DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 1, 1990

On the Complexity of Branch and Cut Methods
for the Traveling Salesman Problem

W. COOK AND M. HARTMANN

-
ABSTRACT. In this note, we give an extension of the results of Chvatal, Cook,
and Hartmarin [2] on the complexity of the traveling salesman problem. In
particular, we show that the branch and cut method has an exponential worst-
‘case running time, even if a separation oracle for the clique-tree polytope
is available and the length of the optimal hamiltonian circuit is used as an
upper bound.

RESULTS

In Chvatal, Cook, and Hartmann [2] lower bounds are given on the length
of cutting-plane proofs and the Chvital rank of polytopes associated with
a number of #ZP-complete graph problems. Most of these are worst-case
results that hold for a particular class of graphs, such as the complete graphs
K, . In fact, many of these results hold for a much larger class of graphs,
as is shown in Hartmann [4]. Here we give a construction that allows many
of the results concerning the traveling salesman problem to be extended to a
larger class of graphs.

Let H; be the graph with nodes a,, b,, ¢;»d;, ¢, f;, g&,and h; and edges
(@;,0;), (b;5¢)), (¢;.d,), (d;5 ), (e, f), (f;,8) 5 (8> h) 5 (hy, ), (b, £,
and (d;, h;), and let G, = (V,, E,) be the graph formed by taking the sub-
graphs H,, ..., H, and adding the additional edges (¢;> &) and (e;, a,, )
fori=1,....,k~1, (¢, g) and (e, a,). Let the set E, consist of the
edges (b;, f;) and (d,, h,) for i=1,...,k, (¢;» &,y) and (e;, a;,,) for
i=1,...,k-1, (¢, &) and (¢, a,). The graphs G, arerelated to a class
of hypohamiltonian graphs introduced by Chvatal [1], and it follows that G,
has no hamiltonian circuit that uses all of the edges in E,’: . Graphs obtained
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from G, by subdividing the edge (€, > a,) are used in both Chvital, Cook,
and Hartmann [2] and Hartmann [4]. Here we observe that all of these proofs
remain valid when an arbitrary number of edges in E,: are subdivided, as
in Figure 1. Thus the results hold for any graph that contains a subgraph
isomorphic to one of these subdivided graphs.

WW edgesin Ej

FIGURE 1. A subdivision of G, .

Padberg and Rinaldi [5] present a branch and cut method for solving the
traveling salesman problem on the complete graph K, . After optimizing
over the subtour polytope, " '

(1) x(d(S)) 22 forall SCV(K,), 2<|8S|<n-2,
(2) x(d(v))=2 forallveV(K,),
(3) x, 20 forallec E(K,), .

they heuristically generate comb constraints (see Grétéchel and Padberg [3])
that are violated by the linear programming optimal solution and solve the
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resulting linear program. This process Is continued until an integral optimal
solution is reached (the incidence vector of an optimal hamiltonian circuit)
or no violated comb constraints can be identified. If an integral optimal so-
lution is not found, then they choose one of the variables X, to branch on,
and the constraints x,>1 and x, < 0 are enforced on the “up branch” and
the “down-branch,” respectlvely The resulting linear program is then solved
for each of the branches, and violated comb inequalities are-generated until
further branches are requlred Thus at each point the cutting planes gener-
ated are comb inequalities that are facets of the traveling salesman polytope.
These comb inequalities can be obtained from (1)- (3) by taking a single non-
negative linear combination and rounding down the right-hand side. ‘There-
fore an exponential lower bound on the worst-case running time of Padberg
and Rinaldi’s branch and cut method follows from the theorem below.

THEOREM 1. There are {0, 1 2} -valued distances for which the branch
and cut method requires Q(2"/ /n ) operations to solve the travelmg sales-
man problem Jor K, , even if a separation oracle for the subtour polytope is
available, integer roundmg is allowed, and the length of the optimal hamilto-
nian circuit is used as an upper bound,

Proor. When applied to a vector d of distances, the branch and cut
method can be viewed as a proof of the vahdlty of the ‘inequality d"x >1,
where [ is the length of the optimal hamiltonian circuit. Such a “pranch and
cut” proof has the tree structure shown in Figure 2. At each node, a series
of cutting planes are generated by sequentially rounding down the right-hand
sides of valid inequalities with integral coefficients.

Consider a branch and cut proof of the inequality

2x(E\E,)+x(E,\E,) > 4n +1,
which is equivalent to the inequali’iy '
(4) x(E,)+x(E))<12n—-1,

which states that G, has no hamiltonian circuit that uses all of the edges in
E . First we will argue that the branch and cut proof can be made to have
a very special form without i 1ncreas1ng the length of the proof too much. If
at some point the proof branches on an edge ¢ ¢ E,, then the “up- branch’
in which x, =2 1 is enforced admits a one-step cuttmg—plane proof of the
inequality (4) The same is true of the “down-branch” where x, <0 is
enforced if e € E . In éither case, we will call the branch that admlts the
one-step cuttmg—plane proof the “null leaf,” and the series of operations “null
branching.” Likewise, we can assume that there is no variable fixing per se,
since this can be replaced by a branching for which either the ¢ “up-branch”
or the “down-branch” admits-a one-step cutting-plane proof

If at some point the proof branches on an edge eckE \ ,:say (a;,h;),
then we may sequentially branch on (a,, b, ) -5 (& ,hl) on ‘both the “up-
branch” and the “down-branch,” forcmg X ‘ ' x(ci, 4y= x(e;_», =% k)
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FIGURE 2. A branch and cut proof.

Xiby,e) = Xid,ue) = Xfe) = Xha) and Xa,.b) = 1 - Xia, ) to hold on
both branches, since all of the other possibilities admit a one-step cutting-
plane proof of the inequality (4). For example, if we have Xa, ) > 1 and
X(a,,b,) > 1, then Xe,_,a) <0 ,‘and we have one of the situations described
above. If on the other hand we have Xa,hy <0 and x, , <0, then

summing these inequalities, x <1 and x(6(v)) = 2 'f’o; all v #a.,
(e;_y.a;) i

we get that x(E,) < 8n—1. We will call this series of operations “branching

on H;,” and count it as a single branching.

It will suffice to show that, for a branch and cut proof modified so that the
only branching done is null branching and branching on H,..., H , either
(i) the tree corresponding to the proof has at least 2"/ leaves, or (ii) the
total number of cutting planes encountered on the path from the root to one
of the leaves is at least 2"/ / (32n2) . To prove this we note that the number
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of cutting planes required in (ii) can only decrease if all of the cutting planes
are generated at the leaves. Therefore we may assume that the proof has the
structure shown in Flgure 3.

cutting cutting
planes | | planes

FIGURE 3. A modified branch and cut proof.

If at each nonnull leaf the proof has branched on at least # /2 of the H,’s,

then the number of nonnull leaves is at least 2. So we may assume that
there is a nonnull leaf such that the set I of indices ; for which H; has
not been branched on satisfies |I| > n/2. Observe that branching on H,
identifies a subdivision of a graph isomorphic to G, for some k < n (thls
is illustrated in Figure 4). This will allow us to obtam a lower bound on the
length of the cutting-plane proof at this nonnull leaf in a manner similar to
that of Theorem 8.3 of Chvatal, Cook, and Hartmann [2]

Now for any J C I, the subgraph consisting of E , those edges fixed
by branching on H; for i ¢ I, the edges (a;, ), (c;,d), (e, £), (g, h;)
for i € J, and the edges (b;,¢;),(d;,e,), (fl.,gi), (h,.,al.) for i e I\J,
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FIGURE 4. The result of branching on H,.

consists of two circuits of length 4n. Therefore the incidence vector of this
subgraph satisfies-(2)-(3) and all but one of the subtour elimination con-
straints (1). The number of such “necessary” subtour.elimination constraints
will be 2V > 22 Consider a cutting-plane proof of (4) from the system

ax<b fori=1, ..,m

consisting of ‘( 1)-(3) and the inequalities enforced by the branchmgs on the
path to the nonnull leaf This proof will consist of additional inequalities

a, X < bm FRTITOI am " Mx < bm . M ‘'with integral coefficients and nonnega-
tlvenumbersy for i=m+1, ..,m+M and]—l , i—1, such that
a—z 1yUaJ andb>[E u b;] for. l-—m+1 ,m+ M. (The

last 1nequa11ty will be x(E )+ x(E Y< 12n=1.) We: have shown that at
least 2"/ of the ¥;; s must be positive. On the other hand, Caratheodory S

theorem allows us to assume that for each i, at most (%)+1 < 32n” of the
Yij ’s are positive. Comparing these two bounds we see that the cutting-plane

proof at this nonnull leaf must have length at least 2"/2/(32n%). D

Padberg and Rinaldi also describe an improved version of this branch and
cut method that generates violated clique tree inequalities (see Grotschel and
Padberg [3]). Using this improved algorithm, they are able to solve large
real-world (Euclidean) traveling salesman problems to optimality. However,
the theorem below shows that this more- powerful branch and cut method
still behaves exponentlally in the worst case. :

THEOREM 2. There are {O 1 2} -valued dzstances Jor whzch the branch
and cut method requzres (2"/ ? /n ) operatzons to solve the travelmg sales-
man problem for Ks . even if a separation oracle for the cligue-tree polytope
is avazlable mteger roundmg is allowed, and the length of the optzmal hamil-
tonian circuit is used. as an upper bouna’

‘PROOF. : We :will- use the same vector. d ‘of dlstances as in the proof of
Theorem 1,-and argue that for a modified branch and cut proof of d x >/ i
either (i) the tree corresponding to the proof has at least 2"/° leaves, (ii) the
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total number of clique-tree inequalities generated on the path from the root
to one of the leaves is at least 2"/° /(8n), or (iii) the total number of cutting
planes encountered on the path from the root to one of the leaves is at least
29 / (32n2). As in the proof of Theorem 1, we may assume that there is
a nonnull leaf such that the set I of indices i for which H; has not been
branched on satisfies |I| > 8n/9. We may also assume that the number of
clique-tree inequalities generated on the path from the root to this nonnull
leaf is at most 2"/ 9/ (8n). We now make use of claim (8.13) of Chvatal,
Cook, and Hartmann [2], which states that every clique-tree inequality ad-
mits a cutting-plane proof from (1)—(3) that uses at most 8#2*"/® of the
2l “necessary” subtour elimination constraints. Therefore the cutting-plane
proof at the nonnull leaf must use at least 2717"/° > 2% of the “neces-
sary” subtour elimination constraints, and the argument used in the proof
of Theorem 1 shows that this cutting-plane proof must have length at least
2"Pi320%). O
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