [13] The graphs C2
7 and C2

10 are minimally t-imperfect
as well as minimally strongly-t-imperfect.

Proof. Lemma 6.4.2 yields that C2
7 and C2

10 are t-imperfect, and by Lemma 6.8.1,
we know that the deletion of one vertex makes these graphs strongly t-perfect.
Hence, as strong t-perfection implies t-perfection, our proposition follows.

Proof of Lemma 6.8.1. In both cases, j = 7 and j = 10, we proceed by
induction on the total weight w(V ), where V := V (C2

j − vj) and w is the
given non-negative vector in ZV for which we have to find a w-cover. So,
let G ∈ {C2

7 − v7, C
2
10 − v10}. As the case when w(V ) = 0 is trivial we will

assume that w is given with w(V ) > 0, and that the desired cover exists for
all w′ with w′(V ) < w(V ).

Let {v1, . . . , vj−1} be the vertices of V (G) in circular order, so that
v1, v2, vj−2 and vj−1 have degree 3. Denote by S the set of all stable sets
of weight αw := αw(G), and write wi for w(vi).

First of all, if there is triangle T so that every S ∈ S meets T , then we
define w′(v) := w(v)−1 for v ∈ T+ := V (T )∩⋃S∈S S and w′i = wi otherwise.
As each v ∈ T+ has positive weight w(v)—otherwise S\{v} would be in S and
miss T—we conclude that w′ is non-negative. Since T+ 6= ∅ by assumption,
the total weight w′(V ) is smaller than w(V ). Hence, by induction there is a
w′-cover K′ of cost αw′ . Since αw′ = αw − 1 the family K′ ∪ T is a w-cover of
cost αw, as desired.

We can argue similarly if every S ∈ S meets the edge v1vj−1. So, let
us assume from now on that for each triangle T in G there is a ST ∈ S
avoiding T , and that there exists a Sv1vj

that is disjoint from {v1, vj−1}.
In the case when G = C2

7 − v7, the stable set Sv4v5v6 of weight αw needs
to consist of a single vertex vk with k ∈ {1, 2, 3} as v1v2v3 forms a triangle
in G. Hence, wk = αw. In the same way, we get that for some l ∈ {4, 5, 6}
the vertex vl has weight αw, too. Moreover, vk and vl have to be adjacent.
If (k, l) = (1, 6), then all other vertices have weight 0, and αw times the edge
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v1v6 is a w-cover of G. On the other hand, if k ∈ {2, 3} and l ∈ {4, 5}, then
w1 = w6 = 0. Furthermore, as {v2} = Sv3v4v5 and {v5} = Sv2v3v4 have weight
αw, the stable set {v2, v5} has weight 2αw, a contradiction.

Now, let us consider the case of G = C2
10 − v10. Let K be a triangle

in G, or let K be the subgraph consisting of the edge v1v9. Suppose that
k ∈ V (K).

If w(k) > 0 and k has only one neighbour s outside K then, as w(SK) =
αw, SK contains s, since otherwise we could increase the weight of SK by
including k. Since SK \ {s} ∪ {k} is stable, it follows that w(k) ≤ w(s).
Observe that this inequality trivially holds too, if w(k) = 0. We use this rule
to obtain a number of inequalities that are listed in the table below.

K
v1v2v3 (a) w1 ≤ w9 (b) w2 ≤ w4

v7v8v9 (c) w9 ≤ w1 (d) w8 ≤ w6

v2v3v4 (e) w2 ≤ w1

v6v7v8 (f) w8 ≤ w9

Now assume that the vertex k ∈ V (K) has two adjacent neighbours s
and t outside K (and then no other neighbours outside K). Because SK can
only contain one of s and t, we deduce as above that w(k) ≤ max{w(s), w(t)}.
Using this argumentation, we obtain

K
v3v4v5 (g) w3 ≤ max{w1, w2}
v5v6v7 (h) w7 ≤ max{w8, w9}
v1v9 (i) w1 ≤ max{w2, w3}
v1v9 (j) w9 ≤ max{w7, w8}

From (a) and (c), we get that w1 = w9, and (g) together with (e) yields
w3 ≤ w1. Symmetrically, we obtain w7 ≤ w9, and with (e), (f), (i) and (j)
this results in

max{w2, w3} = w1 = w9 = max{w7, w8}. (6.15)

Now, take two stable sets S, S ′ ∈ S of cardinality 2 that avoid v4v5v6

(such sets exist, as we may, for example, take Sv4v5v6 , after adding a vertex,
if necessary). Observe that by (6.15), and since a stable set may meet each
of the triangles v1v2v3 and v7v8v9 at most once, we may choose S and S ′ so
that S = {v1, s} for some s ∈ {v7, v8} and so that S ′ = {v9, s

′} for some
s′ ∈ {v2, v3}.



6.8 C2
7 and C2

10 are minimally t-imperfect 73

Comparing the stable set {v1, s, v4} to S we get w1+w(s)+w4 ≤ w(S) =
w1+w(s) and thus w4 = 0. Hence, w2 = 0 too, by (b), and w3 = w1, by (6.15).
Symmetrically, comparing {v9, s

′, v6} to S ′, we get that w6 = w8 = 0.

To sum up, we have discovered that w1 = w3 = w7 = w9 and that
w2 = w4 = w6 = w8 = 0. Furthermore, αw = w(S) = 2w1.

Finally, as {v1, v5} is stable, it follows that w5 ≤ w1. We conclude the
proof by choosing a w-cover consisting of w1 times the 5-cycle v1v3v5v7v9 at
a cost of 2w1.
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Chapter 7

Strongly t-perfect graphs

7.1 Strong t-perfection

In this chapter, which is based on [15], we shall show that for claw-free
graphs t-perfection and strong t-perfection coincide. In the previous section
we already discussed t-perfect graphs, that where defined as those graphs
for which polytope TSTAB(G) described by the inequalities (6.1) is integral.
Also, strongly t-perfect graphs have been mentioned: these were those for
which (6.1) is totally dual integral (TDI). Clearly, strong t-perfection implies
t-perfection but whether the converse is true as well is not clear at all.

Question 7.1.1. Is every t-perfect graph also strongly t-perfect?

The question is briefly discussed in Schrijver [81, Vol. B, Ch. 68], where
also more details about strong and ordinary t-perfection can be found. Our
main theorem in this chapter answers Question 7.1.1 affirmatively, provided
the graphs are, in addition, claw-free.

Theorem 7.1.2.[15] A claw-free graph is t-perfect if and only if it is strongly
t-perfect.

Strongly t-perfect graphs have been investigated by Gerards [44] and
Schrijver [80]. The class of strongly t-perfect graphs encompasses bipartite,
as well as almost bipartite graphs, that is, graphs whose odd cycles all share
a common vertex. The most wide-reaching criterion that certifies strong t-
perfection is due to Gerards. Call a subdivision of K4 odd if every triangle
of K4 becomes an odd cycle in the subdivision.

Theorem 7.1.3 (Gerards [44]). Every graph that does not contain an odd-
K4-subdivision as a subgraph is strongly t-perfect.
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The theorem has been strengthened by Schrijver in [80]. See also Gijswijt
and Schrijver [46] for a more general result.

In our proof we shall use the more convenient alternative definition of
strong t-perfection already used in the last section of Chapter 6. For technical
reasons the definiton used in this chapter will be slightly different, however, it
is easy to see that they are equivalent. Let G be a graph and let K = V∪E∪C
be a family of vertices, edges and odd cycles of G. We say K has cost

|V|+ |E|+
∑
C∈C

|V (C)| − 1

2
.

We say that K covers a vertex v k times if v lies in at least k members
of K. For a weight function w ∈ ZV (G), we call K a w-cover of G if every
vertex v is covered at least wv times by K.

We observe that every w-cover can be turned into an exact cover with
the same or lower cost, i.e. into a cover that covers every vertex v exactly
wv times (provided w ≥ 0). Indeed, this can easily be achieved by replacing
odd cycles incident with an overly covered vertex v by a maximal matching
of the cycle that misses v, by replacing incident edges by the other endvertex
and/or by omitting v itself from the cover, if present.

For a subset S of V (G), write w(S) :=
∑

s∈S ws, and define the weighted
stability number of G

αw(G) := max{w(S) : S ⊆ V (G) is stable}.
By linear programming duality, G is strongly t-perfect if and only if there is
a w-cover of cost αw(G) for all w ∈ ZV (G). Moreover, it is easy to see that
we need only consider non-negative w.

7.2 Strong t-perfection and t-minors

We quickly repeat the definition of t-minors given in the previous chapter.
Let v be a vertex of a graph G so that its neighbourhood N(v) forms a stable
set. Then G̃ is obtained from G by a t-contraction at v if G̃ = G/E(v), i.e. if
G̃ is the result of contracting all the edges incident with v. We say that G′ is
a t-minor of G if G′ can be obtained from G by a sequence of vertex deletions
and t-contractions. It is not hard to check that t-perfection is stable under
taking t-minors. The same holds for strong t-perfection:1

1While this result was known before [43], it does not appear to have been published
anywhere.
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Proposition 7.2.1.[15] Every t-minor of a strongly t-perfect graph is strongly
t-perfect.

Proof. Let G be strongly t-perfect. It is straightforward to see that induced
subgraphs of G are strongly t-perfect, too. It remains to show, therefore, that
for every vertex v with stable neighbourhood N(v) the graph G̃ := G/E(v)
is strongly t-perfect as well.

Denote the new vertex of G̃ by ṽ. Given a non-negative weight w̃ ∈
ZV (G̃), we have to find a w̃-cover K̃ of G̃ that has cost αw̃(G).

Set β := w̃(V (G̃)) + 1, and define w ∈ ZV (G) as wu := w̃u for u ∈
V (G̃ − ṽ), wp := β for p ∈ N(v) and wv := d(v) · β − w̃ṽ. Note that by
the choice of β, every stable set of maximal weight with respect to w either
contains v, or all of N(v). In either case,

αw(G) ≤ αw̃(G̃) + d(v) · β − w̃ṽ = αw̃(G̃) + wv. (7.1)

As G is strongly t-perfect, there exists a w-cover K of cost αw(G), which
we may assume to cover v exactly wv times. Moreover, we may require all
the cycles in K to be induced.

Let Kv ⊆ K consist of all K ∈ K that are incident with v. For each
cycle C ∈ Kv contract the two edges incident with v. Note that this gives a
cycle in G̃ as C was induced by assumption. Denote the family of the thus
obtained cycles by K̃v. Since every cycle in K̃v is two edges shorter than the
corresponding cycle in Kv, it follows that K̃v costs wv less than Kv.

Next, we turn K \ Kv into a family K̃′ of vertices, edges and odd cycles
in G̃. For this, interpret all the elements of K\Kv that do not meet N(v) as
a subgraph of G̃ and put them (with repetitions) in K̃′. For every occurrence
of a vertex in N(v) add {ṽ} to K̃′, and for every occurrence of an edge rs
with s ∈ N(v) add the edge rṽ to K̃′. For every cycle C in K \ Kv that is
incident with a vertex in N(v), the edge set E(C) can be partitioned in the
edge sets of cycles in G̃. Add all the odd cycles to K̃′ and every other edge
from every even cycle. This yields a family K̃′ of the same cost as K \ Kv
that covers every vertex in V (G̃− ṽ) as often as K \ Kv, and which covers ṽ
as often as N(v) is covered in total by K \ Kv.

Thus the cost of K̃ := K̃v ∪K̃′ is at most the cost of K minus wv, that is,
αw(G)−wv. By (7.1), this is at most αw̃(G̃). Hence, it only remains to show
that K̃ is a w̃-cover of G̃. By construction, every vertex u 6= ṽ is covered
adequately by K̃, so we only have to check how often we covered ṽ. Clearly ṽ
is covered by K̃ at least as often as K covered N(v) minus |Kv|, since all we
lose are the edges in Kv, and for each cycle C ∈ Kv we observe that while C
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covered two vertices in N(v) its counterpart in K̃ still covers ṽ once. Hence,
K̃ covers ṽ at least d(v) · β − wv = w̃ṽ times, as desired. as desired.

A graphG is minimally (strongly) t-imperfect if it is (strongly) t-imperfect
but every proper t-minor of G is (strongly) t-perfect. Examples of minimally
strongly t-imperfect graphs are K4, the 5-wheel, as well as the squares C2

7

and C2
10 of the 7-cycle and the 10-cycle, see [13] and the last section. These

graphs are also minimally t-imperfect. Thus, if a graph contains, for instance,
K4 as a t-minor then it is strongly t-imperfect as well as t-imperfect. This
observation enabled a succinct characterisation of t-perfection in claw-free
graphs [13], and will be helpful below.

7.3 Strongly t-perfect and claw-free

In order to prove Theorem 7.1.2, we only have to show that every claw-free
strongly t-imperfect graph G is t-imperfect. For this, we may clearly suppose
G to be minimally strongly t-imperfect. Our first step is then to show that
that G is 3-connected:

Lemma 7.3.1. Let G be a minimally strongly t-imperfect graph. If G is
claw-free then G is 3-connected.

We postpone the lengthy proof of this lemma to the end of the section.
Once equipped with Lemma 7.3.1 we may apply the following amalgamation
of Lemmas 6.4.2, 6.5.1 and 6.5.3 from Chapter 6:

Lemma 7.3.2. Let G be a 3-connected claw-free graph. If G is t-perfect then
one of the following statements holds true:

(i) G is a line graph;

(ii) G ∈ {C2
6 − v1v6, C

2
7 − v7, C

2
10 − v10}.

Here and in the rest of this chapter, we denote by Ci the cycle of length i,
and assume Ci to be defined on the vertex set {v1, . . . , vi} so that they occur
in this order in the cycle. With C2

i we denote the square of Ci, which is
obtained from Ci by adding an edge between any two vertices of distance 2.

We need one further ingredient for the proof of Theorem 7.1.2. The
following theorem describes a TDI system for the matching polytope of a
graph G – this polytope is the convex hull in RE(G) of matchings in G.
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Theorem 7.3.3 (Cook [26]). For every graph H the following system of
inequalities is TDI:

y ∈ RE(H), y ≥ 0∑
e∈E(v)

ye ≤ 1 for every v ∈ V (H) (7.2)

∑
e∈E(F )

ye ≤ b|V (F )|
2
c for every 2-connected factor-critical F ⊆ H.

Proof of Theorem 7.1.2. We only need to show that a claw-free graph G
that is minimally strongly t-imperfect is also t-imperfect. By Lemma 7.3.1,
G is 3-connected. Thus, Lemma 7.3.2 is applicable and G therefore either t-
imperfect (as desired), or a line graph, or one of the graphs in Lemma 7.3.2 (ii).
Since C2

7 and C2
10 are minimally strongly t-imperfect [13], we only need to

consider the cases when G = C2
6 − v1v6 or when G is a line graph.

Suppose that G = C2
6 − v1v6, and pick a weight w ∈ ZV (G) so that G

has no w-cover of cost αw(G) of minimal total weight w(V (G)). Since G is
supposed to be minimally strongly t-imperfect it follows that w > 0. Then
for w′ := w − 1v1v2v3 there exists a w′-cover K′ of cost αw′(G). However,
every stable set of S of weight w(S) = αw(G) meets the triangle v1v2v3,
which implies that K′ ∪{v1v2v3} is a w-cover of cost αw(G), a contradiction.

So assume that G is a line graph, of a graph H say. First of all,
note that H has maximal degree ≤ 3 since G, as a minimally strongly t-
imperfect graph, cannot contain K4 as a proper subgraph. Now, if the only
2-connected factor-critical subgraph F of H are odd cycles, then system (6.1)
becomes (7.2) – which is TDI by Theorem 7.3.3, a contradiction to the strong
t-perfection of G. On the other hand, if H has a 2-connected factor-critical
subgraph F that is not an odd cycle, then H contains the subdivision S of a
5-cycle plus an added chord in which every edge may be replaced by an odd
path. Viewed in G, such an S leads to K4 as a t-minor; see [13, Lemma 7]
for more details, if necessary. Again, G is t-imperfect.

The only missing link in our proof of Theorem 7.1.2 is Lemma 7.3.1,
i.e. the fact that every claw-free minimally strongly t-imperfect graph G is
3-connected. We will show this in two steps. First, we will see that G is
2-connected and that one side of every 2-separation is a path. In the second
step, we will prove that the minimum degree of G is at least three.

For any graph G, we say that (G1, G2) is a separation of order k of G,
or a k-separation of G, if G1, G2 are proper induced subgraphs of G with
G = G1 ∪G2 and |V (G1 ∩G2)| = k.
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For the first step we make use of a notion of Gerards [44]. Let (G1, G2)
be a 2-separation of an arbitrary graph G, and denote by u and v the two
vertices contained in both G1 and G2. Given w ∈ ZV (G), define siw(X) to be
the maximum w(S) among all stable sets S in Gi with S ∩{u, v} = X. If no
confusion is likely we omit the subscript w. Moreover, we denote by Gi +P2

the graph Gi with an u–v path of length 2 added, and by Gi + P3 the graph
Gi plus an u–v path of length 3.

The next two lemmas exclude already a good number of types of 2-
separations in a minimally strongly t-imperfect graph. We mention that the
lemmas do not appear explicitly in [44] but may, without effort, be extracted
from the proof of Theorem 1.8.

Lemma 7.3.4 (Gerards [44]). Let G be a graph, and let (G1, G2) be a sep-
aration of order ≤ 2. If G1 ∩ G2 forms a complete subgraph, and if G1 and
G2 are strongly t-perfect, then G is strongly t-perfect.

Lemma 7.3.5 (Gerards [44]). Let G be a graph, and let (G1, G2) be a 2-
separation so that V (G1) ∩ V (G2) consists of two non-adjacent vertices u
and v. Then for every non-negative weight w ∈ ZV (G) it holds thats:

(i) If s2(u, v) + s2(∅) ≥ s2(u) + s2(v) and if G1 +P2 as well as G2 +P3 are
strongly t-perfect then G has a w-cover of cost αw(G).

(ii) If s2(u, v) + s2(∅) ≤ s2(u) + s2(v) and if G1 +P3 as well as G2 +P2 are
strongly t-perfect then G has a w-cover of cost αw(G).

Next, we relate the inequalities in (ii) and (iii) in the previous lemma
with the existence of odd or even induced u–v paths.

Lemma 7.3.6. Let (G1, G2) be a 2-separation of a graph G, and denote the
two vertices common to both G1 and G2 by u, v. For every w ∈ ZV (G) it holds
that:

(i) If every induced u–v path in G2 has even length then s2(u, v) + s2(∅) ≥
s2(u) + s2(v).

(ii) If every induced u–v path in G2 has odd length then s2(u, v) + s2(∅) ≤
s2(u) + s2(v).

Proof. (i) Pick a stable set Su in G2 with u ∈ Su but v /∈ Su so that w(Su) =
s2(u), and choose a stable set Sv inG2 with v ∈ Sv, u /∈ Sv and w(Sv) = s2(v).
Denote by K the vertex set of the component of G2[Su ∪ Sv] containing u.
Then, as every induced u–v path in G2 has even length, it follows that v /∈ K.
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The symmetric difference Su4K is a stable set, and hence misses {u, v}, while
the stable set Sv4K contains {u, v}. Since no vertex from K lies in both of
Su and Sv, we get

s2(u) + s2(v) = w(Su) + w(Sv) = w(Su4K) + w(Sv4K) ≤ s2(∅) + s2(u, v).

(ii) Same as (i), only starting with stable sets S∅ and Su,v missing, re-
spectively containing, {u, v}.

For a 2-separation (G1, G2) of a graph G, there is one case that is not
addressed by Lemma 7.3.5, namely the case when every induced u–v path in
G1 and in G2 is even, or if every such path is odd.

Lemma 7.3.7. Let (G1, G2) be a 2-separation of a graph G so that V (G1 ∩
G2) = {u, v}, and let G1 and G2 be strongly t-perfect. If every induced u–
v path in G is even, or if every such path is odd, then also G is strongly
t-perfect.

Proof. Given a non-negative weight function w : V (G)→ Z we shall show for
i = 1, 2 that there are non-negative weights wi : V (G)→ Z with wi|V (G3−i−
Gi) = 0 so that

(i) w1 + w2 = w, and

(ii) αw1(G1) + αw2(G2) ≤ αw(G).

This then establishes the lemma, as we can combine the wi-covers of G that
are given by the strong t-perfection of the Gi to a w-cover of G of cost αw(G).

In order to prove that such wi exist, we proceed by induction on the sum
wu + wv. Clearly, if wu + wv = 0, then the restrictions of w to Gi satisfy (i)
and (ii). So assume w.l.o.g. that wu > 0, and set w̃ := w − 1u. (Here, and
below, 1Z denotes the characteristic vector of the set Z ⊆ V (G), where we
abbreviate 1{z} by 1z.) By induction, we know that there exist w̃1 and w̃2

satisfying (i) and (ii).

In particular, there is a set X ⊆ {u, v} such that αw̃1(G1) = s1
w̃1(X)

and αw̃2(G2) = s2
w̃2(X). Now, if αw̃1+1u(G1) = s1

w̃1+1u
(X) then we may set

w1 := w̃1 + 1u and w2 := w̃2 and are done. Hence we may assume that
αw̃1+1u

(G1) 6= s1
w̃1+1u

(X). This can only happen if u /∈ X, and if, moreover,
there is a set Y1 ⊆ {u, v} which contains u, such that αw̃1(G1) = s1

w̃1(Y1).
(Then, we have that αw̃1+1u(G1) = s1

w̃1+1u
(Y1).) Arguing in the same way

for w̃2, we find that there is a set Y2 ⊆ {u, v} which contains u, such that
αw̃2(G2) = s2

w̃2(Y2). By symmetry of G1 and G2, we may suppose that
Y1 = {u} and Y2 = {u, v}, since we are done if Y1 = Y2.



82 Strongly t-perfect graphs

So, depending on whether X = ∅ or X = {v}, we arrive at one of the
following two cases:

(a) αw̃1(G1) = s1
w̃1(∅) = s1

w̃1(u) and αw̃2(G2) = s2
w̃2(∅) = s2

w̃2(u, v), or

(b) αw̃1(G1) = s1
w̃1(v) = s1

w̃1(u) and αw̃2(G2) = s2
w̃2(v) = s2

w̃2(u, v).

First, assume that case (a) holds. Now, if every induced u–v path in
G is odd, then Lemma 7.3.6 (ii) implies that αw̃2(G2) = s2

w̃2(u) = s2
w̃2(v) =

s2
w̃2(∅) = s2

w̃2(u, v). Thus, setting w1 := w̃1 + 1u and w2 := w̃2 will ensure
(i) and (ii), as s1

w1(u) = αw1(G1) and s2
w2(u) = αw2(G2). So, in case (a), we

may restrict our attention to the situation that every induced u–v path in G
is even.

Then, by Lemma 7.3.6 (i), we have

s1
w̃1(v) ≤ s1

w̃1(u, v). (7.3)

Furthermore, as we may otherwise set w1 := w̃1 and w2 := w̃2 + 1u, we see
that

s2
w̃2(u) < αw̃2(G2). (7.4)

Set
w1 := w̃1 + 1v and w2 := w̃2 + 1u − 1v.

Note that w̃2
v > 0 since s2

w̃2(u) < αw̃2(G2) = s2
w̃2(u, v). By (7.4), it is clear

that αw2(G2) = s2
w2(∅) = s2

w2(u, v). On the other hand, (7.3) together with
the fact that s1

w̃1(u) = s1
w̃1(∅) implies that αw1(G1) ∈ {s1

w1(∅), s1
w1(u, v)}.

Hence, our choice of w1 and w2 ensures (i) and (ii), as desired.

Now assume that case (b) above holds. If every induced u–v path in
G is even, then Lemma 7.3.6 (i) implies that αw̃1(G1) = s1

w̃1(∅) = s1
w̃1(u, v).

Thus, setting w1 := w̃1 and w2 := w̃2 + 1u will ensure (i) and (ii). So, we
will suppose from now on that every induced u–v path in G is odd.

By Lemma 7.3.6 (ii), we have

s2
w̃2(∅) ≤ s2

w̃2(u), (7.5)

and (as we may otherwise set w1 := w̃1 + 1u and w2 := w̃2) we see that

s1
w̃1(u, v) < αw̃1(G1) and s2

w̃2(u) < αw̃2(G2). (7.6)

Observe that w̃2
v > 0 by (7.6) and (b). Hence, setting

w1 := w̃1 + 1u + 1v and w2 := w̃2 − 1v.

resolves our problem, as (7.6) implies that αw1(G1) = s1
w1(u) = s1

w1(v),
and (7.5) implies that αw2(G2) ∈ {s2

w2(u), s2
w2(v)}.
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Lemma 7.3.8. Let G be a minimally strongly t-imperfect graph. Then G is
2-connected, and if (G1, G2) is a 2-separation of G then one of G1 and G2 is
a path.

Proof. That G is 2-connected is immediate from Lemma 7.3.4. Suppose
that G has a 2-separation (H1, H2) with V (H1) ∩ V (H2) = {u, v}. By
Lemma 7.3.4, u and v are not adjacent.

If every induced u–v path in G is even or if every such path is odd
then Lemma 7.3.7 implies that one of H1 or H2 is strongly t-imperfect, a
contradiction, since G is minimally strongly t-imperfect.

So we may assume that one of the Hi, say H1 contains an even induced u–
v path, and the other, H2 contains an odd induced u–v path. By minimality
of G, this implies that H1 +P3 and H2 +P2 are strongly t-perfect. Now, pick
a non-negative weight w ∈ ZV (G) so that G has no w-cover of cost αw(G).

Applied to (G1, G2) := (H1, H2), Lemma 7.3.6 (ii) in combination with
Lemma 7.3.5 (ii) imply that H2 also contains an even induced u–v path.
Moreover, Lemma 7.3.6 (i) and Lemma 7.3.5 (i) applied to (G1, G2) :=
(H2, H1) yield that H1 has an odd induced u–v path. Hence, for all i = 1, 2
and j = 2, 3 the graph Hi + Pj is a t-minor of G. For contradiction, as-
sume that the Hi +Pj are proper t-minors of G, and thus strongly t-perfect.
Now, whichever value s2(u, v) + s2(∅) takes, either Lemma 7.3.5 (i) or (ii) is
applicable in order to obtain the final contradiction.

We turn now to proving that claw-free minimally strongly t-imperfect
graphs do not possess any vertices of degree less than three.

Lemma 7.3.9. Let G = (V,E) be a graph, let w ∈ ZV , and assume v to be
a vertex with exactly two neighbours, p and q, so that wp = wv = wq. Set

G̃ = G/E(v), denote the new vertex by ṽ and define w̃ ∈ ZV (G̃) by setting
w̃u := wu for u ∈ V (G̃− ṽ) and w̃ṽ := wv. If G̃ has a w̃-cover of cost αw̃(G̃)
then G has a w-cover of cost αw(G).

Proof. Consider a stable set S̃ in G̃ with w̃(S̃) = αw̃(G̃). If ṽ ∈ S̃ then
S := (S̃ \{ṽ})∪{p, q} is a stable set in G with w(S) = αw̃(G̃)+wv. If, on the
other hand, ṽ /∈ S̃ then S := S̃ ∪{v} is stable in G, and w(S) = αw̃(G̃) +wv.
Thus, we get

αw̃(G̃) + wv ≤ αw(G). (7.7)

By assumption, there is a w̃-cover K̃ of G̃, which we may choose to
cover ṽ exactly w̃ṽ = wv times. Observe that we may view E(G̃) as a subset
of E(G); for an edge xṽ so that x is a neighbour of p as well as of q we
arbitrarily pick one of xp and xq and identify it with xṽ. Thus, viewed in



84 Strongly t-perfect graphs

G, the subfamily of K̃ consisting of edges and odd cycles becomes a family
of edges, odd cycles and odd p–q paths; denote the latter subfamily of K̃ by
P̃ . By completing every P ∈ P̃ to an odd cycle through v, and by replacing
every occurrence of {ṽ} in K̃ by one of {p} and {q} we obtain from K̃ a
family K′ of vertices, edges and odd cycles in G.

Set γ̃ := |P̃| and observe that as K̃ covers ṽ exactly wv times, we get
that γ̃ ≤ wv. Moreover, it follows that each of p and q is covered by K′
at most wv times, while together they are covered wv + γ̃ times since every
P ∈ P̃ leads to a cycle in K′ that meets p as well as q. Since v is contained
in these cycles as well, it is covered γ̃ times. Hence, by adding wv − γ̃ edges,
vp or vq, we can complete K′ to a w-cover K.

The cost of K is the cost of K̃ plus the cost of extending the P ∈ P̃ to
cycles plus the cost of the additional edges incident with v. In other words,
K costs

αw̃(G̃) + γ̃ + wv − γ̃ = αw̃(G̃) + wv ≤ αw(G),

where the last inequality follows from (7.7).

The following lemma uses an idea of Mahjoub [71].

Lemma 7.3.10. Let G be a graph, and let w ∈ ZV (G), w > 0, so that there
is no w-cover of cost αw(G) but for every w′ ≤ w with one strictly smaller
entry there is a w′-cover with cost αw′(G).

(i) If G contains a path pvq so that d(v) = 2 then wv ≤ wq.

(ii) If G contains a triangle prs and a neighbour v /∈ {r, s} of p so that
d(p) = 3 then wp ≤ wv.

Proof. Suppose there is an edge or triangle X that is hit by every stable set
S of weight w(S) = αw(G). Set w′ := w − 1X , and observe that αw′(G) =
αw(G) − 1. Hence, by assumption there is a w′-cover K′ of cost αw(G) − 1,
which together with X yields a w-cover of cost αw(G), a contradiction. This
proves that for every edge or triangle X there is a stable set SX of weight
αw(G) that misses X.

(i) Consider the stable set Spv of weight αw(G) that misses the edge pv.
Since wv > 0, it follows that q ∈ Spv. Then S := Spv \ {q} ∪ {v} is a stable
set with weight w(S) = αw(G)− wq + wv ≤ αw(G), which implies wv ≤ wq,
as desired.

(ii) Consider the stable set Sprs of maximal weight that misses prs, and
note that v ∈ Sprs. Then the stable set Sprs \ {v} ∪ {p} has weight αw(G)−
wv + wp ≤ αw(G), which implies wp ≤ wv, as desired.
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We are finally prepared to prove Lemma 7.3.1.

Proof of Lemma 7.3.1. By Lemma 7.3.8, we only need to convince ourselves
that G = (V,E) does not contain any vertices of degree 2. So suppose
otherwise, i.e. suppose there is a path P = u . . . v in G with all interior
vertices of degree 2 in G but with endvertices u, v of higher degree, and
suppose that P does indeed contain an interior vertex. Note that by the
minimality of G it cannot contain K4 as a subgraph, as K4 is strongly t-
imperfect. Since G is claw-free it follows that both u and v have degree 3
and are incident with a triangle.

Among all non-negative w ∈ ZV for which there is no w-cover of cost
αw(G) choose one, w say, so that w(V ) is minimal. Since G is strongly
t-imperfect there is such a w and, moreover, it holds that w > 0 by the
minimality of G. We may now apply Lemma 7.3.10 to the vertices in P plus
the two triangles incident with u and v. This yields that w is constant on
P . Let r be an interior vertex of P and set G̃ := G/E(r). Define w̃ as in
Lemma 7.3.9 with r in the role of v. Then, G̃ is a proper t-minor of G and
has thus a w̃-cover of cost αw̃(G̃). Now, however, Lemma 7.3.9 asserts that
G has a w-cover of cost αw(G), a contradiction to the choice of w.

7.4 Minimally strongly t-imperfect

Theorem 7.1.2 lends credibility to the conjecture that t-perfection is always
strong. One way to prove the conjecture would consist in verifying whether
the minimally t-imperfect graph coincide with the minimally strongly t-
imperfect graphs. Unfortunately, a complete list of minimal elements is
neither known for t-perfection nor for strong t-perfection.

So far, the only known minimally t-imperfect graphs are the odd wheels,
the even Möbius ladders (see Schrijver [81]), and two additional graphs, the
squares C2

7 and C2
10 of the 7-cycle and the 10-cycle, see Figure 7.1. All these

are minimally strongly t-imperfect as well, and no others are known. In fact,
that the odd wheels and the even Möbius ladders are minimally (strongly) t-
imperfect can easily be deduced from the fact that almost bipartite graphs are
strongly t-imperfect, which follows from Theorem 7.1.3. (A graph is almost
bipartite if it can be made bipartite by deleting some vertex.) That C2

7 and
C2

10 are minimally (strongly) t-imperfect is proved in [13]. We remark that
the squares of other cycles do not have this property.

In this section, we will find seven more graphs that turn out to be mini-
mal under both strong and ordinary t-perfection. Thus, those graphs can be
seen as further evidence for the conjecture that t-perfection is always strong.
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Figure 7.1: Minimally (strongly) t-imperfect graphs

Lemma 7.4.1. Let G be a strongly t-perfect graph, and let u, v ∈ V (G) be
such that N(u) and N(v) partition V (G) − {u, v}. Then also G + uv is
strongly t-perfect.

Proof. Suppose otherwise, and let w ∈ ZV (G) be a witness of the fact that
G+ uv is strongly t-imperfect with minimal total weight w(V (G)). Observe
that this implies αw(G + uv) < αw(G); otherwise a w-cover of G with cost
αw(G) is a w-cover of G + uv with cost αw(G + uv). This means that in
G, every stable set of weight αw(G) contains both u and v. Thus as V (G) \
{u, v} = N(u) ∪N(v), the only stable set of weight αw(G) is {u, v}. Hence,
since the neighbourhoods of u and v are disjoint, we have that

for every stable set D ⊆ N(u) it holds that w(D) < wu. (7.8)

Now, assume that there is a stable set S in G+uv of weight αw(G+uv)
that avoids both u and v. Then, by (7.8), the stable set S ∪ {u} \ N(u)
outweighs S, a contradiction. We have thus shown that every stable set of
maximal weight in G+ uv meets either u or v.

Define w̄ as w̄x := wx for all x /∈ {u, v}, and w̄x := wx− 1 for x ∈ {u, v}.
(Observe that (7.8) ensures in particular that wu 6= 0, and analogously we
can show that wv 6= 0.)

Since every stable set of maximal weight (with respect to w) in G + uv
meets u or v it follows that αw̄(G+ uv) ≤ αw(G+ uv)− 1. By the choice of
w, G+ uv has a w̄-cover of cost αw̄(G+ uv). Add uv to obtain a w-cover of
G+ uv of cost αw(G+ uv), a contradiction to the choice of w.

Lemma 7.4.1 enables us to obtain new minimally strongly t-imperfect
graphs from C2

10 by adding any number of diagonals. See Figure 7.2.
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10
C2

Figure 7.2: C2
10 plus diagonals

Proposition 7.4.2. [15] The graphs C2
10, C2

10 + v1v6, C2
10 + v1v6 + v2v7,

C2
10 + v1v6 + v3v8, C2

10 − v1v6 − v2v7, C2
10 − v1v6 − v3v8, C2

10 − v1v6 and

C2
10 are minimally strongly t-imperfect as well as minimally t-imperfect.

Proof. For 0 ≤ i ≤ 5, denote by Ci the family of all graphs we obtain from
C2

10 by adding exactly i diagonals, that is, edges of the form vjvj+5, and set
C :=

⋃ Ci. The graphs listed in the lemma are precisely the graphs in C (up
to isomorphism). First note that, for every G ∈ C, assigning a value of 1

3
to

each vertex yields a point z that lies in TSTAB(G). However, as α(G) = 3
the point z lies outside the stable set polytope of G. Therefore, no graph in
C is t-perfect, and thus every G ∈ C is strongly t-imperfect.

Next, we prove by induction on i that every proper t-minor of a G ∈ Ci
is strongly t-perfect. Since C2

10 is minimally strongly t-imperfect [13], and
since C0 = {C2

10}, the induction start is assured. Now, assume the claim to
be true for i ≤ 4 and pick a graph H ∈ Ci+1. Let j be such that vjvj+5

is one of the diagonals of H, and set G := H − vjvj+5. As every proper
t-minor of H is a (not necessarily proper) t-minor of H − vi for some i, it
suffices to prove that H − vi is strongly t-perfect. If i = j or i = j + 5 then
H − vi = G − vi, and the claim is true as G ∈ Ci. So, let i /∈ {j, j + 5},
which implies vjvj+5 ∈ E(H − vi). By induction, G− vi is strongly t-perfect,
and using Lemma 7.4.1 it follows that (G− vi) + vjvj+5 = H − vi is strongly
t-perfect, too.

As a final observation, let us remark that we cannot obtain, in the same
way, minimally strongly t-imperfect graphs by adding diagonals to C2

7 . In-
deed, introducing any number of diagonals in C2

7 leads to K4 as a t-minor.
The same happens if other edges than diagonals are added to C2

10.
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Chapter 8

Infinite extremal graph theory

8.1 An introduction to infinite extremal graph

theory

From now on, we will shift our focus to infinite graphs. In this chapter,
we will take a first approach to infinite extremal graph theory. Necessary
concepts of infinite graph theory will be introduced along the way.

We will take our first steps in infinite extremal graph theory accompanied
by a well-known result of Kostochka [31], which will serve as an example of the
difficulties one encounters when trying to extend a ‘finite’ result to infinite
graphs. The function f(k) in the theorem is essentially the best possible
bound [89].

Theorem 8.1.1.[Kostochka] There is a constant c so that, for every k ∈ N,
if G is a finite graph of average degree at least f(k) := ck

√
log k, then G has

a complete minor of order k.

How might this result extend to infinite graphs? First of all we have to
note that it is not clear what the average degree of an infinite graph should
be. We shall thus stick to the minimal degree as our ‘density-indicating’
parameter. A minor, on the other hand, is defined in same way as for finite
graphs, only that the branch-sets may now be infinite.1

In rayless graphs we will then get a verbatim extension of Theorem 8.1.1
(see Chapter 10). In graphs with rays, however, large minimal degree at the
vertices is too weak to force any interesting substructure. This is so because

1As long as our minors are locally finite, however (which will always be the case here),
it does not make any difference whether we allow infinite branch-sets or not. It is easy to
see that in this case any infinite branch-set may be restricted to a finite one.
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infinite trees may have arbitrarily large degrees, but they do not even have
any 2-connected subgraphs.

So at first sight, our goal seems unreachable. At second thought, how-
ever, the example of the infinite tree just shows that we did not translate the
term ‘large local densities’ in the right way to infinite graphs. Only having
every finite part of an infinite graph send out a large number of edges will
not produce large overall density, if we do not require something to ‘come
back’ from infinity.

The most natural way to do this is to impose a condition on the ends
of the graph. Ends are defined as the equivalence classes of rays (one-way
infinite paths), under the equivalence relation of not being separable by any
finite set of vertices. Ends have a long history, see [31, 59].

In [17] and in [86], end degrees were introduced (see also [31, 84]). In
fact, two notions have turned out useful (for different purposes): the vertex-
degree and the edge-degree of an end ω. The vertex-degree of ω is defined
as the maximum cardinality of a set of (vertex)-disjoint rays in ω, and the
edge-degree is defined as the maximum cardinality of a set of edge-disjoint
rays in ω. These maxima exist [49].

Do these notions help to force density in infinite graphs? To some extent
they do: A large minimum degree at the vertices together with a large min-
imum vertex-/edge-degree at the ends implies a certain dense substructure,
which takes the form of a highly connected or edge-connected subgraph.

More precisely, there is a function fv such that every graph of mini-
mum degree resp. vertex-degree fv(k) at the vertices and the ends has a
k-connected subgraph, and there is also a function fe such that every graph
of minimum degree/edge-degree fe(k) at the vertices and the ends has a
k-edge-connected subgraph. While fe is linear, fv is quadratic, and this is
almost best possible. All these results are from [86] and will be presented in
Chapter 9.

Some related results will already be discussed in Sections 8.3 and 8.4 of
the present chapter. In Section 8.3 we shall see that independently of the
degrees at the vertices, large vertex-degrees at the ends force an interesting
planar substructure: An end of infinite vertex-degree produces the N × N-
grid as a minor [49], and an end of vertex-degree at least 3

2
k − 1 forces a

[k] × N-grid-minor. We shall also show that this bound is best possible.
In Section 8.4, we shall see that in locally finite vertex-transitive graphs,
k-connectivity is implied by much weaker assumptions. In fact, the k-(edge)-
connectivity of a locally finite vertex-transitive graph is equivalent to all its
ends having vertex-(resp. edge)-degree k.

However, our notion of vertex-/edge-degrees is not strong enough to
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make an extension of Theorem 8.1.1 possible. This can be seen by taking the
infinite r-regular tree and inserting the edge set of some spanning subgraph
at each level (Example 10.3.1). With a little more effort we can transform
our example into one with infinitely many ends of large but finite vertex-
/edge-degree (Example 10.3.2).

To overcome this problem, we introduce in Section 10.4 a new end de-
gree notion, the relative degree, that makes an extension of Theorem 8.1.1 to
infinite locally finite graphs possible (Theorem 10.4.3). Moreover, every lo-
cally finite graph of minimum degree/relative degree k has a finite subgraph
of average degree k (Theorem 10.4.2). An application of Theorem 10.4.3 is
investigated in Section 10.5, where we ask whether as in finite graphs, large
girth can be used to force large complete minors. A partial answer is given
by Proposition 10.5.2.

8.2 Terminology for infinite graphs

All our notation is as in [31], but we take the oppotunity here to remind the
reader of the few less standard concepts.

One of the main concepts in infinite graph theory is that of the ends of
a graph G. An end of G is an equivalence class of rays (i.e. one-way infinite
paths) of G, where we say that two rays are equivalent if no finite set of
vertices separates them. We denote the set of ends of a graph G by Ω(G).

The vertex-degree and the edge-degree of an end ω ∈ Ω(G) were intro-
duced in [17] resp. in [85]. Sometimes, one refers to both at the same time
speaking informally of the end degree. The vertex-degree dv(ω) of ω is de-
fined as the maximum cardinality of a set of (vertex)-disjoint rays in ω, and
the edge-degree de(ω) of ω is defined as the maximum cardinality of a set
of edge-disjoint rays in ω. These maxima exist [49], see also [31]. Cleary,
the vertex-degree of an end is at most its edge-degree. We shall encounter a
third end degree notion in Section 10.4.

For a subgraph H of a graph G, we write ∂vH := N(G − H) for its
vertex-boundary. Similarly, ∂eH := E(H,G−H) is the edge-boundary of H.

An induced connected subgraph H of an infinite graph that has a finite
vertex-boundary is called a region. If H contains rays of an end ω, we will
say that H is a region of ω.

For k ∈ N, a separator of a graph of size k will often be called a k-
separator, and k-cuts are defined analogously. We say that a separator (or
cut) S of a graph G separates some set A ⊆ V (G) from an end ω ∈ Ω(G), if
the component of G− S that contains rays of ω does not meet A.
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8.3 Grid minors

From now on, we will deal with graphs that may have rays. We have already
seen in the introduction to this chapter that then large degrees at the vertices
are not enough to forcesomething as simple as cycles. We shall thus use
additionally the end degrees in order to force interesting substructures in
infinite graphs. In this section, we start modestly by asking for minors that
are planar.

Particularly interesting planar graphs are the grids. The infinite grid
Z × Z is the graph on Z2 having all edges of the form (m,n)(m + 1, n) and
of the form (m,n)(m,n+ 1), for m,n ∈ Z. The half-grid N×Z, the quarter-
grid N× N, and the [k]× N-grid are the induced subgraphs of Z× Z on the
respective sets.

A well-known result in infinite graph theory concerns the quarter-grid2,
which is a minor of every graph that has an end of infinite vertex-degree (this
is a classical result of Halin [49] who called such ends thick ends).

Theorem 8.3.1 (Halin [49]). Let G be graph which has an end ω of infinite
vertex-degree. Then the N× N-grid is a minor of G.

From Halin’s proof it follows that the rays of the subgraph of G that
can be contracted to N × N belong to ω (see also the proof in Diestel’s
book [31]). On the other hand, it is clear that if a subdivision of the quarter-
grid appears as a subgraph of some graph G, the its rays belong to an end
of infinite vertex-degree in G.

Thus, it is not surprising that assuming large (but not infinite) degrees
and vertex-degrees we cannot force a quarter-grid minor. One example is
the graph G′k from Example 10.3.2, whcih has the additional quality of being
planar.

However, both graphs contain something quite similar to a quarter-grid:
a [k]× N grid, where k depends on the minimum vertex-degree we required
at the ends. In fact, such a grid always appears in a graph with an end ω
of large enough vertex-degree. It will follow from the proof that the rays
corresponding to the rays of the minor, in G belong to ω.

Theorem 8.3.2.[83] Let k ∈ N and let G be graph which has an end ω of
vertex-degree at least 3

2
k − 1. Then the [k]× N-grid is a minor of G.

2Observe that when considering minors, it makes no difference whether we work with
the half-grid or the quarter-grid, since, as one easily checks, each of the two is a minor of
the other.
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The bound on the vertex-degree is sharp. This is illustrated by Exam-
ple 8.3.3, after the proof of Theorem 8.3.2.

Proof of Theorem 8.3.2. We shall proceed by induction on k. For k = 1 and
k = 2, the assertion clearly holds, so assume that k ≥ 3 and that ω is an end
of a graph G with dv(ω) ≥ 3

2
k − 1.

Choose a set R of dv(ω) disjoint rays from ω. Consider the auxiliary
graph H with V (H) := R where two vertices R and R′ are adjacent if
there exists an infinite set of disjoint V (R)–V (R′) paths in G which avoid
all R′′ ∈ R with R′′ 6= R,R′. Let T be a spanning tree of H. Clearly, if T
happens to be a path, it is easy to construct the desired minor.

So suppose otherwise. Then T has (at least) three leaves R1, R2, R3.
Observe that the graph G′ := G− V (

⋃
j=1,2,3Rj) has an end ω′ of degree

dv(ω
′) = dv(ω)− 3 ≥ 3

2
k − 4 =

3

2
(k − 2)− 1

whose rays, when viewed in G, belong to ω. Hence, by induction, the [k −
2] × N-grid is a minor of G′. In other words, G′ contains a set of rays
Q1, Q2, . . . Qk−2 ∈ ω′, and furthermore, each Qi is linked to Qi+1 by infinitely
many disjoint paths, which do not meet any other Qj.

In G, the Qi belong to ω. Thus, since |R| = dv(ω), each Qi meets
⋃R

infinitely often. Hence each Qi meets (at least) one of the rays in R, which
we shall denote by R(Qi), infinitely often.

The tree T from above contains three paths Pi, i = 1, 2, 3, so that Pi
starts in V (Ri) and ends in

⋃k−2
i=1 V (R(Qi)). Since R1, R2 and R3 are leaves

of T , the Pi can be chosen so that they are disjoint except possibly in their
endvertices. Using the path systems in G represented by the Pi, it is now
easy to see that for each Rj, j = 1, 2, 3, there is a Qij among the Qi such that
there exist an infinite family of disjoint V (Rj)–V (Qij ) paths which avoid all
other Qi′ and Rj′ . Say i1 ≤ i2 ≤ i3.

In order to see that the [k]×N-grid is a minor of G, we shall now define
a family of rays Q̃1, Q̃2, . . . Q̃k ∈ ω so that Q̃i and Q̃i+1 are connected by
infinitely many disjoint paths which do not meet any other Q̃i. For i < i1 set
Q̃i := Qi, and for i > i3 + 2 set Q̃i := Qi−2. Set Q̃i2+1 := R2. For i 6= i2 + 1
with i1 < i < i3 + 2, we choose Q̃i as a suitable ray which alternatively visits
Qi−1 and Qi, if i ≤ i2, or Qi−2 and Qi−1, if i > i2 + 1. Finally, Q̃i1 and Q̃i3+2

are chosen so that they alternate between R1 and Qi1 , respectively between
Qi3 and R3. Clearly this choice of the rays Q̃i ensures that, together with
suitable connecting paths, the Q̃i may be contracted to a [k]× N-grid.
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Figure 8.1: The graph Y (3) from Example 8.3.3.

Example 8.3.3. Denote by K1,3(`) the graph that is obtained by replacing
each edge of K1,3 with a path of length `. Define Y (`) := K1,3(`)×N. (That
is, for each i ∈ N, we take a copy of K1,3(`) and add an edge between every
ith and (i+ 1)th copy of each vertex in K1,3(`).)
Clearly, the vertex-degree of the unique end of Y is 3`+ 1. We shall show in
Lemma 8.3.4 that the [k]× N-grid is not a minor of Y (`), for k = 2`+ 2.

Lemma 8.3.4. Let ` ∈ N and let k = 2` + 2. Then the graph Y (`) from
Example 8.3.3 has an end of vertex-degree 3

2
k− 2, but the [k]×N-grid is not

a minor of Y (`).

Proof. Suppose otherwise. Then the graph Y (`) contains a family of rays
R := {R1, R2, . . . Rk} such that for i = 1, 2, . . . , k − 1, there are infinitely
many finite paths connecting Ri with Ri+1, such that all these paths are all
disjoint, except possibly in their endvertices, and such that they avoid all Ri′

with i′ 6= i, i+ 1.
Let n ∈ N be such that allRi meet Yn := K1,3(`)×{n}, the nth copy ofK1,3(`)
in Y (`). Write V (Yn) as {v0, v

1
1, v

1
2, . . . , v

1
` , v

2
1, v

2
2, . . . , v

2
` , v

3
1, v

3
2, . . . , v

3
`} where

each v0v
j
1v
j
2 . . . v

j
` induces a path in Yn.

For each j = 1, 2, 3 consider that ray R(j) ∈ R that meets a vjm with largest
index m. Observe that (at least) one of these three rays, say R(1) is neither
equal to R1 nor to Rk. Let R′(1) be the ray in R that meets v1

m with the
second largest index m, or, if there is no such, let R′(1) be the ray that
meets v0 (which then exists, since |R| = k > 2`+ 1 and since each ray of R
meets Yn).
We claim that S := V (R′(1)) ∪ V (

⋃
h≤n Yh) separates R(1) from the rest of

the Ri, which clearly leads to the desired contradiction, since R(1) 6= R1, Rk,
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and thus has to be connected to two of the Ri by infinitely many disjoint
finite paths that avoid all other Ri. So suppose otherwise, and let P be a
path that connects R(1) in Y (`)− S with some Ri∗ ∈ R.
By construction of Y (`), this is only possible if R′(1) uses vertices of the type
v2
m or v3

m. Let ñ be the smallest index ≥ n such that this occurs, say the
ñth copy of v2

1 lies on R′(1). Then also the ñth copy of v0 lies on R′(1), and
furthermore, all other Ri (with the exception of R(1)) have to pass through
the ñth copies of the vertices v2

2, v
2
3, . . . , v

2
` , v

3
1, v

3
2, . . . , v

3
` . Hence the total

number of rays in R cannot exceed 2`+1, a contradiction, as k = 2`+2.

8.4 Connectivity of vertex-transitive graphs

In the next chapter, we shall se that large degrees at the vertices together
with large vertex-/edge-degree at the ends ensure the existence of highly
vertex-/edge-connected subgraphs. In this section, we shall already inves-
tigate the same problem for vertex-transitive graphs. As vertex-transitive
graphs are regular, we need no longer use the term ‘mimimum degree’. Thus
our question reduces to the following in vertex-transitive graphs: Which de-
gree at each vertex do we need in order to ensure that our graph has a
k-(edge)-connected subgraph?

It is known that in finite graphs a degree of k is enough, and moreover
the subgraph will be the graph itself. In fact, every finite vertex-transitive
k-regular connected graph is k-edge-connected [64]. It is even k-connected,
as long as it does not contain K4 as a subgraph [62].

In infinite graphs, this is no longer true, if we only require degree k at
the vertices, because of the trees. However, if we require a vertex-/edge-
degree of at least k at the ends (which is conversely implied by the k-(edge)-
connectivity, see below), we can obtain analogous results for infinite locally
finite graphs. We may even drop the condition on the degrees of the vertices.

Proposition 8.4.1.[83] Let G be an infinite locally finite graph, let k ∈ N.
Suppose that G is vertex-transitive and connected.

(a) G is k-connected if and only if all ends of G have vertex-degree at least
k.

(b) G is k-edge-connected if and only if all ends of G have edge-degree at
least k.

In fact, the forward implications in Proposition 8.4.1 are easily implied
by the following result, whose proof is not very difficult and can be found
in [17] for the edge-case (the vertex-case is analogous).
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Lemma 8.4.2. Let k ∈ N, let G be a locally finite graph, and let ω ∈ Ω(G).
Then

(i) dv(ω) = k if and only if k is the smallest integer such that every finite
set S ⊆ V (G) can be separated from ω with a k-separator, and

(ii) de(ω) = k if and only if k is the smallest integer such that every finite
set S ⊆ V (G) can be separated from ω with a k-cut.

Proof of Proposition 8.4.1. Because of Lemma 8.4.2 we only need to prove
the backward implications. Let us only prove the implication for (a), for (b)
this is analoguous.

Suppose the implication is not true, and let S be an `-separator of G,
for some ` < k. Choose a vertex w at distance at least max{dist(u, v) :
u, v ∈ S} + 1 from all v ∈ S. (Observe that such a vertex w exists, since
G is infinite, locally finite and connected.) Now, let φ be an automorphism
of G that maps some vertex from S to w. Then φ(S) is contained in one
component of G− S.

Next, choose an automorphism φ′ that maps φ(w) ‘far away’ from φ(S)
to a component of G − φ(S) that does not contain S. Continuing in this
manner, we arrive at a sequence S, φ(S), φ′(φ((S)), φ′′(φ′(φ(S))), . . . of `-
separators of G. It is not difficult to construct a ray that meets each of these
separators and hence defines an end of vertex-degree ` < k. This contradicts
our assumption that all ends have vertex-degree at least k.



Chapter 9

Highly connected subgraphs of
infinite graphs

9.1 The results

In this chapter, which is based on work from [86], we shall state and prove
the results on highly connected subgraphs mentioned in the previous chapter.
More precisely, we shall prove an infinite analogue of the following well-known
theorem by Mader.

Theorem 9.1.1 (Mader [66]). Any finite graph G of average degree at least
4k has a (k + 1)-connected subgraph.

As we already mentioned earlier, in infinite graphs it does not seem to
be clear what an adequate concept of ‘average degree’ should be, and we will
thus restrict ourselves to investigate the consequences of the (in finite graphs
stronger) assumption of ‘high minimum degree’.

But as we have seen, simply requiring high degree for the vertices is not
enough, as the counterexample of the infinite r-regular tree T r demonstrates.
Now, since an infinite tree has rather ‘thin’ ends (which seem to play the role
of the leaves of the infinite tree), this suggests, as conjectured by Diestel [30],
that a minimum degree condition has to be imposed also on the ends of the
graph.

In fact, if we require large vertex-degree at the ends, then T r ceases to be
a counterexample, as each of its ends has vertex-degree 1. And indeed, with
this further condition on the vertex-degrees of the ends, highly connected
subgraphs can be forced also in infinite graphs. As our main theorem in this
chapter we prove the following infinite analogue:



98 Highly connected subgraphs of infinite graphs

Theorem 9.1.2.[86] Let k ∈ N and let G be a graph such that each vertex has
degree at least 2k(k+3), and each end has vertex-degree at least 2k(k+1)+1.
Then every infinite region of G has a (k + 1)-connected region.

Observe that while in Theorem 9.1.1, the bound on the degrees is linear
in k, in Theorem 9.1.2 we require quadratic degree in k. This is in fact near
to best possible:

Theorem 9.1.3.[86] For each k = 5`, where ` ∈ N is even, there exists a
locally finite graph whose vertices have degree at least 2` and whose ends have
vertex-degree at least ` log `, and which has no (k + 1)-connected subgraph.

In the previous chapter we also defined the edge-degree. It seems that
the two concepts vertex-degree/edge-degree reflect for ends different aspects
of the degree of a vertex. The vertex-degree of an end is the analogue of the
size of the neighbourhood of a vertex, while the edge-degree corresponds to
the number of incident edges.

This point of view suggests that for forcing highly (vertex-)connected
subgraphs, high vertex-degree is a more natural requirement than high edge-
degree. And in fact, it turns out that high edge-degrees at the ends and high
degrees at the vertices together are not sufficient to force highly connected
subgraphs, or even highly connected minors, in infinite graphs. In Section 9.4
we exhibit for all r ∈ N a locally finite graph of minimum degree and min-
imum edge-degree r that has no 4-connected subgraph and no 6-connected
minor.

But, the assumption of high degree and high edge-degree does suffice
to force highly edge-connected subgraphs in arbitrary graphs, with a lower
bound on the (edge)-degrees that is only linear in k:

Theorem 9.1.4.[86] Let k ∈ N and let G be a graph such that each vertex
has degree at least 2k and each end has edge-degree at least 2k. Then G has
a (k + 1)-edge-connected region.

Moreover, highly edge-connected subgraphs can be found in every infi-
nite region (Theorem 9.3.2).

In general, it is not possible to force finite highly vertex-/edge-connected
subgraphs in infinite graphs by assuming high minimum degree and vertex-
resp. edge-degree. Neither can one force infinite highly vertex- or edge-
connected subgraphs. Counterexamples in this respect are provided in the
discussion after Corollary 9.3.3, near the end of Section 9.3. However, any
graph which obeys the (vertex-/edge)-degree bounds of Theorem 9.1.2 resp.
Theorem 9.1.4, has either an infinite (k+1)-vertex-/edge-connected subgraph
or infinitely many finite such (see Corollary 9.3.3/Corollary 9.5.2).
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9.2 End degrees and more terminology

The terminology we use is standard, and can be found for example in [31]. A
1-way infinite path is called a ray, and the subrays of a ray are its tails. Two
rays in a graph G are equivalent if no finite set of vertices separates them;
the corresponding equivalence classes of rays are the ends of G. We denote
the set of the ends of G by Ω(G).

Let H be a (possibly empty) subgraph of G, and write H ⊆ G. The
boundary ∂H of H is the set N(G−H) of all neighbours in H of vertices of
G−H. We call H a region (of G) if H is a connected induced subgraph with
finite boundary. Then H ′ ⊆ H is a region of G if and only if it is a region of
H.

Call a region H profound, if V (H) 6= ∂H. For example, all infinite
regions are profound, and a profound region is not empty.

As in finite graphs, we call H k-connected for some k ∈ N, if |H| > k and
no set of fewer than k vertices separates H. Similarly, H is k-edge-connected
if |H| > 1 and no set of fewer than k edges separates H. Hence, if H is not
k-edge-connected (and non-trivial), then it has a cut of cardinality less than
k.

We shall consider two different extensions of the degree notion to ends.
The vertex-degree (also known as the multiplicity, or thickness) of an end
ω ∈ Ω(G) is the maximum cardinality of a set of (vertex)-disjoint rays in ω.
The edge-degree of ω (as suggested in [17]) is the maximum cardinality of a
set of edge-disjoint rays in ω. It can be shown that these two degree concepts
are well-defined, i.e. the considered maxima do indeed exist.1

9.3 Forcing highly edge-connected subgraphs

The main result of this section (Theorem 9.1.4) is that any graph G of large
enough minimal degree and edge-degree contains a highly edge-connected
subgraph, which in fact will be a region. We shall then see that such a region
H can be found in any infinite region of G, and that there are either infinitely
many such regions H, or one of infinite order.

Theorem 9.1.4 is best possible in the sense that high edge-degree is not

1Halin [49] proves the existence of an infinite set of disjoint rays if the number of
disjoint rays in the considered graph is unbounded: with slight modifications, his proof
yields the same result for rays of a fixed end. In [17], it is shown that the supremum of the
cardinalities of sets of edge-disjoint rays in a given end is attained in locally finite graphs:
this proof carries over similarly to arbitrary graphs.



100 Highly connected subgraphs of infinite graphs

sufficient to force highly connected subgraphs, as we shall see in the next
section.

For the proof, we need the following lemma, which basically assures that
if a graph contains some region with small cut to the outside world, then
there is either a minimal such, or we have an infinite nested sequence of such
regions so that their cuts are all disjoint.

Lemma 9.3.1. Let D 6= ∅ be a region of a graph G so that |E(D,G−D)| < m
and so that |E(D′, G−D′)| ≥ m for every non-empty region D′ ⊆ D−∂D of
G. Then there is an inclusion-minimal region H ⊆ D with |E(H,G−H)| <
m and H 6= ∅.
Proof. If there is no such H, then we can construct an infinite sequence
of distinct regions D =: D0 ) D1 ) D2 ) . . . such that all cuts Fi :=
E(Di, G − Di) have cardinality less than m. Note that any edge that lies
in some Fi, but not in Fi+1, lies outside E(Di+1) ∪ Fi+1, and hence will not
appear in any Fj with j > i.

By assumption, every region D′ ⊆ D which is not incident with any edge
of F0, sends at least m edges to the outside. Thus, there is an edge e in F0

that appears in all Fi for i ≥ 0. Let E be the set of all edges ej for which
there exists an index j such that ej ∈ Fi for all i ≥ j. Clearly, e ∈ E, and
|E| < m, where the latter follows from the boundedness of the cuts Fi.

Let n be so that E ⊆ Fn. Now, as Dn+1 ( Dn, there is a vertex
x ∈ V (Dn−Dn+1). Since Dn is connected, it contains a (finite) path P that
connects x with y, the endvertex of e in Dn. All Di with i > n contain y,
but not x, thus each Fi with i > n must contain one of the edges on P . This
implies that there is an edge ej on P which for some j > n lies in all Fi with
i ≥ j. Thus, ej ∈ E ⊆ Fn, but Fn ∩ E(P ) = ∅, a contradiction.

We now prove Theorem 9.1.4.

Proof of Theorem 9.1.4. First of all, we shall show that there exists a region
C 6= ∅ such that

(a) |E(C,G− C)| < 2k, and

(b) for every non-empty region C ′ ⊆ C − ∂C we have that
|E(C ′, G− C ′)| ≥ 2k.

Indeed, let us construct a sequence C0 ⊇ C1 ⊇ C2 . . . of non-empty
regions such that for i ≥ 0 the following hold

(i) |E(Ci, G− Ci)| < 2k, and
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(ii) Ci+1 ⊆ Ci − ∂Ci.

Choose C0 as any component of G. Now, if after finitely many, say j,
steps of our construction we cannot go on, i.e. find a suitable Cj+1, it is
because Cj has property (b). Property (a) is then ensured by (i).

So assume that we end up with an infinite sequence C0, C1, C2, . . . of
regions. Observe that, since C0 is a region, ∂Ci 6= ∅ for each i ≥ 1. As each
of the Ci is connected, there is a sequence (Pi)i∈N of ∂Ci–∂Ci+1 paths such
that for i ≥ 1 the path Pi+1 starts in the last vertex of Pi. By (ii), the paths
Pi are non-trivial, and by construction, each Pi meets Pi−1 and Pi+1 only in
its first respectively last vertex, and is disjoint from all the other Pj. Hence,
their union P :=

⋃∞
i=1 Pi is a ray which has a tail in each of the Ci.

Let ω be the end of G that contains P . As, by assumption, ω has edge-
degree at least 2k, there is a family R of 2k edge-disjoint ω-rays in G. For
each ray R ∈ R let nR denote the distance its starting vertex has to ∂C1.
Set n := max{nR : R ∈ R}+ 2. Then by (ii), all of the 2k disjoint rays in R
start outside Cn. But each ray in R is equivalent to P , and hence eventually
enters Cn, contradicting the fact that |E(Cn, G − Cn)| < 2k by (i). This
proves the existence of a region C 6= ∅ with the properties (a) and (b).

Thus, Lemma 9.3.1 yields an inclusion-minimal non-empty regionH ⊆ C
with |E(H,G − H)| < 2k. We claim that H is the desired (k + 1)-edge-
connected region of G. In fact, otherwise the bound on the degrees of the
vertices of G implies that |H| ≥ 2, and so, H has a cut F with |F | ≤ k.
We may assume that F is a minimal cut, i.e. splits H into two (non-empty)
regions H ′ and H ′′. For one of the two, say H ′, the cut E(H ′, G−H ′) meets

E(H,G−H) in at most |E(H,G−H)|
2

< k edges. Hence

|E(H ′, G−H ′)| ≤ |E(H ′, G−H ′) ∩ E(H,G−H)|+ |F | < 2k

and H ′ ( H, contradicting the minimality of H.

Note that our proof yields a (k+1)-edge-connected region in every region
C of G with |E(C,G − C)| < 2k (simply start with C0 := C instead of
taking any component of G). With slightly more effort (and slightly higher
edge-degree), one can prove that every infinite region of G contains a (k+1)-
edge-connected region:

Theorem 9.3.2. Let k ∈ N, and let G be a graph such that each vertex has
degree at least 2k, and each end has edge-degree at least 2k + 1. Then every
infinite region of G contains a (k + 1)-edge-connected region.
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Proof. Let D be an infinite region of G. If there is a region D′ ⊆ D with
|E(D′, G −D′)| ≤ 2k and D 6= ∅, then we proceed as in the proof of Theo-
rem 9.1.4 to find an inclusion-minimal non-empty region H with this prop-
erty, which then turns out to be the desired (k + 1)-edge-connected region.2

So, we can assume that D contains no non-empty region which sends
less than 2k + 1 edges to the outside. Now, let H ⊆ D be an infinite region
with |E(H,G−H)| minimal. If we can prove H to be (k+1)-edge-connected,
we are done. But otherwise there is a cut F with |F | ≤ k that splits H into
two regions H ′ and H ′′. At least one of these, say H ′, is infinite. By the
choice of H, the number of edges H ′ sends to the rest of the graph is at least
|E(H,G − H)|; hence, E(H ′, G − H ′) contains all but at most |F | edges of
E(H,G−H). Thus,

|E(H ′′, G−H ′′)| = |F ∪ (E(H,G−H)− E(H ′, G−H ′))| ≤ 2k,

contradicting our assumption on D.

Theorem 9.3.2 has two interesting corollaries.

Corollary 9.3.3. Let k ∈ N and let G be a graph in which all vertices have
degree at least 2k, and all ends have edge-degree at least 2k + 1. Then any
infinite region C of G has either infinitely many disjoint finite (k + 1)-edge-
connected regions, or an infinite (k + 1)-edge-connected region.

Proof. Take an inclusion-maximal setD of disjoint finite (k+1)-edge-connected
regions of C (which exists by Zorn’s Lemma), and assume that |D| < ∞.
Since any infinite component of C ′ := C −⋃D∈DD ⊆ C is an infinite region
of G, we may use Theorem 9.3.2 to obtain a (k + 1)-edge-connected region
H of C. Then H is infinite by the choice of D.

The two configurations of Corollary 9.3.3 of which one necessarily ap-
pears in any given graph of large enough minimal (edge)-degree, need not
both exist, not even in locally finite graphs. Indeed, for given r ∈ N, it is easy
to construct an infinite locally finite graph G which has minimum degree and
vertex- (and thus edge)- degree r but no infinite 3-edge-connected subgraph.
We obtain G from the r × N grid by joining each vertex to r disjoint copies
of Kr+1. Any infinite subgraph of G which is at least 2-edge-connected is
also a subgraph of the r × N grid, and hence is at most 2-edge-connected.

2Observe that, starting with |E(D′, G−D′)| ≤ 2k instead of < 2k, we will have to adjust
our inequalities, and the final contradiction is obtained by finding that |E(H ′, G−H ′)| ≤
2k.



9.3 Forcing highly edge-connected subgraphs 103

On the other hand, there are also locally finite graphs of high min-
imum degree and vertex-degree that have no finite highly edge-connected
subgraphs. To see this, we reuse an example from the introduction: for given
r ∈ N, add some edges to each level Si of the r-regular tree T r so that in the
obtained graph T̃ r each Si induces a path. The only end of T̃ r has infinite
vertex- and edge-degree, and the vertices of T̃ r have degree at least r. Now,
for every finite subgraph H of T̃ r there is a last level of T̃ r that contains
a vertex v of H. Then v has degree at most 3 in H, and hence, H is not
4-edge-connected.

Our second corollary of Theorem 9.1.4 describes how the graph G de-
composes into subgraphs that either are highly edge-connected or are so that
all their subgraphs send many edges to the outside. For this, we have to push
the lower bound on the degree of the vertices a little:

Corollary 9.3.4. Let k ∈ N, and let G be a graph whose vertices have degree
at least 4k + 1, and whose ends have edge-degree at least 2k + 1. Then there
is a set D of disjoint (k+1)-edge-connected regions of G such that |E(H,G−
H)| ≥ max{4k, |H|} for each non-empty subgraph H of G−⋃D∈DD.

For the proof, we need the following lemma:

Lemma 9.3.5. Let m ∈ N and let G be a graph such that each of its vertices
has degree at least m. Then every non-empty region H of G with |E(H,G−
H)| < m contains at least m+ 1 vertices.

Proof. We may assume that m > 1. Now, we can estimate the number of
edges of H in two ways. On one hand,

‖H‖ ≥ m|H| − |E(H,G−H)|
2

>
m

2
(|H| − 1),

as by assumption, each vertex of H has degree at least m in G. On the other
hand, H cannot have more edges than the complete graph on |H| vertices.

This leaves us with the inequality m
2

(|H| − 1) < |H|(|H|−1)
2

, implying that
|H| > m.

Proof of Corollary 9.3.4. Let D be an inclusion-maximal set D of disjoint
(k + 1)-edge-connected regions of G (which again exists by Zorn’s Lemma).

Observe that it suffices to show |E(H,G − H)| ≥ max{4k, |H|} for in-
duced connected non-empty subgraphs H of G−⋃D∈DD, and consider such
an H. If H is infinite, then Theorem 9.3.2 and the (maximal) choice of D
imply that H is not a region of G, i.e. that |E(H,G − H)| is infinite, as
desired.
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So assume that H is finite. In the case that |H| < 4k, Lemma 9.3.5
ensures that |E(H,G − H)| ≥ 4k. In the case that |H| ≥ 4k, suppose that
|E(H,G−H)| < |H|. Then, H has average degree d(H) ≥ δV − 1 ≥ 4k, and
hence H has a k-edge-connected subgraph by Theorem 9.1.1, contradicting
the choice of D.

9.4 High edge-degree but no highly connected

subgraphs

In this section, we shall show that with high edge-degree in the ends and high
degree in the vertices we cannot ensure the existence of highly connected
subgraphs. Indeed, even highly connected minors need not be present.

More precisely, for given r ∈ N we will construct a locally finite graph
Gr of minimum degree r at the vertices and minimum edge-degree at least
r at the ends that has no 4-connected subgraph and no 6-connected minor.
The idea is to ‘thicken’ the ends of the tree Tr, in the sense of augmenting
their edge-degree, which we do by adding many edges but only a few vertices
in order to keep the separators small.

Figure 9.1: The graph G4.

We start with an infinite rooted tree Tr in which each vertex sends r edges
to the next level. The graph Gr will be obtained from Tr in the following
manner. Let S0 consist of the root r0 of Tr and for i ≥ 1 denote by Si the
i-th level of Tr. Now, successively for i ≥ 1, we shall add some vertices to Si,
which results in an enlarged ith level S ′i, and then add some edges between
S ′i − Si and Si+1.
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For each vertex x ∈ Si−1, add r − 1 new vertices vx1 , v
x
2 , . . . , v

x
r−1 to

its neighbourhood Sx = {sx1 , sx2 , . . . , sxr} in Si. Denote by S ′i the set thus
obtained from Si.

Then for each j ≤ r − 1 and each x ∈ Si−1 add all edges between vxj
and NSi+1

({sxj , sxj+1}). This yields a graph Gr on the disjoint union of sets
S ′1, S

′
2, . . . as depicted in Figure 9.1 for r = 4.

The ends of Gr correspond to the ends of the underlying tree Tr, i.e. every
two disjoint rays in Tr belong to different ends of Gr, and each end of Gr

contains a ray from Tr. Indeed, two rays from Tr which in Tr are separated
by
⋃j
i=0 Si for some j ∈ N, can be separated in Gr by the set

⋃j+1
i=0 Si. On

the other hand, every ray R ⊆ Gr has, for any fixed j ∈ N, a tail in exactly
one of the components of G−⋃j

i=0 Si. This tail meets Sxj , for some xj ∈ Sj.
Hence R is equivalent to the ray x0x1x2 . . . ⊆ Tr.

Lemma 9.4.1. Gr has minimum degree r at the vertices and minimum edge-
degree at least r at the ends.

Proof. The definition of G clearly ensures the desired degree at the vertices.
We show that the ends of Gr have edge-degree at least r by constructing a
set of r edge-disjoint rays in each. Given an end ω of Gr, there is exactly
one ray R = r0r1r2 . . . ⊆ Tr in it (since the ends of Gr correspond to those
of Tr, as remarked above).

Now, construct r−1 edge-disjoint ω-rays Ri, where i = 1, . . . , r−1; these
will also be edge-disjoint from R. Each Ri starts in r0, its second vertex is
the ith neighbour of r0 in S1 which is unused by R. Next, it goes along some
path that switches between S2 and S ′1 until it reaches r2. Note that we can
choose these paths edge-disjoint for different i, for example by letting Ri use
only vertices v ∈ S2 with v = sxi for some x ∈ S1 (or v = r2). Similarly,
we continue the Ri going from r2 to the ith unused neighbour in S3, and
from there along edge-disjoint paths to r4, and so on. Since the Ri agree on
r0, r2, r4 . . ., they all belong to ω.

Observe that every finite set A of vertices can be separated from any
end ω by at most three vertices (namely by the neighbours of the unique
component of Gr − S ′i that contains a ray in ω, where j is large enough so
that A ⊆ ⋃j

i=0 S
′
i). Hence, each end of Gr has vertex-degree at most 3.

In fact, Theorem 9.1.2 ensures that every graph of high minimum degree
(at the vertices) has either an end of small vertex-degree or a highly connected
subgraph. We shall see now that the latter is not the case for Gr.

Lemma 9.4.2. Gr has no 4-connected subgraph.
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Proof. Suppose otherwise, and let H be a 4-connected subgraph of G. Let
i ∈ N so that V (H) ∩ S ′i 6= ∅. Now, if there is a vertex v ∈ V (H)−⋃i+1

j=0 S
′
i,

then it can be separated in Gr (and thus also in H) from V (H) ∩ S ′i by at
most three vertices, namely by the neighbours of the component of Gr−S ′i+1

that contains v. So, as H is 4-connected, V (H) − ⋃i+1
j=0 S

′
i must be empty.

Then, there is a maximal j ∈ N such that V (H) ∩ S ′j 6= ∅. But then by
construction of Gr, any vertex in V (H) ∩ S ′j has degree at most three in H,
contradicting the 4-connectedness of H.

It is only slightly more difficult to prove that Gr has no highly connected
minor:

Lemma 9.4.3. Gr has no 6-connected minor.

Proof. Suppose that Gr has a 6-connected minor M . Then there is an n ∈ N
so that each branch-set of M has a vertex in

⋃n
i=0 S

′
i. Since M is 6-connected,

each separator T ⊆ ⋃n
i=0 S

′
i ofGr with |T | ≤ 5 leaves a component C ofGr−T

such that V (C) ∪ T meets one and hence every branch-set of M . So as each
S ′i can be separated in Gr from any component of G − S ′i by at most three
vertices, there is an i < n such that each branch-set of M meets S ′i ∪ S ′i+1.
Moreover, there is a vertex x ∈ Si such that for S := NSi+1

(x) we have that
each branch-set of M has a vertex in S ′ := S ∪ NS′i

(S) ∪ {vx1 , vx2 , . . . , vxr−1}.
Then |S ′ ∩ S ′i| ≤ 3.

Figure 9.2: The graph G′4 for |S ′ ∩ S ′i| = 3.

We claim that M is also a minor of the finite graph G′r (see Figure 9.2)
which is obtained from Gr[S

′] by adding an edge between every two vertices
that are neighbours of the same component of Gr − S ′. Indeed, each com-
ponent C of Gr − S ′ has at most three neighbours in S ′. Hence, since M is
6-connected, C meets only (if at all) those branch-sets of M that also meet
NS′(C). It is easy to see that M is still a minor of the graph we obtain from
Gr by deleting C and adding all edges between vertices in NS′(C). Arguing
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analogously for the other components of Gr − S ′, we see that M is also a
minor of G′r.

As |S ′ ∩ S ′i| ≤ 3, all but at most 3 branch-sets of M in G′r have all
their vertices in |S ′ ∩ S ′i+1|. Then these give rise to a 3-connected minor of
G′r−S ′i. But each non-trivial block of G′r−S ′i is a triangle and hence has no
3-connected minor, yielding the desired contradiction.

Note that the two latter results are best possible, since Gr has a 3-
connected subgraph, the complete graph on 4 vertices, and a 5-connected
minor, the complete graph on 6 vertices.

9.5 Forcing highly connected subgraphs

In this section, we shall prove our main result, Theorem 9.1.2. At first,
we shall proceed similarly3 as in the proof of Theorem 9.1.4 (resp. Theo-
rem 9.3.2), until we arrive at an infinite region C ′ ⊆ C with the property
that |∂H| ≥ δΩ holds for all regions H ( C ′. This is achieved in Lemma 9.5.1
below.

But then, we see ourselves confronted with new difficulties. The region
C ′ need not be highly connected, or even 2-connected; the reason is that we
lost control on the degrees of the vertices in C ′. (And the situation only
changes for the worse if instead of C ′ we consider C ′ − ∂C ′, which needs be
neither connected, nor a region.)

Hence, we shall prefer a region H ⊆ C ′ over C ′, if the vertices of ∂H
have ‘much’ higher degree in H than those of ∂C ′ have in C ′, even if ∂H has
‘slightly’ greater cardinality than ∂C ′. This will be formalised below.

Our combination of measurements on the suitability of H, on one hand
|∂H|, and on the other, dH(∂H), is responsible for the quadratic lower bounds
on the degrees which this proof of Theorem 9.1.2 yields. We shall see in
Section 9.6 that these bounds are indeed close to best possible.

Lemma 9.5.1. Let G be a graph such that all its ends have vertex-degree at
least δΩ ∈ N. Let C be an infinite region of G. Then there exists a profound
region C ′ ⊆ C for which one of the following holds:

3The situation here is a little more complicated, because a vertex-version of
Lemma 9.3.1, replacing ‘edges’ with ‘vertices’ and ‘cuts’ with ‘separators’, fails, unless
we make use of the high vertex-degree assumed in Theorem 9.1.2. To see this, take a ray
v0v1v2 . . ., to which we add all edges v0vi, and consider the region D which consists of all
vi but v1.
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(a) C ′ is finite and |∂C ′| < δΩ, or

(b) C ′ is infinite and |∂C ′′| ≥ δΩ for every profound region C ′′ ( C ′.

Proof. Suppose otherwise. Then in particular, (b) does not hold for C,
i.e. there is a profound region C1 ( C with |∂C1| < δΩ. We shall con-
struct a sequence C1 ) C2 ) . . . of profound regions of C so that |∂Cn| < δΩ

for all n ≥ 1.

So assume the region Cn with small boundary has been found. We may
assume Cn to be such that Cn − ∂Cn is connected and also, that N(Cn −
∂Cn) = ∂Cn. Indeed, if Cn is not so, we can take any component H of
Cn−∂Cn (such a component exists, as Cn is profound) and add N(H) ⊆ ∂Cn.
Then H ⊆ Cn is a profound region with the desired small boundary which
we may use instead of Cn.

As we suppose that (a) does not hold for Cn, we can assume that Cn
is infinite. Since Cn is not as required in (b), there is a profound region
Cn+1 ( Cn with |∂Cn+1| < δΩ. In this manner, we obtain an infinite sequence
(Cn)n∈N.

Denote by V the (possibly empty) set of those vertices v that from some
j ∈ N on appear in all ∂Cn with n ≥ j. Since all ∂Cn have size at most δΩ,
the set V is finite. Furthermore, as Cn+1 ( Cn for every n ≥ 1, and we chose
the Cn so that Cn − ∂Cn is connected, we have that ∂Cn = V for at most
one n ∈ N. Let J be such that V ( ∂Cn for all n ≥ J .

Observe that for each w ∈ ∂CJ−V there is an index j such that w /∈ ∂Cn
for all n ≥ j. Hence, there is an index J ′ so that ∂CJ ∩ ∂CJ ′ = V . Set
C ′1 := CJ , and set C ′2 := CJ ′ . Continuing in this manner, we arrive at
an infinite subsequence C ′1 ) C ′2 ) . . . of profound regions of C, whose
boundaries pairwisely meet only in V . Let us summarize the properties
which the regions C ′n have, for each n ∈ N:

(i) |∂C ′n| < δΩ,

(ii) C ′n − ∂C ′n is connected, and N(C ′n − ∂C ′n) = ∂C ′n,

(iii) V ( ∂C ′n, and

(iv) ∂C ′n+1 ⊆ (C ′n − ∂C ′n) ∪ V .

We claim that there is a ray R that has a tail in each C ′n. Indeed, by
(ii) and (iii), there exists for each n ∈ N a (∂C ′n − V )–(∂C ′n+1 − V ) path Pn
such that each Pn+1 starts in the last vertex of Pn. By (iv), the paths Pi are
non-trivial, hence, their union is the desired ray R. Denote by ω the end of
G that contains R.
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As, by assumption, ω has vertex-degree at least δΩ, there is a set R of δΩ

disjoint ω-rays in G. The starting vertices of the rays in R either lie outside
C ′1 − ∂C ′1, or have in C ′1 − V a finite distance to ∂C ′1 − V . Hence, by (iv),
there is an N ∈ N so that all rays of R start outside C ′N − ∂C ′N . But (being
equivalent to R) each of these disjoint rays eventually enters C ′N − ∂C ′N , and
thus meets ∂C ′N , a contradiction because by (i), |∂C ′N | < δΩ. This completes
the proof of Lemma 9.5.1.

We are now ready to prove the main result of this chapter.

Proof of Theorem 9.1.2. Given an infinite region C of G, we shall find a
(k + 1)-connected region H ⊆ C. Theorem 9.1.2 obviously holds for k = 1,
since the ends of a tree have vertex-degree 1 < δΩ. We can thus assume that
k > 1.

Suppose there exists a profound finite region D ⊆ C with |∂D| < δΩ.
Then D − ∂D has minimum degree at least δ(D − ∂D) ≥ δV − δΩ + 1 = 4k.
Hence Theorem 9.1.1 yields a finite (k + 1)-connected subgraph of D ⊆ C,
and we are done. Let us therefore assume that there is no such region D.

We may thus apply Lemma 9.5.1 to obtain an infinite region C ′ ⊆ C
with the property that

|∂C ′′| ≥ δΩ for every profound region C ′′ ( C ′. (9.1)

For a region H ⊆ C ′ write

ΣH :=
∑

v∈V (H)

max{0, δV − dH(v)}.

Observe that this sum is finite, since all vertices of H but the finitely many
in ∂H have degree at least δV in H. Now, choose an infinite region H ⊆ C ′

such that (k + 3)|∂H|+ ΣH is minimal.

Assume that there is a vertex v ∈ V (H) that has degree at most 2k − 3
in H. Then clearly, v ∈ ∂H. Observe that dH−v(w) = dH(w)− 1 for each of
the at most 2k − 3 neighbours w of v in H, and dH−v(w

′) = dH(w′) for all
other vertices w′ in H. Therefore,

(k + 3)|∂(H − v)|+ ΣH−v ≤ (k + 3)|∂H|+ (k + 3)(2k − 4)

+ ΣH + (2k − 3)− (δV − dH(v))

< (k + 3)|∂H|+ ΣH + 2k(k + 3)− δV
= (k + 3)|∂H|+ ΣH .
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So any infinite component of H−v is a better choice than H, a contradiction.
We thus have shown that

dH(v) ≥ 2(k − 1) for each vertex v ∈ V (H). (9.2)

Let us prove now that H is the desired (k + 1)-connected region of C.
Indeed, suppose otherwise. Then H has a separator T of cardinality at most
k, which we may assume to be a minimal separator. Note that each such
separator leaves a component D of H − T such that H ′ := H − D is an
infinite region of C.

Suppose that |V (D) ∩ ∂H| ≥ δΩ − |T |. Then we obtain for the infinite
region H ′ ⊆ C ′ that

|∂H ′| = |(∂H − V (D)) ∪ T |
≤ |∂H| − |V (D) ∩ ∂H|+ |T |
≤ |∂H| − δΩ + 2k.

Furthermore,

ΣH′ ≤ ΣH +
∑
v∈T

max{0, δV − dH′(v)}

≤ ΣH + kδV ,

and so

(k + 3)|∂H ′|+ ΣH′ ≤ (k + 3)|∂H| − (k + 3)(δΩ − 2k) + ΣH + kδV

< (k + 3)|∂H| − 2k2(k + 3) + ΣH + 2k2(k + 3)

= (k + 3)|∂H|+ ΣH ,

contradicting the choice of H.

Hence,
|V (D) ∩ ∂H| < δΩ − |T |.

Thus for the region D̃ := G[V (D) ∪ T ] ⊆ C ′, we have

|∂D̃| = |(V (D) ∩ ∂H) ∪ T | ≤ |V (D) ∩ ∂H|+ |T | < δΩ.

Observe that D̃ 6= H. So, by (9.1), the region D̃ is not profound, i.e. V (D̃) =
∂D̃, implying that V (D) ⊆ ∂H. In particular, |D| < δΩ − |T |. Now, for any
vertex v ∈ V (D), we can estimate its degree in H as follows.

dH(v) ≤ |(D ∪ T )− {v}| < δΩ − 1 = δV − 4k.
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Then δV − dH(v) > 4k, implying that

ΣH′ ≤ ΣH −
∑

v∈V (D)

max{0, δV − dH(v)}+
∑
v∈T

(dH(v)− dH′(v))

< ΣH − 4k|D|+ |T ||D|
≤ ΣH − 3k.

On the other hand, (9.2) ensures that |D| ≥ 1 + 2(k − 1)− |T | ≥ k − 1.
So

|∂H ′| ≤ |∂H| − |D|+ |T | ≤ |∂H|+ 1,

and thus (as k > 1 by assumption)

(k + 3)|∂H ′|+ ΣH′ < (k + 3)|∂H|+ (k + 3) + ΣH − 3k

≤ (k + 3)|∂H|+ ΣH ,

again contradicting the choice of H.

We finish this section with two corollaries of Theorem 9.1.2. The proof
of the first is analogous to that of Corollary 9.3.3.

Corollary 9.5.2. Let k ∈ N and let C be an infinite region of a graph G of
minimum degree at least 2k(k+3) at the vertices and minimum vertex-degree
at least 2k(k+ 1) + 1 at the ends. Then C has either infinitely many disjoint
finite (k + 1)-connected regions or an infinite (k + 1)-connected region.

Again, these two configurations need not both exist, as the examples
following Corollary 9.3.3 illustrate. (Observe that if a graph has no k-edge-
connected subgraph then it clearly has no k-connected subgraph.)

The second corollary of Theorem 9.1.2 is an analogue of Corollary 9.3.4.

Corollary 9.5.3. Let k ∈ N, and let G be a graph whose vertices have
degree at least δV = 2k(k + 3) and whose ends have vertex-degree at least
δΩ = 2k(k+1)+1. Then there is a set D of disjoint (k+1)-connected regions
of G such that |∂H| ≥ max{δΩ,

k−2
k
|H|+ 1} for each profound subgraph H of

G−⋃D∈DD.

Proof. Similarly as in the proof of Corollary 9.3.4, take an inclusion-maximal
set D of disjoint (k + 1)-connected regions of G, and observe that we only
need to consider induced connected profound subgraphs H of G−⋃D∈DD.
So let H be a such. If H is infinite, then Theorem 9.1.2 and the choice of D
imply that H is not a region, i.e. that |∂H| is infinite, as desired.
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So assume that H is finite. Then |∂H| ≥ δΩ, as otherwise H − ∂H
has minimum degree δ(H − ∂H) ≥ δV − δΩ + 1 ≥ 4k, and hence H has a
(k+ 1)-connected subgraph by Theorem 9.1.1, contradicting the choice of D.

Also, |∂H| > k−2
k
|H|. Indeed, suppose otherwise. Then H has average

degree

d(H) ≥ δV |H − ∂H|+ |∂H|
|H|

≥ δV − (δV − 1)
|∂H|
|H|

≥ 2δV + k − 2

k
≥ 4k.

Thus again, Theorem 9.1.1 yields a (k + 1)-connected subgraph of H, a
contradiction to the choice of D.

9.6 Linear degree bounds are not enough

Unlike in Mader’s original theorem, and in Theorem 9.1.4, the bounds on
the degrees and vertex-degrees we require in Theorem 9.1.2 are quadratic in
k. It seems that our method of proof cannot yield better bounds, because
the region H we find has to be best possible in two ways: small boundary
on one hand, high in-degree of its vertices on the other. But the quadratic
bounds we give are in fact not far from best possible: a minimum degree
and vertex-degree only linear in k is insufficient to ensure (k + 1)-connected
subgraphs.

Proof of Theorem 9.1.3. Set m := dlog `e. The vertex set of our graph G
will be that of a tree T , which is rooted in v0. The root has 2` neighbours in
the first level S1 of T , and for i ≥ 1 each vertex in the ith level Si sends two
edges to the next level Si+1. Set S0 := {v0}. Let ≤ be the order induced by
the tree T on the vertex set V (G) = V (T ), that is, x ≤ y for x, y ∈ V (G) if
and only if x lies on the unique v0–y path in T .

Now, for each i ≥ 0 and each x ∈ Si, add to T all edges xy, where
y ∈ Si+` and y ≥ x. Note that each x 6= v0 has exactly 2` such ‘new
neighbours’ y (while v0 has at least that many). Hence, in the thus obtained
graph G′, each vertex v has degree dG′(v) ≥ 2`.

In order to achieve a high vertex-degree in the ends of the graph, we
shall add a few more edges to G′. For this, let us have a closer look at
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T . For j ∈ N, we inductively define sets S(s) ⊆ Sj for each 01-string s of
length j ≥ 1. Divide S1 arbitrarily into two sets S(0), S(1) of equal size (= `).
Then for each j ≥ 2, and for each 01-string s of length j − 1, partition the
neighbourhood of S(s) in Sj into two sets S(s0), S(s1) of equal size (= `), in a
way that the neighbourhoods of S(s0) and S(s1) in Sj−1 are disjoint. Then Sj
is the disjoint union of all S(s), where s varies over all 01-strings of length j.
Now, for each 01-string s of any length, and for each 01-string t of length m
match S(s0) with S(s1t), and match S(s1) with S(s0t).

This yields a graph G, which we claim to have the desired properties.
Indeed, we have seen that already in G′ the vertices have the required degree.
Let us now investigate the end structure of G.

We claim that G does not have ‘more’ ends than T , i.e. every end of
G contains a ray from T . Indeed, consider a ray R of G: we shall show
that there is a ray in T which is equivalent to R. Let C0 be the (unique)
component of G −⋃m+1

i=1 Si that contains a tail of R. There is a path P0 in
T that connects this tail with the unique vertex x0 ∈ S1 for which x0 ≤ c for
all c ∈ C0. Now, choose j large enough so that V (P0) ⊆ ⋃j−1

i=0 Si, and let C1

be the component of G−⋃j+m
i=1 Si that contains a tail of R. Again, there is

a path P1 in T that connects this tail with the unique vertex x1 ∈ Sj which
satisfies x1 ≤ c for all c ∈ C1.

Continuing in this manner, we obtain an infinite set of disjoint paths Pi,
where each Pi connects xi with V (R). Clearly, since x0 ≤ x1 ≤ x2 ≤ . . .,
there is a ray R′ in T that contains all vertices xi. The ray R′ cannot be
finitely separated from R, and thus is equivalent to R. Hence, every end of
G contains a ray of T , as desired.4

Next, let us show that the ends of G have vertex-degree at least `m.
Given an end ω ∈ Ω(G), and a ray R = v0v1v2 . . . ∈ ω, with R ⊆ T and vi ∈
Si for all i, we shall find a set of disjoint rays Ri

j ∈ ω, where i = 1, 2, . . . ,m;
and j = 1, 2, . . . , `. These rays will exclusively use edges from E(G)−E(G′).
Let s = s1s2s3 . . . be a 01-string of infinite length so that vn ∈ S(s1s2...sn)

for each n ≥ 1. Denote by S(n) the set S(s1s2...sn−1(1−sj)). Now, for fixed
i ∈ {1, . . . ,m}, the ` disjoint rays Ri

j will pass through all sets S(n), where
n = i, i+m, i+2m, i+3m, . . ., using the S(n)–S(n+m) edges of the matching
from the definition of G. This is illustrated in Figure 9.3.

We thus obtain the desired rays Ri
j for i = 1, 2, . . . ,m and j = 1, 2, . . . , `.

Observe that for each i, j, there are infinitely many disjoint V (R)–V (Ri
j)

paths in T , namely those that connect vn with the vertex of Ri
j in S(n+m).

4Moreover, as any two distinct rays of T that start in v0 can be finitely separated in
G, we have that the ends of G correspond to the ends of the tree T .
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Figure 9.3: The equivalent rays R1
1, . . . , R

1
4 and R in the underlying tree T ,

for ` = 4.

Hence the Ri
j are equivalent to R, and hence, ω has vertex-degree at least

`m.

Let us finally prove that the graph G has no (k+1)-connected subgraph.
Indeed, suppose otherwise, and let H ⊆ G be (k+1)-connected. Now, for any
given 01-string s, denote by T (s) the set of all vertices y that are comparable
in T with one of the elements of S(s), and which, in the case that y < x ∈ S(s),
in T have distance less than ` to x. Formally,

T (s) :={y ∈ V (G) : there is an x ∈ S(s) such that y < x and dT (x, y) < `}
∪ {y ∈ V (G) : there is an x ∈ S(s) such that y ≥ x}.

We claim that for each n ≥ 1

there is a 01-string s of length n so that V (H) ⊆ T (s). (9.3)

Then, for every i ∈ N and for any vertex v ∈ Si, we may apply (9.3) with
n = i+ ` to obtain that v /∈ V (H). Hence H = ∅, a contradiction.

It remains to show (9.3), which we do using induction on n. For n = 1,
observe that S0∪S1 separates in G the sets T (0)−(S0∪S1) and T (1)−(S0∪S1).
Hence, because |S0 ∪ S1| ≤ k, for either s = 0 or s = 1 we have that
V (H) ⊆ T (s) ∪ (S0 ∪ S1) = T (s) ∪ S1. Furthermore, as by construction of G
the vertices in S(1−s) each send only 2m ≤ 2` ≤ k edges to T (s), it follows
that V (H) ⊆ T (s), as desired.
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Figure 9.4: The subgraph of G induced by T (s′), for ` = 8. For simplicity,
the edges of G′ − E(T ) are not drawn.

For n > 1, we proceed similarly. The induction hypothesis provides us
with a string s′ of length n− 1 such that V (H) ⊆ T (s′). Now, the set

S := T (s′) ∩
n⋃

i=n−`+1

Si

has size at most

(`−m) +
m∑
i=0

2i + |T (s′) ∩ Sn| ≤ `+ 2`+ 2` = k.

Moreover, S separates G[T (s′)] into the three sets T (s′) ∩Sn−`, T (s′0)−S and
T (s′1) − S, the first of which consists of one vertex t only. Thus, for either
s = s′0 or s = s′1, say for s = s′0, we have that V (H) ⊆ T (s) ∪ S.

Observe that we can write

S − T (s) = S(s′1) ∪ U
where

U = (T (s′) − T (s)) ∩
n−1⋃

i=n−m

Si.

Now, by construction of G, each vertex of U has at most 3 neighbours in
T (s) ∪ S. Therefore, V (H) ∩ U = ∅. Moreover, as the vertices in S(s′1) each
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send only 2m ≤ k edges to T (s)∪S(s′1), it follows that V (H)∩S(s′1) = ∅, and
hence, V (H) ⊆ T (s), as desired. This completes the proof of (9.3), and thus
the proof of the theorem.



Chapter 10

Large complete minors in
infinite graphs

10.1 An outline of this chapter

In this chapter, which is based on parts of [83], we shall give a satisfactory
extension of Theorem 8.1.1 for two important classes of infinite graphs. These
classes are the rayless and the locally finite graphs.

In infinite graphs, forcing large complete minors only with assumptions
on the degrees of the vertices of the graph will not work, as has been explained
in Chapter 8. If we additionally make assumptions on the vertex-/edge-
degrees of the ends, then we can force highly (edge)-connected subgraphs,
this has been discussed in Chapter 9, but not more: countexexamples shall
be given in Section 10.3.

An exception are the rayless graphs. Proposition 10.2.1 is a verbatim
extension of Theorem 8.1.1. This proposition will follow from a useful re-
duction theorem (Theorem 10.2.2), which states that every rayless graph of
minimum degree k has a finite subgraph of minimum degree k. These results
will be presented in Section 10.2.

For infinite locally finite graphs we solve our problem in a different way.
As the usual vertex-/edge-degrees do not suffice, we suggest a new notion
of an end degree, namely the relative degree, which will be introduced in
Section 10.4. With large relative degree, we can force large complete minors
in infinite locally finite graphs (Theorem 10.4.3). Moreover, every locally
finite graph of minimum degree/relative degree k has a finite subgraph of
average degree k (Theorem 10.4.2).

An application of Theorem 10.4.3 is investigated in Section 10.5, where
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we ask whether as in finite graphs, large girth can be used to force large
complete minors. A partial answer is given by Proposition 10.5.2.

10.2 Large complete minors in rayless graphs

In this section on substructures we shall extend Theorem 8.1.1 to infinite
rayless graphs:

Proposition 10.2.1.[28] Let G be a rayless graph such that each vertex has
degree at least f(r). Then Kr is a minor of G.

In fact, Proposition 10.2.1 follows at once from Theorem 8.1.1 together
with the following reduction theorem:

Theorem 10.2.2.[28] Let G be a rayless graph of minimum degree m. Then
G has a finite subgraph of minimum degree m.

In order to prove Theorem 10.2.2, we shall need Kőnig’s infinity lemma:

Lemma 10.2.3. [31] Let G be a graph on the union of disjoint finite non-
empty sets Si, i ∈ N, so that each v ∈ Si has a neighbour in Si−1. Then G
has a ray.

Proof of Theorem 10.2.2. We start with any finite set S0. For i ≥ 1 we shall
choose for each vertex in Si−1 a set of max{0,m} neighbours in V (G)\⋃j<i Sj.
Let Si be the union of all these sets. Observe that if at some point we set
Si = ∅, then, as by assumption each vertex has degree at least m in G, we
have found the desired subgraph of G. On the other hand, if we manage to
define Si for all i ∈ N, we may apply Lemma 10.2.3 to find a ray, contradicting
the assumption that G is rayless.

10.3 Two counterexamples

This section is dedicated to two examples which show that large degree and
large vertex-degree together are not strong enough assumptions to force large
complete minors. The difference between the two examples is that the latter
does not have ends of infinite vertex-degree.

Example 10.3.1. For given k, we take the k-regular tree Tk with levels
L0, L1, L2, . . . and insert the edge set of a spanning cycle Ci at each level
Li of Tk. This can be done in a way so that the obtained graph Gk is still
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planar.
Clearly, Gk has one end of infinite vertex- and edge-degree, and further-
more, all vertices of Gk have degree at least k. It is easy to see that Gk is
k-connected, but being planar, Gk has no complete minor of order greater
than 4.

By deleting some (carefully chosen) edges from Gk, we obtain a planar
graph of high minimal degree and vertex-degree whose (continuum many)
ends all have finite vertex-degree:

Example 10.3.2. Let k ∈ N be given, and consider the graph Gk from Ex-
ample 10.3.1. Now, for each i ∈ N, delete the edge vw ∈ E(Ci) from E(Gk),
if v and w have no common ancestors in the levels Li−k+2, Li−k+3, . . . , Li−1.
Denote the obtained graph by G′k.
As Gk is planar, also G′k is. Clearly, k ≤ d(v) ≤ k+2 for each v ∈ V (G). We
show in Lemma 10.3.3 that the ends of G′k have large, but finite vertex-degree.

Figure 10.1: The graph G′k from Example 10.3.2 for k = 4.

Lemma 10.3.3. The ends of the graph G′k from Example 10.3.2 all have
vertex-degree between k − 2 and 2k − 3.

Proof. Consider, for each x ∈ V (G′k) the set

Sx := {x} ∪
⋃

i=1,...,k−2

N i(x),

where N i(x) here denotes the ith neighbourhood of x in level Lm+i, supposing
that x lies in the mth level (of Tk).
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Clearly for each x ∈ V (G′k), the set Sx separates G′k. Hence, already ∂vSx,
which has order between k − 1 and 2k − 3, separates G′k.
Let us use the sets Sx in order to show that the ends of G′k correspond to
the ends of Tk. In fact, all we have to show is that for each ray R ∈ G′k there
is a ray RT in Tk that is equivalent to R in G′k. We can find such a ray RT

by considering for each i large enough the last vertex vi of R in V (Li). Now,
vi ∈ Swi

for exactly one wi ∈ V (Li−k+2). By definition of the vi, the wi are
adjacent to their successors wi+1 ∈ V (Li−k+3). So, RT := wkwk+1wk+2 . . . is
a ray in Tk as desired.

Thus G′k has continuum many ends, all of which have vertex-degree at
most 2k − 3, because of the separators ∂vSx. It remains to show that each
end ω of G′k has vertex-degree at least k − 2.

For this, fix ω ∈ Ω(G) and consider the union Sω of the sets ∂vSwi
for

the ray R = w0w1w2w3 . . . of Tk that lies in ω, where we assume that R starts
in L0 = {w0}. By Lemma 11.4.3, in order to see that ω has vertex-degree at
least k − 2 in G[S] (and thus in G) we only have to show that no set of less
than k − 2 vertices separates L0 from ω in G[S].

So suppose otherwise, and let T be such a separator. Since every vertex
of S has at least k−1 neighbours in the next level, we can reach the 2nd, 3rd,
. . . k − 2th level from w0 in G[S]−T . By definition of G′k, these levels contain
spanning cycles, and thus, as |T | > k−2, there is a wi with i ∈ {1, 2, . . . , k−2}
which can be reached from w0 in G[S]−T . We repeat the argument with wi
in the role of w0, observing that in G[S] ∩ (Li+1 ∪ Li+2 ∪ . . . ∪ Li+k−2), each
level contains spanning paths, by construction of G′k.

10.4 Large relative degree forces large com-

plete minors

In the previous sections we explored which substructures may or may not be
forced in an infinite graph if we assume large (vertex-)degree at both vertices
and ends. In particular we saw that Theorem 8.1.1 (with the average degree
replaced by the minimum degree) does not extend to infinite graphs that
have rays.

In the present section we shall overcome this problem. We will see that
with a different, more appropriate notion of the end degree a satisfactory
extension of Theorem 8.1.1 is possible.

For this let us first take a closer look at the graph G′k from Exam-
ple 10.3.2. Why do the large (vertex-)degrees not interfere with the pla-
narity? Observe that, for each finite set S ⊆ V (G), the edge-boundary of
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the subgraph G′k − S has about the same size as its vertex-boundary. So
locally the density is never large enough to force non-planarity. Similar as
in the tree Tk, the density that the high degrees should generate gets lost
towards infinity.

In order to avoid this behaviour, we have to prohibit regions R of an end
ω which have the property that |∂eR|/|∂vR| is small, or at least we should
prohibit sequences of such regions converging to ω. This is not unnatural:
applied to vertices this gives the usual degree, as each vertex v is contained
in a smallest region, namely R = {v}, for which |∂eR|/|∂vR| = d(v).

Let us make our idea more precise. Suppose that G is a locally finite
graph. Write (Hi)i∈N → ω if (Hi)i∈N is an infinite sequence of regions of G
such that Hi+1 ⊆ Hi − ∂Hi and ω ∈ H i for each i ∈ N. Observe that such
sequences always exist (as G is locally finite). Define the relative degree of
an end as

de/v(ω) := inf
(Hi)i∈N→ω

lim inf
|∂eHi|
|∂vHi| .

Note that by Lemma 11.4.3, in locally finite graphs, we can express
our earlier notions, the vertex- and the edge-degree also using converging
sequences of regions:

dv(ω) = inf
(Hi)i∈N→ω

lim inf |∂vHi|, and (10.1)

de(ω) = inf
(Hi)i∈N→ω

lim inf |∂eHi|. (10.2)

Our three end degree concepts relate as follows:

Lemma 10.4.1. Let G be a locally finite graph, let ω ∈ Ω(G). Then

de/v(ω) ≤ de(ω)

dv(ω)
≤ de(ω).

Proof. The second inequality in trivial. For the first one, let S be the set
of starting vertices of a set of disjoint rays of ω that has cardinality dv(ω).
Then for each region H ⊆ G− S of ω we have that |∂vH| ≥ dv(ω).

Observe that for the determination of de(ω) using (10.2) it suffices to
consider only sequences of regions Hi that lie in G−S. As each such sequence
(Hi)i∈N may be used also to determine de/v(ω), and since for each Hi from
such a sequence it holds that

|∂eHi|
|∂vHi| ≤

|∂eHi|
dv(ω)

,

the desired inequality follows.
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With the notion of the relative degree, we can prove a very useful reduc-
tion theorem:

Theorem 10.4.2.[28] Let G be a locally finite graph such that each vertex
has degree at least k, and for each end ω we have de/v(ω) ≥ k. Then G has
a finite subgraph H of average degree at least k.

Proof. Choose a vertex v ∈ V (G) and set S0 := {v}. Inductively we shall
construct a sequence (Si)i∈N of finite vertex sets. In each step i ≥ 0 we
consider the set Ci of all components C of G− Si with

|∂vC|
|∂eC| < f(r),

and set
Si+1 := Si ∪

⋃
C∈Ci

∂vC.

Now, there are two possibilities: either from some i0 on all Si are the same,
or they all differ. In the first case observe that G[Si0 ∪N(Si0)] is the desired
subgraph H. In the second case we may apply Kőnig’s infinity lemma to find
a sequence (Ci)i∈N with Ci ∈ Ci and Ci ⊆ Ci−1 − ∂vCi−1 for i ≥ 1.

It is easy to construct a ray R that passes exactly once through each
∂vCi, and hence there is an end ω ∈ ⋂i∈NCi. By construction of the Ci, it
follows that de/v(ω) < f(r), a contradiction.

We may now use Theorem 10.4.2 as a black box in order to translate
to infinite locally finite graphs any kind of results from finite graph theory
that make assumptions only on the average or minimum degree. For exam-
ple, Theorem 10.4.2 together with Theorem 8.1.1 yields at once the desired
extension of Theorem 8.1.1 to locally finite graphs.

Theorem 10.4.3.[28] Let G be a locally finite graph such that each vertex
has degree at least f(r), and for each end ω we have de/v(ω) ≥ f(r). Then
Kr is a minor of G.

Let us remark that we may not weaken the assumption of Theorem 10.4.3
in the following sense. Denote by d′e/v the the fraction of the edge- and the

vertex-degree, that is, we set d′e/v(ω) := de(ω)/dv(ω). By Lemma 10.4.1, we
have d′e/v ≥ de/v.

Now, there is no function f ′ such that all graphs with d′e/v(ω), d(v) >

f ′(k) for all ends ω and vertices v contain a complete minor of order k. This
can be seen by considering the example from Section 9.4 in the previous
chapter.
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10.5 Using large girth

In finite graphs, we can force large complete minors by assuming large girth,
and a minimal degree of 3. More precisely, every finite graph of minimal
degree at least 3 and girth at least g(k) := 8k + 3 has a complete minor of
order k (see [31]).

If we do not take the ends into account, then it is easy to see that this
fact does not extend to infinite graphs. Clearly, the 3-regular infinite tree T3

has infinite girth and no large complete minors, and even if finite girth was
required, we might simply add an edge to T3, and still have a counterexample.

But, the ends of our example have end degree 1 in each of our three
end degree notions. Now, we shall see that requiring large minimum vertex-
degree at the ends, together with large girth, and minimum degree at least 3
at the vertices, will still not suffice to force large complete minors.

Example 10.5.1. For all g ∈ N, we construct a planar graph Hg with finite
girth g, minimal degree 3 at the vertices and a unique end, which has infinite
vertex-degree.
Take the union of the cycles of length gn, over all n ∈ N. We shall add edges
between each Cgn and Cgn+1, one for each vertex in V (Cgn), in a way that
their new neighbours lie at distance g on Cgn+1. Clearly, this can be done in
a way so that we obtain a planar graph Hg (cf. Figure 10.5). Being planar,
Hg has no complete minor of order greater than 4.

Figure 10.2: The graph Hg from Example 10.5.1 for g = 3.

However, the relative degree of the end of H is relatively small (in fact,
it is 1). Is this a necessary feature of any counterexample? That is, does



124 Large complete minors in infinite graphs

every graph of minimum degree 3 and large girth and without large complete
minors have to have an end of small relative degree? At least the relative
degrees cannot be too large:

Proposition 10.5.2.[28] Every locally finite graph G of minimal degree at
least 3 at the vertices, minimal relative degree at least r(k) = ck

√
log k at the

ends and girth at least g(k) = 8k + 3 has a complete minor of order k.

Proof. One may employ the same proof as for finite graphs, as given e.g. in [31].
The strategy there is to construct first a minor M of G that has large min-
imal degree, and then apply Theorem 8.1.1 to M . In an infinite graph, we
can construct the minor M in exactly the same way, and it is not overly
difficult to see that M does not only have large degree at the vertices, but
also has at least the same relative degree at the ends as G. It suffices to
apply Theorem 10.4.3 to obtain the desired minor.

How much can this bound be lowered? May we take r(k) to be constant,
even r(k) = 3? It would be interesting to find the smallest number r(k) so
that every locally finite graph with d(v) ≥ 3 and de/v(ω) ≥ r(k) for all
vertices v and ends ω, and of girth at least g(k) has a complete minor of
order k.



Chapter 11

Minimal k-(edge)-connectivity
in infinite graphs

11.1 Four notions of minimality

The minimal degree and bounds on the number of vertices that attain the
minimal degree have been much studied for finite graphs that are in certain
ways minimally k-connected/k-edge-connected. This minimality will have
two meanings here: minimality upon vertex deletion and upon edge deletion
(see below for the precise definition).

In this chapter, which is based on [82], we shall give an overview of the
results known, and show that most carry over to infinite graphs. This is
made possible by considering the (vertex/edge)-degree of the ends as well as
the degree of the vertices.

Four notions will be of interest. For k ∈ N, we shall call a graph G
edge-minimally k-connected, resp. edge-minimally k-edge-connected if G is k-
connected resp. k-edge-connected, but G− e is not, for every edge e ∈ E(G).
Analogously, call G vertex-minimally k-connected, resp. vertex-minimally k-
edge-connected if G is k-connected resp. k-edge-connected, but G− v is not,
for every vertex v ∈ V (G).

These four classes of graphs often appear in the literature under the
names of k-minimal/k-edge-minimal/k-critical/k-edge-critical graphs. Over-
views of results known for finite graphs and also for digraphs can be found
in [5, 39].
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11.2 The situation in finite graphs

It is known that finite graphs which belong to one of the classes defined above
have vertices of small degree. In fact, three of the four cases the trivial lower
bound of k on the minimum degree is attained. We summarise the known
results in the following theorem:

Theorem 11.2.1. Let G be a finite graph, let k ∈ N. Then

(a) (Halin [50]) If G is edge-minimally k-connected, then G has a vertex of
degree k,

(b) (Lick et al [21], Mader [63]) If G is vertex-minimally k-connected,
then G has a vertex of degree 3

2
k − 1,

(c) (Lick [60]) If G is edge-minimally k-edge-connected, then G has a vertex
of degree k,

(d) (Mader [69]) If G is vertex-minimally k-edge-connected, then G has a
vertex of degree k.

Note that in Theorem 11.2.1 (b), the bound of 3k/2 − 1 on the degree
is best possible. For even k, this can be seen by replacing each vertex of
C`, a circle of some length ` ≥ 4, with a copy of Kk/2, the complete graph
on k/2 vertices, and adding all edges between two copies of Kk/2 when the
corresponding vertices of C` are adjacent. This procedure is sometimes called
the strong product1 of C` and Kk/2. For odd values of k similar examples can
be constructed, using K(k+1)/2’s instead of Kk/2’s, and in the end deleting
two vertices which belong to two adjacent copies of K(k+1)/2.

In all four cases of Theorem 1, the minimal degree is attained by more
than one vertex:

Theorem 11.2.2. Let G be a finite graph, let k ∈ N. Then

(a) (Mader [65]) In case (a) of Theorem 11.2.1, G has at least ck|G| vertices
of degree k, where ck is a constant depending only on k, unless k = 1, in
which case G has at least two vertices of degree k,

(b) (Hamidoune [52]) In case (b) of Theorem 11.2.1, if k > 1 then G has
at least two vertices of degree 3

2
k − 1,

1The strong product of two graphs H1 and H2 is defined in [55] as the graph on V (H1)×
V (H2) which has an edge (u1, u2)(v1, v2) whenever uivi ∈ E(Hi) for i = 1 or i = 2, and
at the same time either u3−i = v3−i or u3−iv3−i ∈ E(H3−i).
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(c) (Mader [68]) In case (c) of Theorem 11.2.1, G has at least c′k|G| vertices
of degree k, where c′k is a constant depending only on k, unless k = 1 or
k = 3, in which case G has at least two resp. four vertices of degree k,

(d) (Mader [69]) In case (d) of Theorem 11.2.1, if k > 1 then G has at
least two vertices of degree k.

In case (a), actually more than the number of vertices of small degree is
known: If we delete all the vertices of small degree, we are left with a forest
(this was shown in [65], see also [5]).

The constant ck from (a) can be chosen as ck = k−1
2k−1

, and this is best
possible [65]. Actually one can ensure that G has at least max{ck|G|, k +
1,∆(G)} vertices of degree k [65], where ∆(G) denotes the maximum degree
ofG. In (c), the constant c′k may be chosen as about 1/2 as well (for estimates,
see [6, 18, 19, 70]).

Figure 11.1: A finite vertex-minimally k-connected graph with only two ver-
tices of degree < 2(k − 1), for k = 3.

The bounds on the number of vertices of small degree are best possible
in (b) and (d), for k 6= 22. Indeed, for k ≥ 3 consider the following example
which we borrow from [69]. Take any finite number ` ≥ 2 of copies Hi of the
complete graph K2(k−1), and join every two consecutive Hi with a matching
of size k−1, in a way that all these matchings are disjoint. Join a new vertex
a to all vertices of H1 that still have degree 2(k − 1) − 1, and analogously
join a new vertex b to half of the vertices of H`. Finally join a and b with an
edge. See Figure 11.1.

The obtained graph is vertex-minimally k-connected as well as vertex-
minimally k-edge-connected. However, all vertices but a and b have degree
2(k − 1), which, as k ≥ 3, is greater than max{k, 3

2
k − 1}.

2And for k = 2 one might not find more than 4 vertices of small degree, as the so-called
ladder graphs show. As for k = 1, the only vertex-minimally 1-(edge)-connected graphs is
the trivial graph K1, since every other connected graph has non-separating vertices.
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11.3 The situation in infinite graphs

For infinite graphs, a positive result for case (a) of Theorem 11.2.1 has been
obtained by Halin [51] who showed that every infinite locally finite edge-
minimally k-connected graph has infinitely many vertices of degree k, pro-
vided that k ≥ 2. Mader [67] extended the result showing that for k ≥ 2,
every infinite edge-minimally k-connected graph G has in fact |G| vertices of
degree k (see Theorem 11.3.1 (a) below). It is clear that for k = 1, we are
dealing with trees, which, if infinite, need not have vertices of degree 1.

Figure 11.2: An infinite vertex-minimally k-connected graph without vertices
of degree 3k/2− 1, for k = 2.

For the other three cases of Theorem 11.2.1, the infinite version fails.
In fact, for case (b) this can be seen by considering the strong product
of the double-ray (i.e. the two-way infinite path) with the complete graph
Kk (cf. Figure 11.2). The obtained graph is (3k − 1)-regular, and vertex-
minimally k-connected. If instead of the double-ray we take the r-regular
infinite tree Tr, for any r ∈ N, the degrees of the vertices become unbounded
in k (see Figure 11.3).

The example from Figure 11.3 also works for case (d) of Theorem 11.2.1
(then we get a vertex-minimally k2-edge-connected ((r + 1)k − 1)-regular
graph). Counterexamples for an infinite version of (c) will be given now.

For the values 1 and 3 this is particularly easy, as for k = 1 we may
consider the double ray D, and for k = 3 its square D2. All the vertices
of these graphs have degree 2 resp. 4, but D and D2 are edge-minimally 1-
resp. 3-edge-connected.

For arbitrary values k ∈ N, we construct a counterexample as follows.
Choose r ∈ N and take the rk-regular tree Trk. For each vertex v in Trk,
insert edges between the neigbourhood Nv of v in the next level so that Nv

spans r disjoint copies of Kk (cf. Figure 11.5). This procedure gives an
edge-minimally k-edge-connected graph, as one easily verifies. However, the
vertices of this graph all have degree at least rk.
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Figure 11.3: The strong product of T3 with K2.

Figure 11.4: The square of the double-ray.

Hence a literal extension of Theorems 11.2.1 and 11.2.2 to infinite graphs
is not true, except for part (a). The reason can be seen most clearly com-
paring Figures 11.1 and 11.2: Where in a finite graph we may force vertices
of small degree just because the graph has to end somewhere, in an infinite
graph we can just ‘escape to infinity’. So an adequate extension of Theorem 1
should also measure the something like ‘the degree at infinity’.

Of course, with these ‘points at infinity’ we mean nothing else but the
ends of graphs, as defined in Chapter 8. Recall that the set of all ends of a
graph G is denoted by Ω(G). Also recall that we defined the vertex-degree
dv(ω) of an end ω as the supremum of the cardinalities of the set of (vertex)-
disjoint rays in ω, and the edge-degree de(ω) of an end ω is defined as the
supremum of the cardinalities of the set of edge-disjoint rays in ω, and that
this definition implies at once that de(ω) ≥ dv(ω).

In light of this, we observe at once what happens in the case k = 1 of the
infinite version of Theorem 1 (a) above. Infinite trees aka edge-minimally 1-
connected graphs need not have vertices that are leaves, but if not, then they
must have ‘leaf-like’ ends, that is, ends of vertex-degree 1. In fact, it is easy
to see that in a tree T , with root r, say, every ray starting at r corresponds
to an end of T , and that all ends of T have vertex- and edge-degree 1.
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Figure 11.5: An edge-minimally 4-edge-connected graph without vertices of
degree 4.

This observation gives case (a’) in the following generalisation of The-
orem 11.2.1 to infinite graphs. Cases (b)–(d), respectively their quantative
versions in Theorem 4, are the topic of this chapter. These results appear
in [82].

Theorem 11.3.1. Let G be a graph, let k ∈ N. Then

(a) (Mader [67]) If G is edge-minimally k-connected and k ≥ 2, then G
has a vertex of degree k,

(a’) [82] If G is edge-minimally 1-connected, then G has a vertex of degree 1
or an end of edge-degree 1,

(b) [82] If G is vertex-minimally k-connected, then G has a vertex of degree
≤ 3

2
k − 1 or an end of vertex-degree ≤ k,

(c) [82] If G is edge-minimally k-edge-connected, then G has a vertex of
degree k or an end of edge-degree ≤ k,

(d) [82] If G is vertex-minimally k-edge-connected, then G has a vertex of
degree k or an end of vertex-degree ≤ k.

We can even give bounds on the number of vertices/ends of small degree:

Theorem 11.3.2. Let G be a graph, let k ∈ N. Then

(a) (Mader [67]) In case (a) of Theorem 11.2.1, the cardinality of the set
of vertices of degree k is |G|,
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(a’) [82] In case (a’) of Theorem 11.2.1, the cardinality of the set of vertices
and ends of (edge)-degree 1 is |G| unless |G| ≤ ℵ0, in which case there
are at least 2 vertices/ends of (edge)-degree 1,

(b) [82] In case (b) of Theorem 11.2.1,
|{ω ∈ Ω(G) : dv(ω) ≤ k} ∪ {v ∈ V (G) : d(v) ≤ 3

2
k − 1}| ≥ 2,

(c) [82] In case (c) of Theorem 11.2.1,
|{ω ∈ Ω(G) : de(ω) ≤ k} ∪ {v ∈ V (G) : d(v) = k}| ≥ 2,

(d) [82] In case (d) of Theorem 11.2.1,
|{ω ∈ Ω(G) : dv(ω) ≤ k} ∪ {v ∈ V (G) : d(v) = k}| ≥ 2.

Concerning part (c) we remark that one may replace graphs with multi-
graphs (see Corollary 11.5.2). Also, in (a’) and (c), one may replace the
edge-degree with the vertex-degree (as this yields a weaker statement).

We shall prove Theorem 11.3.2 (b)–(d) in Sections 11.4, 11.5 and 11.6
respectively. Statement (a’) is fairly simple, in fact, it follows from what we
remarked above that every tree has at least two leafs/ends of vertex-degree
1. In general, this is already the best bound (because of the finite paths
and the double ray). For trees T of uncountable order we get more, as these
have to contain a star with degree |G| leaves, which we can extend to a
union of |G| almost disjoint paths and rays, thus finding |G| vertices/ends of
(edge)-degree 1.

In analogy to the finite case, the bounds on the degrees of the vertices
in (b) cannot be lowered, even if we allow the ends to have slightly larger
vertex-degree. An example for this is given at the end of Section 11.4.

Also, the bound on the number of vertices/ends of small degree in Theo-
rem 11.3.2 (b) and (d) is best possible: for (b), this can be seen by considering
again the strong product of the double ray with the complete graph Kk (see
Figure 11.2 for k = 2). For (d), we may consider the Cartesian product3 of
the double ray with the complete graph Kk (for k = 2 that is the double-
ladder).

As for Theorem 11.3.2 (c), it might be possible that the bound of The-
orem 11.2.2 (c) extends. For infinite graphs G, the positive proportion of
the vertices there should translate to an infinite set S of vertices and ends
of small degree/edge-degree. More precisely, one would wish for a set S of
cardinality |V (G)|, or even stronger, |S| = |V (G) ∪ Ω(G)|.

3The Cartesian product of two graphs H1 and H2 is defined as the graph on V (H1)×
V (H2) which has an edge (u1, u2)(v1, v2) if for for i = 1 or i = 2 we have that uivi ∈ E(Hi)
and u3−i = v3−i [31, 55].
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Observe that it is necessary to exclude also in the infinite case the two
exceptional values k = 1 and k = 3, as there are graphs (namely D and D2,
see above) with only two vertices/ends of (edge)-degree 1 resp. 3. For other
values of k, an extension might hold:

Question 11.3.3. Are there k ∈ N for which every infinite edge-minimally
k-edge-connected graph G contains infinitely many vertices or ends of (edge)-
degree k? Does G have |V (G)| (or even |V (G)∪Ω(G)|) such vertices or ends?

Another interesting question is which k-(edge)-connected graphs have
vertex- or edge-minimally k-(edge)-connected subgraphs. Finite graphs triv-
ially do, but for infinite graphs this is not always true. This observation
leads to the study of vertex-/edge-minimally k-(edge)-connected (standard)
subspaces rather than graphs. For more on this, see [29, 83], the latter of
which contains a version of Theorem 3 (a) for standard subspaces.

11.4 Vertex-minimally k-connected graphs

In this section we shall show part (b) of Theorem 11.3.2. For the proof, we
need two lemmas. The first of these lemmas may be extracted from [21] or
from [67], and at once implies Theorem 11.2.1 (b). For completeness, we
shall give a proof.

Lemma 11.4.1. Let k ∈ N, k > 0, let G be a vertex-minimally k-connected
graph, and let H be a profound finite k-region of G. Then G has a vertex v
of degree at most 3

2
k − 1.

Moreover, if |G−H| > |H − ∂vH|, then v ∈ V (H).

Proof. Assume that H was chosen inclusion-minimal among all profound
finite k-regions of G. Set T := ∂vH, set C1 := H − T , and set C2 := G−H.
Let x ∈ V (C1), and observe that since G is vertex-minimally k-connected,
there is a k-separator T ′ of G with x ∈ T ′. Let D1 be a component of G−T ′,
set D2 := G − T ′ − D1, and set T ∗ := T ∩ T ′. Furthermore, for i, j = 1, 2
set Aij := Ci ∩ Dj and set T ij := (T ′ ∩ Ci) ∪ (T ∩ Dj) ∪ T ∗. Observe that
N(Aij) ⊆ T ij .

We claim that there are i1, i2, j1, j2 with either (i1, j1) = (i2, 3 − j2) or
i1, j1) = (3− i2, j2) such that for (i, j) ∈ {(i1, j1), (i2, j2)}:

|T ij | ≤ k and Aij = ∅. (11.1)

In fact, observe that for j = 1, 2 we have that |T 1
j |+|T 2

j | ≤ |T |+|T ′| = 2k.
Thus either |T 1

j | ≤ k, which by the minimality of H implies that A1
j is empty,
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or |T 2
j | < k, which by the k-connectivity of G implies that A2

j is empty. This
proves (11.1).

We hence know that there is an X ∈ {C1, C2, D1, D2} such that V (X) ⊆
T∪T ′. Moreover, if X ∈ {C1, C2} then |X|∪|T∩D1| ≤ k and |X|∪|T∩D2| ≤
k. Since |T | = k, this implies that 2|X| ≤ 2k − |T | = k. In the same way
we get that if X ∈ {D1, D2} then 2|X| ≤ 2k − |T ′| = k. Hence, in any case
there is a vertex v ∈ X of degree at most

max{|T |+ |X| − 1, |T ′|+ |X| − 1} ≤ k + k/2− 1.

It is easy to see that we may choose v ∈ V (H) unless both |T 1
1 | and |T 1

2 |
are greater than k. But then by (11.1) V (C2) ⊆ T ′, and thus |C2| ≤ k/2 ≤
|T ′ ∩ C1| ≤ |C1|, as desired.

We also need Lemma 9.5.1 from Chapter 9. Observe that the outcome
of Lemma 9.5.1 is invariant under modifications of the structure of G − C.
Hence we may always assume that dv(ω) ≥ m only for ends ω of G that have
rays in C. Let us restate the thus modified lemma:

Lemma 11.4.2. Let G be a graph such that all its ends have vertex-degree at
least m ∈ N. Let C be an infinite region of G. Then there exists a profound
region C ′ ⊆ C for which one of the following holds:

(a) C ′ is finite and |∂vC ′| < m , or

(b) C ′ is infinite and |∂vC ′′| ≥ m for every profound region C ′′ ( C ′.

We are now ready to prove Theorem 11.3.2 (b).

Proof of Theorem 11.3.2 (b). First of all, we claim that for every infinite
region H of G it holds that

There is a vertex v ∈ V (H) of degree ≤ 3
2
k − 1 or an end of

vertex-degree ≤ k with rays in H.
(11.2)

In order to see (11.2), we assume that there is no end as desired and apply
Lemma 11.4.2 to H with m := k+ 1. This yields a profound region H ′ ⊆ H.
We claim that (a) of Lemma 11.4.2 holds; then we may use Lemma 11.4.1 to
find a vertex w ∈ V (H ′) with d(w) ≤ 3k/2− 1.

So, assume for contradiction that (b) of Lemma 11.4.2 holds. Since G is
k-connected there exists a finite family P of finite paths in G such that each
pair of vertices from ∂vH

′ is connected by k otherwise disjoint paths from P .
Set

S := ∂vH
′ ∪ V (

⋃
P),
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and observe that H ′ − S is still infinite. In particular, H ′ − S contains a
vertex v. Since G is vertex-minimally k-connected, v lies in a k-separator T ′

of G. By the choice of v /∈ S, all of ∂vH
′ is contained in one component of

G− T ′. Let C ′′ be a component of G− T ′ that does not contain ∂vH
′. Then

H ′′ := G[C ′′ ∪ T ′] is a profound region with H ′′ ( H ′. Thus, because of (b),
k + 1 ≤ |T ′| = k, a contradiction as desired. This proves (11.2).

Now, let T ⊆ V (G) be any separator of G of size k (which exist by the
vertex-minimality of G). First suppose that G − T has at least one infinite
component C. Then we apply Lemma 11.4.1 or (11.2) to any component of
G − C and find an end of vertex-degree k with no rays in C, or a vertex
v ∈ V (G−C) of degree at most 3k/2− 1. Apply (11.2) to C respectively to
C − v to find the second end/vertex of small (vertex)-degree.

It remains to treat the case when all components of G−T are finite. As
we otherwise apply Theorem 2 (b), we may assume that G−T has infinitely
many components. Hence, as G has no (k − 1)-separators, each x ∈ T has
infinite degree. This means that we may apply Lemma 11.4.1 to any two
components of G− T in order to find two vertices of degree ≤ 3k/2− 1.

Figure 11.6: A vertex-minimally k-connected graph with d(v) ≥ 3
2
k − 1 and

dv(ω)� k for all v ∈ V (G) and ω ∈ Ω(G).

Observe that the bound on the degree given by Theorem 11.3.1 (b) is
best possible. Indeed, by the following lemma from [17]4, the vertex-degree
of the ends of a k-connected locally finite graph has to be at least k.

4Actually, [17] only contains the edge-version of Lemma 11.4.3, however, the proof is
analoguous.
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Lemma 11.4.3. Let k ∈ N, let G be a locally finite graph, and let ω ∈ Ω(G).
Then dv(ω) = k if and only if k is the smallest integer such that every finite
set S ⊆ V (G) can be separated5 from ω with a k-separator.

Moreover, even if we allow a larger vertex-degree of the ends, we cannot
expect a lower bound on the degrees of the vertices. This is illustrated by
the following example for even k (and for odd k there are similar examples).

Let ` ∈ N∪{ℵ0}, and take the disjoint union of ` double-rays R1, . . . , R`.
For simplicity, assume that k divides `. For each i ∈ Z, take `/k copies of the
strong product of C4 with Kk/2, and identify the vertices that belong to the
first or the last copy of Kk/2 with the ith vertices the Rj. This can be done
in a way that the obtained graph, which is easily seen to be vertex-minimally
k-connected, has two ends of vertex-degree `, while the vertices have degree
either 3k/2− 1 or 3k/2 + 1.

11.5 Edge-minimally k-edge-connected graphs

We now prove part (c) of Theorem 11.3.2. For this, we shall need Lemma 9.3.1
from 9. which will yield a lemma similar to Lemma 11.4.2 from the previous
section:

Lemma 11.5.1. Let D 6= ∅ be a region of a graph G so that |∂eD| < m and
so that de(ω) ≥ m for every end ω ∈ Ω(G) with rays in D. Then there is an
inclusion-minimal non-empty region H ⊆ D with |∂eH| < m.

Proof. Set D0 := D and inductively for i ≥ 1, choose a non-empty region
Di ⊆ Di−1 − ∂vDi−1 such that |∂eDi| ≤ k (if such a region Di exists). If
at some step i we are unable to find a region Di as above, then we apply
Lemma 9.3.1 to Di−1 to find the desired region H. On the other hand, if we
end up defining an infinite sequence of regions, then these regions define an
end of G that has edge-degree at most k. In fact, the connectivity of the Di

guarantees that there is and end with rays in each Di. If ω had more than
k edge-disjoint rays, starting in some (finite) set S, say, then for some i ∈ N
we have that S ∩ V (Di) = ∅ which leads to the desired contradiction.

We can now prove part (c) of our main theorem:

Proof of Theorem 11.3.2. SinceG is edge-minimally k-edge-connected, G has
a non-empty region D such that |∂eD| = k, and such that G −D 6= ∅. We

5We say a set T ⊆ V (G) separates a set S ⊆ V (G) from an end ω ∈ Ω(G) if the unique
component of G− T that contains rays of ω does not contain vertices from S.
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shall find a vertex or end of small (edge)-degree in D and then repeat the
procedure for G−D in order to find the second point.

First, we apply Lemma 11.5.1 with m := k + 1 to obtain an inclusion-
minimal non-empty region H ⊆ D with |∂eH| ≤ k. If V (H) should consist
of only one vertex, then this vertex has degree k, as desired. So suppose that
V (H) has more than one vertex, that is, E(H) is not empty.

Let e ∈ E(H). By the edge-minimal k-edge-connectivity of G we know
that e belongs to some minimal cut F of G. Say F = E(A,B) where A,B 6= ∅
partition V (G). Since e ∈ F , neither AH := A∩ V (H) nor BH := B ∩ V (H)
is empty.

So, |∂eAH | > k and |∂eBH | > k, by the minimality of H. But then, since
|∂eH| ≤ k and |F | ≤ k, we obtain that

|∂e(A \ AH)|+ |∂e(B \BH)| ≤ 2|∂eH|+ 2|F | − |∂eAH | − |∂eBH |
< 4k − 2k

= 2k.

Hence, either |∂e(A \ AH)| or |∂e(B \ BH)|, say the former, is strictly
smaller than k. Since G is k-edge-connected, this implies that A \ AH is
empty. But then A ( V (H), a contradiction to the minimality of H.

Let us now turn to multigraphs, that is, graph with parallel edges, which
sometimes appear to be the more appropriate objects when studying edge-
connectivity. Note that we may apply the proof of Theorem 11.3.2 (c) with
only small modifications6 to multigraphs. Defining the edge-degree of an end
ω of a multigraph in the usual way as the supremum of the cardinalities of
the sets of edge-disjoint rays from ω, we thus get:

Corollary 11.5.2. Let G be an edge-minimally k-edge-connected multigraph.
Then |{v ∈ V (G) : d(v) = k} ∪ {ω ∈ Ω(G) : de(ω) ≤ k}| ≥ 2.

In particular, this yields that every finite edge-minimally k-edge-connec-
ted multigraph has at least two vertices of degree k.

However, a statement in the spirit of Theorem 11.2.2 (c) does not hold
for multigraphs, no matter whether they are finite or not. For this, it suffices
to consider the graph we obtain by multiplying the edges of a finite or infinite
path by k. This operation results in a multigraph which has no more than the
two vertices/ends of (edge)-degree k which were promised by Corollary 11.5.2.

6We will then have to use a version of Lemma 9.3.1 for multigraphs. Observe that such
a version holds, as we may apply Lemma 9.3.1 to the simple graph obtained by subdividing
all edges of the multigraph.
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11.6 Vertex-minimally k-edge-connected graphs

In this section we shall prove Theorem 11.3.2 (d). The proof is based on
Lemma 11.6.2, which at once yields Theorem 11.2.2 (d), the finite version
of Theorem 11.3.2 (d). The proof of this lemma is very much inspired by
Mader’s original proof of Theorem 11.2.2 (d) in [69].

We need two auxiliary lemmas before we get to Lemma 11.6.2. For a set
X ⊆ V (G)∪E(G) in a graph G write XV := X∩V (G) and XE := X∩E(G).

Lemma 11.6.1. Let k ∈ N. Let G be a graph, let S ⊆ V (G) ∪ E(G) with
|S| ≤ k, and let C be a component of G− S so that in G, every vertex of C
has a neighbour in G − S − C. Then C contains a vertex of degree at most
k.

Proof. Suppose that the vertices of C all have degree at least k + 1. Then
each sends at least k+ 1− |SV | − (|C| − 1) edges to G− S −C. This means
that

|C|(k + 1− |SV | − (|C| − 1)) ≤ |SE| = k − |SV |.
So |C|(k−|SV |− |C|+1) ≤ k−|SV |− |C|, which, as |C| ≥ 1, is only possible
if |C| > k−|SV |. But this is impossible, because each vertex of C is incident
with an edge in SE, and hence |C| ≤ |SE| = k − |SV |.

As usal, the edge-connectivity of a graph G is denoted by λ(G). Also,
in order to make clear which underlying graph we are referring to, it will be
useful to write ∂Ge H = ∂eH where a H is a region of a graph G.

Lemma 11.6.2. Let k ∈ N, let G be a k-edge-connected graph, let x ∈ V (G)
and let C be an inclusion-minial region of G with the property that C has a
vertex x so that |∂G−xe C| = λ(G − x) < k. Suppose for each y ∈ V (C), the
graph G− y has a cut of size < k. Then C − x contains a vertex of degree k
(in G).

Proof. If every vertex of C has a neighbour in D := G−S −C then we may
apply Lemma 11.6.1 and are done. So let us assume that there is a vertex y
all of whose neighbours lie in C ∪ x. By assumption, G − y has a cut F of
size λ(G− y) < k, which splits G− y into A and B, with x ∈ V (A), say.

Since G is k-edge-connected, F is not a cut of G. Hence y has neighbours
in both A and B. Thus, as N(y) ⊆ V (C) ∪ x has no neighbours in D, and
x ∈ V (A), it follows that B ∩C 6= ∅. By the choice of C and x we may thus
assume that |∂G−xe (B ∩ C)| > λ(G− x) = |F |. So,

|∂G−xe (A ∩D)| ≤ |∂G−xe C|+ |F | − |∂e(B ∩ C)| < |∂G−xe C| = λ(G− x),
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implying that A ∩ D = ∅. That is, A ∪ y ( C ∪ x, a contradiction to the
choice of C.

Finite graphs clearly do contain inclusion-minimal regions C as in Lem-
ma 11.6.2, which hence implies Theorem 1 (d). We then apply the lemma to
any inclusion-minimal region with the desired properties that is contained in
G − (C − x) in order to find a second vertex of small degree. We thus get
Theorem 2 (d):

Corollary 11.6.3 (Theorem 2 (d)). Let G be a finite vertex-minimally k-
edge-connected graph. Then G has at least two vertices of degree k.

This means that for a proof of Theorem 11.3.2 (d) we only need to worry
about the infinite regions, which is accomplished in the next lemma.

Lemma 11.6.4. Let k ∈ N, let G be a vertex-minimally k-edge-connected
graph and let D be a region of G. Let x ∈ V (D) such that |∂G−xe D| =
λ(G−x) < k. Suppose G has no inclusion-minimal region C with the property
that C contains a vertex y so that |∂G−ye C| = λ(G−y) < k and C ⊆ D. Then
G has an end of vertex-degree ≤ k with rays in D.

Proof. We construct a sequence of infinite regions Di, starting with D0 := D
which clearly is infinite. Our regions will have the property that Di ⊆ Di−1−
∂Di−1.

In step i ≥ 1, for each pair of vertices in ∂Gv Di−1, take a set of k edge-
disjoint paths joining them: the union of all these paths gives a finite sub-
graph H of G. Since Di−1 was infinite, Di−1−H still is, and thus contains a
vertex y. Since G is vertex-minimally k-edge-connected, G − y has a cut of
size less than k, which splits G− y into A and B, say, which we may assume
to be connected. Say A contains a vertex of ∂Gv Di−1. Then ∂Gv Di−1 ⊆ V (A),
and thus B ⊆ Di−1. Observe that Di := B ∪ y is infinite, as otherwise
it would contain an inclusion-minimal region C as in the statement of the
lemma.

As all the Di are connected, it is easy to construct a ray R which has a
subray in each of the Di. Say R belongs to the end ω ∈ Ω(G). We will show
that dv(Ω) ≤ k, which in turn proves the lemma.

Suppose otherwise. Then ω contains a set of k + 1 disjoint rays. Let S
be the set of starting vertices of these rays. Since Di ⊆ Di−1 − ∂Di−1 for all
i, there is an n ∈ N such that S ∩ V (Dn) = ∅. (To be precise, one may take
n := maxs∈S,v∈∂G

v D0
dist(s, v) + 1.) But then, it is impossible that all rays of

R have subrays in Dn.
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We finally prove Theorem 11.3.2 (d).

Proof of Theorem 11.3.2 (d). Let x ∈ V (G), and let F be a cut of G − x
with cardinality |F | = λ(G − x). Say F splits G − x into A and B. First
suppose that one of A and B, say A, contains an inclusion-minimal region C
such that C has a vertex y with the property that |∂G−ye C| = λ(G− y) < k.
Then Lemma 11.6.2 finds a vertex of degree at most k in C − y.

Now, if also D := G− (C − y) contains an inclusion-minimal region C ′

such that C ′ has a vertex y′ with the property that |∂G−y′e C ′| = λ(G−y′) < k,
then we may apply Lemma 11.6.2 again to find a second vertex of degree at
most k in G. On the other hand,if D does not contains such a region, we use
Lemma 11.6.4 to find an end of the desired degree. Finally, if both A and B
do not have an inclusion-minimal region as above, we apply Lemma 11.6.4
to both to find the desired end of small degree.
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Chapter 12

Duality of ends

12.1 Duality of graphs

In 1932 Whitney [94] introduced the concept of dual graphs: a graph1 G∗ is
a dual of a finite graph G if there exists a bijection ∗ : E(G) → E(G∗) so
that a set F ⊆ E(G) is a circuit of G precisely when F ∗ is a bond in G∗.

Nowadays graph duality is a standard subject, treated in any textbook
(see e.g. [31]). The main properties of the dual is its symmetry (i.e. that G
is a dual of G∗), and its uniqueness for 3-connected planar graphs. Another
important well known feature is the fact that a finite graph is planar if and
only if its has a dual. This is a theorem of Whitney [94].

Building on work by Thomassen [90, 91], Bruhn and Diestel [11] extended
duality to (a superclass of) locally finite graphs. They showed that with their
notion, which we shall also use in this chapter, many properties of dual graphs
are retained in infinite graphs. These include the three aspects mentioned in
the previous paragraph.

This chapter, which is based on [14], contains a study of the relation
between the end space of a graph and the end space of its dual. The first
result we present states that there exists a homeomorphism between these
two spaces that arises in a natural way from the bijection ∗ on the edges.

More precisely, we will demonstrate that, given a pair G,G∗ of (infinite)
duals, the endvertices of a set F ⊆ E(G) converge towards an end ω of G if
and only if the endvertices of F ∗ converge towards the dual end ω∗. For this,
we shall define a topological space |G| on the point set of G together with

1Throughout this chapter, let us allow all our graphs are allowed to have loops and
parallel edges, with the exception of 2-connected graphs, which we require to be loopless,
and of 3-connected graphs, which, in addition, cannot have parallel egdes.
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its set of ends Ω(G) (and analogously for G∗). This space will be defined in
Section 12.2, see also Chapter 8 of [31]. Further discussion of Theorem 12.1.1
can be found in Section 12.4.

Theorem 12.1.1.[14] Let G and G∗ be 2-connected dual graphs. Then there
is a homeomorphism ∗ : Ω(G) → Ω(G∗), where the two spaces are endowed
with the subspace topology of |G| resp. |G∗|, so that for all F ⊆ E(G) and
ends ω it holds that

ω ∈ F if and only if ω∗ ∈ F ∗. (12.1)

Thick ends are defined as those ends that contain an infinite set of dis-
joint rays. They play an important role in the study of the automorphism
group of a graph, see for instance Halin [49]. We will prove that thickness is
preserved in the dual end:

Theorem 12.1.2. [14] Let G,G∗ be a pair of dual graphs, and let ω be an
end of G. Then ω is thick if and only if ω∗ is thick.

In fact, we shall prove something stronger. Exclusively in this chapter
we shall use the notion of the degree dG(ω) of an end ω, which will be a
slightly modified version of the vertex-degree used earlier (for a locally finite
graph they will coincide). For the precise definition see Section 12.7.

Theorem 12.1.2 will be a consequence of the following result:

Theorem 12.1.3.[14] Let G and G∗ be a pair of 2-connected dual graphs,
and let ω be an end of G. Then dG(ω) = dG∗(ω

∗).

In order to prove Theorem 12.1.3, we make use of a notion of connec-
tivity, introduced by Tutte [92], that coincides with the connectivity of the
cycle-matroid of the graph. As a by-product we obtain the following result,
which for finite graphs is a theorem of Tutte [92].

Theorem 12.1.4.[14] Let G and G∗ be a pair of dual graphs, and let k ≥ 2.
Then G is k-Tutte-connected if and only if G∗ is k-Tutte-connected.

We will define Tutte-connectivity in Section 12.6 (all other definitions
can be found in the next section), but let us remark here that a graph is
3-Tutte-connected if and only if it is 3-connected. Therefore, Theorem 12.1.4
has the following consequence:

Corollary 12.1.5 (Thomassen [91]). Let G and G∗ be a pair of dual graphs.
Then G is 3-connected if and only if G∗ is 3-connected.
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Duality for infinite graphs was first explored by Thomassen. Faced with
the incongruity that an infinite graph may have infinite cuts as well as finite
ones but (in the traditional definition) only finite circuits he chose to ignore
infinite cuts. Consequently, G∗ is a dual of G, in the sense of Thomassen,
if for all finite sets F ⊆ E(G), F is a circuit precisely when F ∗ is a bond.
This concept allowed him to prove an infinite version of Whitney’s planarity
criterion: a 2-connected graph G has a (Thomassen-)dual if and only if it is
planar and satisfies

every two vertices of G can be separated by finitely many edges. (†)

However, Thomassen’s definition is not completely satisfactory, as the sym-
metry in taking duals is lost, as well as the uniqueness of the duals of 3-
connected graphs. These deficits are ultimately due to the disregard of infi-
nite cuts.

Infinite circuits, which have been proposed by Diestel and Kühn [32, 33,
34], promise a way out of this dilemma. Taking infinite circuits into account
led to the more restrictive definition of duals in [11]: there, a set F ⊆ E(G),
finite or infinite, is a circuit if and only if F ∗ is a bond. These duals overcome
the drawbacks of Thomassen’s definition, i.e. they retain the basic properties
of finite duals. We will define and very briefly discuss infinite circuits in the
next section.

12.2 The cycle space of an infinite graph

In this chapter, we shall introduce the cycle space of an infinite graph. For
this we have to define a topological space on the point set of the graph plus
its ends. These notions have been first suggested by Diestel and Kühn [32,
33, 34]. A circuit of some fixed graph G will be defined as the edge set of a
homeomorphic image of the unit circle in a certain topological space based
on G.

We shall introduce the topology in two steps. First we define a topo-
logical space |G|, whose points are the vertices and ends of G, as well as the
interior points of edges of G. In the second step we shall identify some of the
points of |G|.

So, in order to define |G|, see G as endowed with the topology of a 1-
complex, so every edge is homeomorphic to the unit interval and a basic open
neighbourhood of a vertex consists of the union of half-open edges, one for
each incident edge. In order to describe the neighbourhoods of an end ω, pick
a finite vertex set S, and denote the component of G−S that contains a ray
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of ω (and thus a subray for every ray in ω) by C(S, ω). We say that ω belongs
to C(S, ω). A basic open neighbourhood of ω now consists of C(S, ω), all
ends that have a ray in C(S, ω) and the union of all interior points of edges
between S and C(S, ω). In the case of a locally finite graph the resulting
space |G| is called the Freudenthal compactification of G.

In non-locally finite graphs, we say that a vertex v dominates an end ω,
if there are infinitely many paths between v and a ray in ω that pairwise only
meet in v. We define an equivalence relation ∼ on |G| as follows. For two
ends ω and ω′, let ω ∼ ω′ if both ω and ω′ are dominated by the same vertex.
For a vertex v and an end ω, let v ∼ ω if v dominates ω. We denote by G̃
the quotient space of |G| under the equivalence relation ∼. In particular, if
G is locally finite, then G̃ = |G|. Observe furthermore that, if G satisfies (†),
then no two vertices of G are identified in G̃.

We shall need to work within both spaces |G| and G̃. In order to distin-
guish between closures of sets X ⊆ V (G)∪E(G) in the two spaces, we write

X for the closure of X in |G|, and X̃ for the closure of X in G̃.

Next, we define circles in G̃ as the homeomorphic images of the unit
circle. If a circle contains an interior point of an edge then it contains the
whole edge. Thus it makes sense to speak of the edge set of a circle, which
is called a circuit. The homeomorphic image of the unit interval [0, 1] in G̃
is an arc. Observe that circuits as well as arcs must contain edges.

For the merits of infinite circuits and the topological cycle space, which
is based on this definition, see the overview article by Diestel [30]. Let us
just mention here that C(G) retains all the basic properties of the cycle
space of a finite graph [10, 32, 33, 34] (which the space obtained consider-
ing only finite cycles does not), and, using infinite cycles, many well-known
theorems for finite graphs have verbatim extensions to locally finite graphs2.
These extensions include MacLane’s theorem, Tutte’s/Kelmans’ planarity
criterion, Nash-Williams’ Arboricity theorem, Gallai’s theorem about cycle-
cocycle partitions, Tutte’s generating theorem, Tutte’s/Nash-Williams’ tree-
packing theorem, and the already mentioned Whitney’s planarity criterion [9,
11, 12, 16, 85]. Let us also remark that a more general approach to cycle
spaces has been pursued by Richter and Vella [93], who define (infinite) cir-
cuits for a wider range of topological spaces.

2For most, the restriction to locally finite graphs can be lowered by only demanding
that no two vertices are connected by infinitely many paths. But then, the cycle space
notion (or rather the underlying topology on the graph) has to be modified.
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12.3 Duality for infinite graphs

In order to define duals for infinite graphs, let us first remark that we have to
restrict ourselves to graphs G that satisfy (†). In fact, as Thomassen [91] ob-
served, this is a necessary condition for a graph to have a dual (in Thomassen’s
and thus in our sense as well).

Now, we call a graph G∗ a dual of G if there is a bijection ∗ : E(G) →
E(G∗) so that a (finite or infinite) set F ⊆ E(G) is a circuit of G precisely
when F ∗ is a bond in G∗. (A bond is a minimal non-empty cut.)

The dual G∗ then can be seen to satisfy (†) as well. So, the class of
graphs with (†) is closed under taking duals, unlike the class of locally finite
graphs. Whenever we speak of duals we will therefore tacitly assume that
the original graph (and then automatically the dual too) satisfies (†). We
refer to [11] for more details.

We list two properties of duals, that will be needed throughout the paper.

Lemma 12.3.1. Let G and G∗ be a pair of dual graphs. Then G is 2-
connected if and only if G∗ is 2-connected.

The lemma follows easily from the fact that a every two edges lie in
a common circuit if and only if the graph is 2-connected, which is the case
precisely when every two edges lie in a common bond. Variants of this lemma
can be found in Thomassen [90] as well as in [11].

Theorem 12.3.2.[11] Let G∗ be a dual graph of a graph G. Then G is also
a dual of G∗.

As a convenience we will, for a set F of edges, write V [F ] to denote the
set of endvertices of the edges in F .

12.4 Discussion of our results

Before turning to the proofs of our main results, we shall discuss why their
statements have the precise forms they do. Let us start with the bijection
we wish to define between the end spaces of two dual graphs G and G∗. Our
mapping will be an extension of the bijection ∗ : E(G)→ E(G∗) on the edges
(and we will therefore, slightly abusing notation, denote it with ∗ as well).
More precisely, we aim at a bijection ∗ between Ω(G) and Ω(G∗), so that for
all F ⊆ E(G), the endvertices of F converge against an end ω of G if and
only if the endvertices of F ∗ converge against ω∗.
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In the space G̃, which is instrumental in the definition of duality, the
accumulation points of vertex sets are the identification classes of ends. Re-
call that any two ends that cannot be separated by finitely many edges are
identified, giving rise to larger equivalence classes of rays called edge-ends
by some authors (e.g. Hahn, Laviolette and Širáň [48]). So, should we not
search for a bijection of the edge-ends rather than of the ends?

...

Figure 12.1: No correspondence between edge-ends of duals

Figure 12.1 demonstrates that there is no hope for a bijection between
edge-ends (even without any structural requirements). The double ladder
has two edge-ends, while its dual graph has only one edge-end.

The reason that this attempt fails lies in the nature of duals. The ex-
istence of finite edge-cuts between (edge-)ends will not be preserved in the
dual. In fact, such a (minimal) cut corresponds to a circuit in the dual, which
need not separate anything. By contrast, a vertex-separation whose deletion
results in two sufficiently large sides does, in some sense, carry over to the
dual graph; this is the essence of Theorem 12.1.4 and will be further explored
in Section 12.6.

Our bijection will thus be between the ends of G and G∗. This means
that we will work in |G|, since any two identified ends cannot be distinguished
topologically in G̃. Endowing Ω(G) resp. Ω(G∗) with the subspace topology
of |G| resp. |G∗|, we will show the existence of a bijection Ω(G) → Ω(G∗)
that is structure-preserving in the sense above. Moreover, Theorem 12.1.1
ensures that ∗ is a homoeomorphism:

Theorem 12.1.1.[14] Let G and G∗ be 2-connected dual graphs. Then there
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is a homeomorphism ∗ : Ω(G) → Ω(G∗), where the two spaces are endowed
with the subspace topology of |G| resp. |G∗|, so that

for all F ⊆ E(G) and ends ω it holds that ω ∈ F if and only if ω∗ ∈ F ∗.
(12.1)

We remark that the requirement that G and G∗ are 2-connected cannot
be dropped. This is illustrated by the example of the double ray. Every dual
of the double ray is a graph whose edge set is the union of countably many
loops, and thus contains no end at all.

We shall prove Theorem 12.1.1 in the next section.

Let us now turn to our second objective: showing that our bijection ∗
preserves thickness. This will be achieved in Theorem 12.1.2. Again, we
are confronted with the question why focus on preserving (vertex-)thickness
instead of “edge-thickness”, i.e. the existence of infinitely many edge-disjoint
rays in an end.

...

Figure 12.2: Edge-thick end with edge-thin dual end

This is answered by Figure 12.2, which shows a graph that has a single
edge-thick end while the unique end of its dual graph does not even possess
two edge-disjoint rays. The reason is the same as above: although (or be-
cause) the notion of duals is based on edges and operations with edges, the
existence of (small) edge-separators is not preserved in the dual.

Since not all vertex-separators are preserved in the dual, connectivity is
not an invariant of (finite or infinite) duals, as we have already remarked in
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the introduction. But, the related notion of Tutte-connectivity is. We defer
to Section 12.6 for the definition; suffice it to say here that there are two
reasons why a graph may have low Tutte-connectivity: Either it has a small
vertex-separator or it contains a small circuit. In Section 12.6, we prove that
Tutte-connectivity is an invariant of infinite duals, too (Theorem 12.1.4).

Theorem 12.1.4 is an important milestone on our way to proving The-
orem 12.1.3 and thus Theorem 12.1.2. Our proof of Theorem 12.1.4 differs
from the usual proof of Tutte’s finite version, which is done in two steps.
First, one shows that Tutte-connectivity coincides with the connectivity of
the cycle-matroid of the graph. Then one observes that matroid connectivity
is invariant under duality.

If we want to use this approach for Theorem 12.1.4 as well, we first have
to answer two questions. Which notion of infinite matroids should we use?
And how do we define higher connectivity in a matroid?

The first question is easy to answer. Although it is sometimes claimed
that there is no proper concept of an infinite matroid that provides dual-
ity and the existence of bases at the same time, B-matroids, as defined by
Higgs [56], accomplish that (see also Oxley [73]). Moreover, one can prove
that duality in B-matroids is compatible with taking dual graphs. While the
second problem, the definition of higher connectivity, can also be overcome in
a satisfactory way, its solution together with the introduction of B-matroids
would take quite a bit of time and effort. Therefore, we will, in Section 12.6,
present a matroid-free proof of Theorem 12.1.4.

12.5 ∗ induces a homeomorphism on the ends

Before we are able to prove Theorem 12.1.1, we need three lemmas.

The proof of the first of these lemmas is not hard, and also can be found
in [31, Lemma 8.2.2]. We only need the lemma for the proof of Lemma 12.5.2
below.

Lemma 12.5.1. Let G be a connected graph, and let U be an infinite subset
of V (G). Then G contains a ray R with infinitely many disjoint R–U paths
or a subdivided star with infinitely many leaves in U .

Lemma 12.5.2. Let G be a 2-connected graph satisfying (†). If U is an
infinite set of vertices then U contains an end of G.

Proof. Suppose otherwise. Then there is no ray R in G with infinitely many
disjoint R–U paths. So, an application of Lemma 12.5.1 yields a subdivided
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star S that contains an infinite subset U ′ of U . We delete the centre of S and
apply Lemma 12.5.1 again, this time to U ′, which yields another subdivided
star S ′ with infinitely many leaves in U ′. But then, the centre of S and the
centre of S ′ are infinitely connected, contradicting (†).

Lemma 12.5.3. Let G be a 2-connected graph, and let X and Y be two
sets of edges such that X ∩ Y ∩ Ω(G) 6= ∅. Then there are infinitely many
(edge-)disjoint finite circuits each of which meets both X and Y .

Proof. Let Z be an ⊆-maximal set of finite disjoint circuits so that each C ∈
Z meets both X and Y , and suppose that |Z| is finite. Putting Z :=

⋃Z,
we pick for every two x, y ∈ V [Z] for which it is possible an x–y path Px,y
that is edge-disjoint from Z. Denote by Z ′ the union of Z with the edge sets
of all these paths, and observe that still |Z ′| <∞.

We claim that for every component K of G− V [Z ′] it holds that

for every v, w ∈ N(K) there is a v–w path in (V [Z ′], Z ′ \ Z). (12.2)

Indeed, by construction, there are x, y ∈ V [Z] and (possibly trivial) v–x
resp. w–y paths Qv resp. Qw with edges in Z ′\Z. Then x and y are connected
through K ∪ Qv ∪ Qw ⊆ G − Z. Hence in Px,y ∪ Qv ∪ Qw ⊆ (V [Z ′], Z ′ \ Z)
we find a v–w path. This proves (12.2).

Now, because X ∩ Y contains an end, there exists a component K of
G − V [Z ′] which contains infinitely many vertices of both V [X] and V [Y ].
Choose edges eX , eY ∈ E(K) ∪ E(K,G −K) so that eX ∈ X, and eY ∈ Y .
Since G is 2-connected, there is a finite circuit C which contains both eX and
eY . The maximality of Z implies that C meets Z in at least one edge. In
particular, C contains the edge sets of (possibly identical) N(K)-paths PX
and PY so that eX ∈ E(PX), and eY ∈ E(PY ).

Being connected, K contains a V (PX)–V (PY ) path P . Thus, we find in
P ∪PX ∪PY an N(K)-path P ′ with eX , eY ∈ E(P ′). By (12.2), there exists a
path R in (V [Z ′], Z ′\Z) between the endvertices of P ′. Now, E(P ′)∪E(R) is
a circuit that meets bothX and Y but is edge-disjoint from Z, a contradiction
to the maximality of Z.

We can now prove the first main result of this chapter.

Proof of Theorem 12.1.1. We start by claiming that for each F ⊆ E(G) and
each end ω of G the following is true:

if F ∩ Ω(G) = {ω} then F ∗ contains exactly one end. (12.3)
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Suppose the claim is not true. By Lemma 12.5.2, this cannot be because
F ∗ fails to contain an end; rather there must be (at least) two ends, α1 and
α2, in F ∗. Take a finite connected subgraph T of G∗ so that V (T ) separates
α1 and α2 in G∗. For i = 1, 2, denote by Ki the component of G∗ − T to
which αi belongs, and set X∗i := (E(Ki) ∪ E(Ki, T )) ∩ F ∗. Since each of
the X∗i is infinite, it follows from Lemma 12.5.2 that Xi contains an end.
As Xi ⊆ F , this end must be ω. Hence, Lemma 12.5.3 yields disjoint finite
circuits C1, C2, . . . in G each of which meets X1 as well as X2.

We claim that each of the bonds C∗i contains an edge of T . Indeed,
let M1 and M2 be the two components of G∗ −C∗i . Since C∗i meets both X∗1
and X∗2 , each Mj contains a vertex in K1 ∪ T and a vertex in K2 ∪ T . As,
for j = 1, 2, Mj is connected it follows that V (Mj) ∩ V (T ) 6= ∅. So, since T
is connected, there is an M1–M2 edge in E(T ), i.e. C∗i ∩ E(T ) 6= ∅, for each
i ∈ N. This yields a contradiction since the C∗i are disjoint but T is finite.
Therefore, Claim (12.3) is established.

Now, we define ∗ : Ω(G) → Ω(G∗). Given an end ω ∈ Ω(G), pick any
set F ⊆ E(G) with F ∩ Ω(G) = {ω} (choose, for instance, the edge set of
a ray in ω). Define ω∗ = ω∗(F ) to be the, by (12.3), unique end in F ∗.
To see that this mapping is well-defined, i.e. that it does not depend on the
choice of F , consider a second set D ⊆ E(G) as above, and observe that
ω∗(D) = ω∗(D ∪ F ) = ω∗(F ). Since G is a dual of G∗ (Theorem 12.3.2), we
may apply (12.3) to G∗ and see that ∗ is a bijection and satisfies (12.1).

Next, we prove that ∗ : Ω(G) → Ω(G∗) is continuous. For this, let an
end ω∗ ∈ Ω(G∗) and an open neighbourhood U∗ ⊆ Ω(G∗) of ω∗ be given.
Then there exists a finite vertex set S ⊆ V (G∗), and a component K of
G∗ − S so that W ∗ := K ∩ Ω(G∗) ⊆ U∗.

Setting F ∗ := E(G∗)\ (E(K)∪E(S,K)), we observe that W ∗ = Ω(G∗)\
F ∗. Hence, by (12.1), W = Ω(G) \ F . So, W is an open neighbourhood of
ω whose image is contained in U∗. Finally, by interchanging the roles of G
and G∗ we see that the inverse of ∗ is continuous as well.

12.6 Tutte-connectivity

In this and in the next section, we are concerned with how (Tutte-)connectivi-
ty is preserved in the dual. The main idea underlying our proofs is the duality
of spanning trees: given a pair of finite connected dual graphs G and G∗, a
set D is the edge set of a spanning tree of G, if and only if E(G∗) \D∗ is the
edge set of a spanning tree in G∗.

For a pair of infinite graphs, the situation is slightly more complicated.
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In fact, if E(G∗)\D∗ is the edge set of a spanning tree, then (V (G), D) might

very well be disconnected—topologically, however, D̃ (the closure of D in G̃)
is always connected.

Moreover, D̃ forms a topological spanning tree (TST for short) of G̃: a
path-connected circuit-free subspace of G̃ that contains all vertices of G, and
every edge of which it contains an interior point. For more on the relation
between spanning trees in G and G∗ see [11]. TSTs were first introduced
by Diestel and Kühn in [34], where it is proved that G̃ always has a TST
provided G is connected.

We will use the tree duality implicitly in the key lemma, Lemma 12.6.4,
below. The next two lemmas help to relate the tree duality to vertex sepa-
rations.

Lemma 12.6.1. Let G be a graph satisfying (†), let T be a subgraph that
does not contain any circuits, and let U ⊆ V (T ) such that 0 < |U | < ∞.
Then there exists a set F ⊆ E(T ) of size at most |U | − 1 so that every arc

in T̃ between two vertices in U meets F .

Proof. We use induction on |U |. The assertion is trivial for |U | = 1, so for
the induction step asume that |U | > 1. Choose v ∈ U , then by the induction
assumption there is a set D ⊆ E(T ) such that each vertex w of U \ {v} lies

in a different path-component Kw of T̃ −D. If there is no vertex w ∈ U \{v}
such that v ∈ Kw, we are done, so assume there is such a w.

Observe that there exists exactly one v–w arc A in T̃ − D. Indeed, if
there were two, then it is easy to see that the edge set of their union would
contain a circuit. Now, choose any edge e on A, and set F := D ∪ {e}.
Clearly, F is as desired, which completes the proof.

Lemma 12.6.2. Let H be a connected graph, let F ⊆ E(H), and let W ⊆
V (H). If every W -path in H meets F then |F | ≥ |W | − 1.

Proof. Since no two vertices of W can lie in the same component of H − F ,
we deduce that H − F has at least |W | components. As each deletion of a
single edge increases the number of components by at most one, H − F can
have at most |F |+ 1 components.

Let us now introduce the notion of Tutte-connectivity, see Tutte [92].
For finite graphs, the Tutte-connectivity coincides with the connectivity of
the cycle-matroid of the graph. We remark that for k ∈ {2, 3}, a graph is
k-Tutte-connected if and only if it is k-connected. For greater k the two
notions of connectivity are not equivalent.
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Definition 12.6.3. A k-Tutte-separation of a graph G is a partition (X, Y )
of E(G) so that |X|, |Y | ≥ k and so that at most k vertices of G are incident
with edges in both of X and Y .
We say that a graph G is k-Tutte-connected if G has no `-Tutte-separation
for any ` < k.

Consider a k-Tutte-separation (X, Y ) in a (2-connected) graph G with
a dual G∗. To prove that Tutte-connectivity is invariant under taking duals,
we would ideally like to see that (X∗, Y ∗) is a k-Tutte-separation in G∗.
This, however, is not always true—if the two sides of the separation do not
induce connected subgraphs of G∗, then the number of vertices in V [X∗] ∩
V [Y ∗] can be much higher than k. Thus we will strengthen the requirements
and lessen our expectations. By demanding the subgraph (V [Y ], Y )− V [X]
to be connected, we shall be able to guarantee that at least (V [Y ∗], Y ∗) is
connected. Moreover, we will be content with finding an `-Tutte-separation
of G∗ for some ` ≤ k that is derived from (X∗, Y ∗).

The statement of the next lemma, which accomplishes just that, is a
bit more general than we need for Theorem 12.1.4, as we shall reuse it for
Theorem 12.1.3.

Lemma 12.6.4. Let G and G∗ be a pair of 2-connected dual graphs, and let
(X, Y ) be a k-Tutte-separation such that CY := (V [Y ], Y ) − V [X] is non-
empty and connected, and such that Y = E(CY ) ∪ E(CY , V [X]). Then

(i) there exists a component L of (V [X∗], X∗) so that (E(L), E(G∗)\E(L))
is an `-Tutte-separation for some ` ≤ k; and

(ii) for each component K of (V [X∗], X∗) with |E(K)| ≥ k it holds that
(E(K), E(G∗) \ E(K)) is a k-Tutte-separation.

Proof. First, we prove that

Ỹ ∗ is path-connected in G̃∗. (12.4)

Suppose that this is not the case. Then we can write Y as the disjoint union
of two sets Y1 and Y2 so that there is no Y ∗1 –Y ∗2 arc in G̃∗ that only uses
edges from Y ∗.

In particular, there is no circle in G̃∗ that only uses edges from Y ∗ and
meets both Y ∗1 and Y ∗2 . Equivalently, there is no bond in G that only uses
edges from Y , and meets both Y1 and Y2.

However, since CY is connected and since every edge in Y is incident
with a vertex in CY , there is a vertex x ∈ V (CY ) which is incident with both
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Y1 and Y2. Observe that the cut Bx of G, which consists of all edges incident
with x, is a subset of Y . As G is 2-connected, Bx is a bond, which yields the
desired contradiction and thus proves (12.4).

Now, set U := V [X] ∩ V [Y ] and W := V [X∗] ∩ V [Y ∗]. Observe that
each vertex in W is incident with both X∗ and Y ∗. So, if |W | is infinite, then
Lemma 12.5.2 implies that X∗ ∩ Y ∗ contains an end, while X ∩ Y does not
(as X and Y are finitely separated by U). This contradicts Theorem 12.1.1.
We have thus shown that

|W | is finite. (12.5)

Let TX be the edge set of a maximal topological spanning forest of X̃,
i.e. the union of TSTs of the spaces C̃ corresponding to the components C
of (V [X], X). We point out that every circuit of G that lies entirely in X is
a circuit of (V [X], X). It follows that TX does not contain any circuits of G.

Next, we prove that

every W -path in (V [X∗], X∗) meets T ∗X . (12.6)

Suppose there is a W -path whose edge set D∗ lies in X∗ \T ∗X . By (12.4),
there is a circuit C∗ of G∗ with C∗ ∩ X∗ = D∗. Thus, C is a bond in G,
and hence D is a finite cut of the subgraph (V [X], X) of G. Consequently,
D contains a bond B of (V [X], X), which then is completely contained in
a component KB of (V [X], X). As B ⊆ D ⊆ X \ TX , the intersection of
B with TX is empty. Thus, B is a finite cut of KB that is disjoint from
TX but that separates two vertices incident with TX . Since, on the other
hand, T̃X restricted to K̃B is path-connected, we obtain a contradiction.
This proves (12.6).

Next, Lemma 12.6.1 yields a set F ⊆ TX of at most |U | − 1 edges so

that every U -arc in T̃X ⊆ X̃ meets F . This means that every circuit C of G
with C ∩X ⊆ TX meets F . Thus, every bond B∗ of G∗ with B∗ ∩X∗ ⊆ T ∗X
meets F ∗. Hence, denoting by K the set of components of (V [X∗], X∗), we
obtain that

for every K ∈ K, the graph HK := K − (T ∗X \ F ∗) is connected. (12.7)

Now, for every K ∈ K, observe that by (12.6), every W -path in HK

meets F ∗. So, by (12.7), we may apply Lemma 12.6.2 to HK . Doing so
for each K ∈ K, we obtain that |F ∗| ≥ |W | − |K|. On the other hand,
|F ∗| = |F | ≤ |U | − 1 by the choice of F , implying that

|W | ≤ |U |+ |K| − 1. (12.8)
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Suppose that for every K ∈ K, it holds that |V (K) ∩ W | > |E(K)|.
Then

|W | =
∑
K∈K

|V (K) ∩W | ≥
∑
K∈K

(|E(K)|+ 1) = |X∗|+ |K|.

As |X∗| = |X| ≥ |U |, we obtain that |W | ≥ |U | + |K|. This yields a con-
tradiction to (12.8), since by (12.5), |W | is finite. Therefore, there exists an
L ∈ K with

` := |V (L) ∩W | ≤ |E(L)|.
Observe that if we can show now that ` ≤ k, then it follows that

(E(L), E(G∗)\E(L)) is an `-Tutte-separation of G∗, as desired for (i). So, in
order to prove (i), and (ii), it suffices to prove that for each K ∈ K it holds
that

|V (K) ∩W | ≤ |U |.
Suppose otherwise. Then there exists an M ∈ K such that

|W | =
∑
K∈K

|V (K) ∩W | ≥ (|U |+ 1) +
∑

K∈K,K 6=M

|V (K) ∩W |.

Because G is 2-connected, so is G∗ (Lemma 12.3.1). Thus |V (K) ∩W | ≥ 1
for every K ∈ K, resulting again in |W | ≥ |U | + |K|, a contradiction, as
desired.

We now prove that Tutte-connectivity is invariant under taking duals.

Proof of Theorem 12.1.4. We show that ifG has a k-Tutte-separation (X, Y ),
then G∗ has an `-Tutte-separation for some ` ≤ k. By Theorem 12.3.2, this
is enough to prove the theorem.

First, assume that V [Y ]\V [X] 6= ∅. LetK be a component of (V [Y ], Y )−
V [X], and set Z := E(K)∪E(K,G−K). As E(K,G−K) contains at least
one edge for each vertex in N(K), it follows that |Z| ≥ |N(K)|. Thus,
(Z,E(G) \ Z) is a k′-Tutte-separation of G for k′ := |N(K)| ≤ k. We can
now apply Lemma 12.6.4 (i) to obtain the desired `-Tutte-separation of G∗.

So, we may assume that V [Y ] \ V [X] = ∅. Then, since |Y | ≥ k, there is
a circuit C in Y , say of length ` ≤ k. Hence, C∗ is a bond of size ` in G∗; let
K1 and K2 be the components of G∗ − C∗. Now,

|E(K1 ∪K2)| = |X∗|+ |Y ∗| − |C∗| ≥ 2k − `.
Thus, we can partition C∗ into C∗1 and C∗2 so that each Z∗i := E(Ki) ∪ C∗i
has cardinality at least `.
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In order to show that (Z∗1 , Z
∗
2) is an `-Tutte-separation of G∗ it remains

to check that U := V [Z∗1 ] ∩ V [Z∗2 ] has cardinality at most `. To this end,
consider a vertex v ∈ U , and let j be such that v ∈ V (Kj). Then v is incident
with an edge e∗v ∈ C∗3−j, whose other endvertex lies in K3−j, because C∗ is a
cut. This defines an injection from U → C∗, which implies |U | ≤ |C∗| ≤ `,
as desired.

12.7 The dual preserves the end degrees

In this section we will use Lemma 12.6.4 in order to prove Theorem 12.1.3
that relates the ‘degree’ of an end ω to the degree of its dual end ω∗. Let us
first discuss the degree notion.

For an end ω, define m(ω) to be the supremum of the cardinalities of sets
of disjoint rays in ω; Halin [49] showed that this supremum is indeed attained.
In [17] and in [86] the number of vertex- (or edge-)disjoint rays in an end
has been successfully used to serve as the degree of an end in a locally finite
graph (whether vertex- or edge-disjoint rays should be considered depends on
the application). This motivates the definition of the degree d(ω) := m(ω)
of an end ω of a locally finite graph.

Now, if G and G∗ are a dual pair of 2-connected locally finite graphs,
then it will turn out that m(ω) = m(ω∗) for every end ω of G. In non-locally
finite graphs we need to be a bit more careful: Figure 12.2 indicates that
dominating vertices should be taken into account.

For an end ω ∈ Ω(G) and a finite vertex set S, we say that U ⊆ V (G)
separates S from ω if U meets every ray in ω that starts in S. We define here
the degree d(ω) of an end ω ∈ Ω(G) to be the minimal number k such that for
each finite set S ⊆ V (G), we can separate S from ω in G by deleting at most k
vertices from G. If there is no such k, we set d(ω) :=∞. Lemma 12.7.1 will
show that this definition is consistent with the one given above for locally
finite graphs.

So, denote by dom(ω) the number of vertices that dominate an end ω
(possibly infinite). Note that the graphs we are interested in, namely those
that satisfy (†), are such that dom(ω) ∈ {0, 1} for every end ω.

Lemma 12.7.1. Let G be a graph and let ω ∈ Ω(G). Then d(ω) = m(ω) +
dom(ω).

Proof. It is easy to see that d(ω) is at least m(ω) + dom(ω). For the other
direction, we may assume that dom(ω) <∞. Denote by D the set of vertices



156 Duality of ends

that dominate ω. As D is a finite set, there is an obvious bijection between
the ends of G−D and G, which we will tacitly use.

We observe first that for any finite vertex set T , there exists a finite T–ω
separator T ′ in G − D that is contained in CG−D(T, ω). Indeed, otherwise,
by Menger’s theorem3, G[T ∪ C(T, ω)] − D contains infinitely many paths
between T and some ray in ω that are pairwise disjoint except possibly in T .
As T is finite, this implies that T \D contains a vertex which dominates ω,
contradicting our choice of D.

Now, choose any finite S ⊆ V (G). Starting with S0 := S \ D we can
choose inductively finite vertex sets Si so that Si ⊆ V (CG−D(Si−1, ω)) is an
Si−1–ω separator in G−D, and has minimal cardinality with that property.
Since Si ⊆ V (CG−D(Si−1, ω)), all the Si are pairwise disjoint.

Applying Menger’s theorem repeatedly between Si−1 and Si we obtain a
set R of disjoint rays in ω of cardinality at least |S1|. As S1 ∪D separates S
from ω in G, we have shown that S can be separated from ω by at most
|S1|+ |D| ≤ m(ω) + dom(ω) vertices, thus proving the lemma.

We remark that Lemma 12.7.1 can be obtained easily from results of
Polat [76]; we chose to provide the proof nevertheless since the statement of
Polat’s results together with the necessary adaptions would have taken about
as much time and space.

We finally turn to the proof of Theorem 12.1.3, which asserts that the de-
gree of an end is preserved by taking duals. In conjunction with Lemma 12.7.1
the theorem immediately yields Theorem 12.1.2.

Proof of Theorem 12.1.3. First assume that d(ω) ≤ k, where k ∈ N is a finite
number. We wish to show that ω∗ has vertex-degree ≤ k, too.

So, let a finite vertex set T ⊆ V (G∗) be given. Pick a finite edge set F ∗ of
cardinality at least k so that T ⊆ V [F ∗] and so that F ∗ induces a connected
graph. Now, since d(ω) ≤ k there is a set U ⊆ V (G) of cardinality at most k
that separates (the finite set) V [F ] from ω. If C is the component of G−U to
which ω belongs then set Y := E(C)∪E(C,U) and X := E(G)\Y . Because
k ≥ |U | = |V [X]∩V [Y ]|, and because |Y | =∞ and |X| ≥ |F | ≥ k, it follows
that (X, Y ) is a k-Tutte-separation.

Since F ∗ ⊆ X∗ induces a connected subgraph, there is a component K of
(V [X∗], X∗) that contains all of F ∗. As |F ∗| ≥ k, Lemma 12.6.4 (ii) implies
that (E(K), E(G∗) \ E(K)) is a k-Tutte-separation. Moreover, as ω /∈ X, it

3We use here, and below, that the cardinality version of Menger’s theorem holds in
infinite graphs. This can easily be deduced from Menger’s theorem for finite graphs, see
for instance [31, Section 8.4]
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follows that ω∗ /∈ K. Thus, NG∗(G
∗ −K) is a vertex set of cardinality ≤ k

that separates T ⊆ V [F ∗] from ω∗, as desired.

In conclusion, since G is also a dual of G∗ (Theorem 12.3.2), it follows
that d(ω) = d(ω∗) if either of ω and ω∗ has finite degree. In the remaining
case, we trivially have d(ω) =∞ = d(ω∗).
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