
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/225254567

Web Server Performance Modeling

Article  in  Telecommunication Systems · January 2001

DOI: 10.1023/A:1016667027983 · Source: DBLP

CITATIONS

100
READS

575

3 authors:

Robert D. van der Mei

Vrije Universiteit Amsterdam

95 PUBLICATIONS   777 CITATIONS   

SEE PROFILE

Rema Hariharan

eBay Research Labs

15 PUBLICATIONS   430 CITATIONS   

SEE PROFILE

Paul Reeser

AT&T

17 PUBLICATIONS   244 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Robert D. van der Mei on 09 September 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/225254567_Web_Server_Performance_Modeling?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/225254567_Web_Server_Performance_Modeling?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mei?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mei?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Vrije_Universiteit_Amsterdam?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mei?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rema_Hariharan?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rema_Hariharan?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/eBay_Research_Labs?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rema_Hariharan?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul_Reeser?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul_Reeser?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/AT_T?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paul_Reeser?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Robert_Mei?enrichId=rgreq-bda3daa25a8d07c05391739a880ac61d-XXX&enrichSource=Y292ZXJQYWdlOzIyNTI1NDU2NztBUzoxMzk1MDM0MzYwNDYzMzZAMTQxMDI3MTYxOTE3Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Telecommunication Systems � ������ ��� �

Web Server Performance Modeling

R�D� van der Mei� R� Hariharan and P�K� Reeser

AT�T Labs� ��� Laurel Avenue� Middletown� NJ ����	� USA

The advent of Web technology has made Web servers core elements of future

communication networks	 Although the amount of tra
c that Web servers must

handle has grown explosively during the last decade� the performance limitations

and the proper tuning of Web servers are still not well understood	 In this paper

we present an end�to�end queueing model for the performance of Web servers� en�

compassing the impacts of client workload characteristics� server harwaresoftware

con�guration� communication protocols� and interconnect topologies	 The model

has been implemented in a simulation tool� and performance predictions based on

the model are shown to match very well with the performance of a Web server in a

test lab environment	 The simulation tool forms an excellent basis for development

of a Decision Support System for the con�guration tuning and sizing of Web servers	

Keywords�World Wide Web� HTTP� Web server� httpd� performance� throughput�

delay� response time� blocking� TCPIP� Internet� intranets

�� Introduction

Over the past few years� the World Wide Web 
WWW� has experienced

tremendous growth� which is not likely to slow down in the near future� The

explosion of Internet Commerce service o�erings 
e�g�� ��� has insured that the

�Web� will remain at the center of mainstream communications� Furthermore�

the recent emergence of Internet Telephony 
IT� service o�erings has brought the

heretofore�separate world of the Internet into the realm of traditional telecom�

munications� IT services range from simple �click�to�dial� o�erings that use the

Internet for voice call setup 
e�g�� ��� to end�to�end voice communications that

use the Internet for packetized voice transport 
e�g�� ����

At the heart of most Internet Commerce and Telephony service o�erings is

the Web server� Web servers� which are typically based on the Hypertext Transfer

Protocol 
HTTP� running over TCP�IP� are expected to perform millions of

transaction requests per day at an �acceptable� Quality of Service 
QoS� level in



� R�D� van der Mei � Web Server Performance Modeling

terms of transaction throughput 
connect and error rates� and latency 
packet

transfer and response times� experienced by the end users� To cope with the

increasing volume of transaction requests� as well as the increasing demands of

real�time voice communications� a thorough understanding of the performance

capabilities and limitations of HTTP Web servers is crucial�

Web server performance is a complicated interplay between a variety of com�

ponents� such as server hardware platform� Web server software� server operating

system� network bandwidth� �le sizes� caching� etc� Experience has taught that

the performance of Web servers can be increased tremendously by proper tuning

of the components of the server� In order to properly con�gure these di�erent

components� it is crucial to understand how these components interact� and how

they impact the end�to�end performance�

To compare the performance of di�erent Web server platforms� several

benchmarking tools have been brought to the market 
e�g�� ����� These tools

typically ��re o�� a large number of transaction requests and measure the re�

sponsiveness of the server� Although these tools are certainly useful to compare

the performance of di�erent server platforms� there are a number of drawbacks�

First� most benchmarking tools to some extent consider the Web server as a

�black box�� and as such fail to provide insight into which of the components of

the server are the performance limiting factors for a given parameter setting� Sec�

ond� performing benchmarking experiments in a test environment is extremely

time consuming� Due to the lack of insight into the impact of the individual

components of the Web server on the performance� experiments must be done for

many di�erent workload scenarios�

In the literature� a signi�cant number of papers have appeared focusing

on workload characterization of the tra�c on the Internet and in intranet envi�

ronments� based on tra�c measurements� Arlitt and Williamson �� present a

workload characterization study for Internet Web servers� based on a variety of

data sets� Their main conclusions 
in the context of the present paper� are that

the mean transfer size is small but that the transfer�size distribution is heavy

tailed� that the successive reference epochs to the same �le are well�modeled by

a Poisson process� and that a small number of pages account for the vast major�

ity of the page requests� Paxson and Floyd ��� analyze tra�c traces for Wide

Area Networks 
WANs� and show that user�initiated �session� arrivals are well�

modeled by Poisson processes� but that packet�level tra�c streams may deviate

considerably from Poisson processes� and may exhibit self�similarity over di�er�



R�D� van der Mei � Web Server Performance Modeling �

ent time scales� We refer to Leland et al� ��� and Crovella and Bestavros ���

and references therein� for discussions on the phenomenon of self�similarity of the

tra�c streams in LAN and WAN environments�

Only a few papers in the literature are focused on the modeling of Web

server performance� Slothouber ��� proposes to model a Web server as an open

queueing network� However� the model ignores essential lower�level details of

HTTP and TCP�IP protocols� even though they strongly impact the Web server

performance� In an excellent piece of work� Heidemann et al� �� present ana�

lytic models for the interaction of HTTP with several transport layers 
such as

TCP� T�TCP and UDP�� including the impact of slow�start algorithms� Dilley

et al� �� present a high�level layered model of an HTTP server� and build a tool

framework to collect and analyze empirical data� Although the papers mentioned

here provide signi�cant insights into the performance of Web servers� none of the

papers provide a model for the end�to�end performance of the communication

between the client and the server�

In this paper� we propose an end�to�end performance model for Web

servers� encompassing the impacts of client workload characteristics� server

harware�software con�guration� communication protocols� and interconnection

topologies� HTTP transactions proceed along a number of phases in successive

order� Therefore� the transaction �ows within a Web server can be described by

a tandem queueing model� consisting of the following sub�models� 
�� a multi�

server zero�bu�er blocking model for the TCP connection setup phase� 
�� a

multi�server �nite�bu�er blocking model for the HTTP application processing�

and 
�� a �nite�bu�er polling model for the network I�O controller� The inter�

actions between the di�erent sub�models are discussed in detail� In the present

paper� we focus on HTTP version ��� ��� However� we emphasize that the model

can be extended to incorporate improved versions of HTTP in a straightforward

manner� The model has been implemented in a simulation tool that can be used

to obtain insights into how the di�erent components of the model interact� and

how they impact the end�to�end performance� The performance predictions have

been validated by experiments performed in a test lab� The results demonstrate

that the predictions based on the simulation tool are very close to the test results�

The simulation tool forms an excellent basis for the development of a Decision

Support System for the proper tuning and sizing of Web servers�

The remainder of this paper is organized as follows� In section � we de�

scribe and model the transaction �ows within an HTTP server� In section � the



� R�D� van der Mei � Web Server Performance Modeling

performance predictions based on the model are validated against performance

results in a test lab environment� We have performed a number of simulation

experiments to obtain a better understanding of how the performance�limiting

component within a Web server varies for di�erent parameter settings� The re�

sults of these experiments are outlined in section �� Finally� section � contains

several concluding remarks and addresses a number of topics for further research�

�� Transaction Flows and Modeling

An HTTP transaction proceeds through a Web server along three successive

phases� 
�� TCP connection setup� 
�� HTTP layer processing and 
�� network

I�O processing� In this section� we describe and model the dynamics of each of

these phases� Combining these per�phase models� we obtain a tandem queueing

model� as illustrated in Figure �� We emphasize that in practice the interplay

between the di�erent Web server components is extremely complicated and may

be highly implementation speci�c� The model described herein aims to give

a generic simpli�ed description of the transaction �ows within the Web server�

covering the main performance limiting components� but omitting many 
possibly

relevant� details� In order to keep the model tractable and to limit the size of

the parameter space� several assumptions must be made� We emphasize that the

model discussed below should be viewed from that perspective�

Figure �	 Queueing model for a Web server	



R�D� van der Mei � Web Server Performance Modeling �

���� TCP Connection Setup Phase

Before data can be transmitted between the client and the server� a two�way

connection 
a TCP socket� must be established� The TCP sub�system consists

of a so�called TCP Listen Queue served by a server daemon� A TCP connection

is established by a three�way handshake procedure� which proceeds along the

following steps 
see for instance ��� for more details��

� The client sends a connection request 
SYN� to the server�

� If there is a slot available at the TCP Listen Queue� then the request occupies

one slot and the server daemon sends an acknowledgment 
SYN�ACK� to the

client� otherwise� the connection request is rejected�

� Upon receipt of a SYN�ACK� the client sends an acknowledgement 
ACK� and

a transaction request 
e�g�� GET� to the server� Upon arrival of the transaction

request� the TCP Listen Queue slot is released�

Immediately after the TCP socket has been established� the server daemon for�

wards the transaction request to the HTTP sub�system 
discussed in section

����� After the transaction has been processed� the server typically sends a FIN

message to the client to terminate the TCP socket�

To model the TCP connection setup phase� denote by NTCP the size of the

TCP Listen Queue 
i�e�� the number of slots�� The TCP connection setup phase

can be modeled as a blocking model with NTCP servers and zero waiting bu�er

space� where a �server� represents a slot in the TCP Listen Queue and customers

represent connection requests� If an incoming customer �nds all servers busy 
i�e��

all slots are occupied by other pending connection requests�� then the request is

refused� otherwise� the request is taken into service immediately� A service time

represents the time between 
�� the arrival of the connection request at the TCP

Listen Queue and 
�� the time at which the transaction request 
after receiving

the SYN�ACK� arrives� as illustrated in Figure �� In this way� the duration of

a service time corresponds to one network round�trip time 
RTT� between the

server and the client� The size of the TCP Listen Queue 
NTCP � is con�gurable�

���� HTTP Processing Phase

After a TCP connection has been established� the transaction request is

ready to be parsed and interpreted by the HTTP sub�system� which consists of



� R�D� van der Mei � Web Server Performance Modeling

Figure �	 The ��way handshake procedure during the TCP connection setup phase	

an HTTP Listen Queue served by one or more multi�threaded HTTP daemons�

The dynamics of the HTTP sub�system are described as follows�

� If an HTTP thread is available� then the thread fetches the requested �le


either from a �le system or from cache memory� and puts the �le into a

network I�O bu�er 
if available�� The thread is then released to process the

next transaction request�

� If all I�O bu�ers are occupied at that time� then the HTTP thread remains

idling until an I�O bu�er becomes available� If there is more than one thread

waiting for an I�O bu�er to become available� some 
implementation�speci�c�

assignment rule is used to determine in which order free�coming I�O bu�ers

are assigned to the waiting threads�

� If there is no HTTP thread available 
i�e�� all threads are busy�� then the

transaction request enters the so�called HTTP Listen Queue 
if possible�� and

waits until it gets assigned a thread to handle the request�

� If the HTTP Listen Queue is full� the transaction request is rejected� the

connection is torn down� and the client receives a connection refused message�

Note that connection refusal messages may be generated in two ways� 
��

blocking at the TCP sub�system 
when all slots at the TCP Listen Queue are

occupied� see section ����� and 
�� blocking at the HTTP sub�system 
when the

HTTP Listen Queue is full��

The size of the requested �le is generally unknown beforehand� Therefore�

the �le size may exceed the I�O bu�er size� In that case� the �le is partitioned

into a number of parts� P�� � � � � Pk� each of which �lls one I�O bu�er 
except

for the trailing part Pk�� In the case k � �� all segments of a given �le must



R�D� van der Mei � Web Server Performance Modeling �

make use of the same I�O bu�er� Thus� an HTTP server is not allowed to dump

di�erent parts of the same �le into di�erent I�O bu�ers� Therefore� if k � �

then P� 
i�e�� the �rst segment of the �le� is placed into the I�O bu�er� Then�

the HTTP thread responsible for handling the transaction has to remain idling


blocked� until the bu�er has been drained completely before it can place P�

into the bu�er� and so on� An exception is made for Pk 
the �nal part of the

partitioned �le�� as soon as Pk has been placed into the I�O bu�er� the thread

is ready to serve another transaction request 
and does not have to idle until Pk

has been drained completely�� Figure � illustrates the �le partitioning for k � ��

The HTTP sub�system can be modeled by a multi�server �nite�bu�er block�

ing system with NHTTP servers and bu�er size BHTTP � The servers represent

the HTTP threads� the customers represent transaction requests� and the bu�er

represents the HTTP Listen Queue� If a server is available� then the customer is

taken into service immediately� Otherwise� the customer enters the HTTP Listen

Queue� if the queue is full� then the customer is rejected� De�ne the service time

�trans of a customer 
transaction request� as the time interval between 
�� the

time at which a thread starts to fetch the requested �le and 
�� the time at which

all parts of the �le have been placed into an I�O bu�er� The service time� �trans�

consists of the following three parts�

�trans � �fetch � �wait � �drain� 
��

where �fetch represents the time required to fetch the �le� �wait represents the time

the server has to wait to get access to an I�O bu�er and �drain represents the

time to put the entire �le into an I�O bu�er 
possibly in parts�� In general� the

requested �le is partitioned into parts P�� � � � � Pk� where k �� Nfile� the number

Figure �	 File partitioning during the HTTP processing phase	



� R�D� van der Mei � Web Server Performance Modeling

of I�O bu�ers that the �le needs 
in Figure � we have Nfile � ��� Therefore�

�drain can be further decomposed as

�drain � �
���
drain � � � �� �

�k���
drain � 
��

where �
�i�
drain is the time needed to put Pi into an I�O bu�er and drain Pi 
i �

�� � � � � k���� Recall that the time needed to drain the trailing part of the �le does

not contribute to the �service time�� so that �
�k�
drain is excluded here� Denoting

the �le size by F and the I�O bu�er by BIO� Nfile is given by

Nfile � d
F

BIO
e� 
��

where the dxe is de�ned as the smallest integer that is larger than or equal to x� It

is assumed that the time to place a part of the �le into an I�O bu�er 
after an I�O

bu�er has been assigned to the responsible HTTP thread� is negligible� Figure �

illustrates the components of a �service time� in the HTTP sub�system for the

case Nfile � � 
see also Figure ��� In general� �fetch is an independent random

variable� while the probability distributions of the random variables �wait� Nfile

and �drain� and their correlation structure� are output parameters that generally

depend on the performance of the I�O sub�system 
modeled in the next section��

The size of the I�O bu�ers 
BIO� is con�gurable� and is typically tuned to

entirely store the vast majority of the requested �les� in the sense that ProbfF �

BIOg � �� where � is close to � 
e�g�� ���� or ������ Hence� in most cases� the

requested �le �ts within a single I�O bu�er and therefore� need not be partitioned�

The bu�er size 
BIO�� the number of I�O bu�ers 
NIO�� the size of the HTTP

Listen Queue 
BHTTP �� and the number of threads 
NHTTP � are con�gurable�

Figure �	 The HTTP processing phase	



R�D� van der Mei � Web Server Performance Modeling �

���� I�O Processing Phase

The di�erent I�O bu�ers are �drained� over a common network connection

to the network 
e�g�� the Internet or an intranet�� The scheduling of access for

the di�erent output bu�ers to the network connection is done by a so�called I�O

controller that �visits� the bu�ers in some order 
e�g�� in a round�robin fashion��

The communication between the server and the client is based on the TCP�IP

protocol suite� TCP�IP is a connection�oriented protocol� and is controlled by a

windowing mechanism 
see ��� for more details�� The transmission unit for the

TCP�IP�based network connection is the Maximal Segment Size 
MSS�� i�e�� the

largest amount of data that TCP will send to the client in one segment� Therefore�

the �les residing in the I�O bu�ers are 
virtually� partitioned into blocks of � MSS


except for the trailing part of the �le�� The windowing mechanism implies that

a block of a �le residing in an output bu�er can only be transmitted if the TCP

window is open� that is� if blocks can still be transmitted before receiving an

acknowledgment� Notice that the arrival of acknowledgments generally depends

on the congestion in the network� Therefore� the rate at which each of the I�O

bu�ers can �drain� their contents is a�ected by congestion in the network�

The dynamics of the I�O subsystem can be modeled as a single�server polling

model with NIO queues� each of size BIO� where NIO is the number of I�O bu�ers

and BIO is the I�O bu�er size� The server represents the I�O controller and the

queues represent the I�O bu�ers� The �service times� represent the time to

�drain� 
i�e�� transmit and acknowledge� � �le block�

The total time to drain the contents of an I�O bu�er �drain I�O buffer can

be expressed as follows�

�drain I�O buffer �
X

k

�
�k�
I�O block� 
��

where �
�k�
I�O block is the time needed to drain the k�th block in the I�O bu�er�

�
�k�
I�O block can be further decomposed as

�
�k�
I�O block � �

�k�
RC � �

�k�
DB� 
��

where �
�k�
RC denotes the time until the server visits the I�O bu�er in question 
i�e��

the residual cycle time�� and �
�k�
DB denotes the time to �drain� the �le block� The

latter� in turn� can be decomposed further as follows�

�
�k�
DB � �

�k�
link � �

�k�
inet � �

�k�
client� 
��



�� R�D� van der Mei � Web Server Performance Modeling

where �
�k�
link is the time to put the block on the output link� �

�k�
inet is the time to

send the block and return an acknowledgment� and �
�k�
client is the time required

by the client interface 
e�g�� a modem or LAN card� to read the block� Figure �

illustrates the dynamics of the model for the case where the I�O bu�er contains

� blocks� numbered B�� B� and B�� respectively� The time to put a �le block of

size B�k� onto a network connection is given by the following expression�

�
�k�
link �

B�k�

�NC
� 
��

where �NC is the line speed of the connection to the network� Moreover� the time

required by the client to read a �le block of size B�k� is given by

�
�k�
client �

B�k�

�client
� 
	�

where �client is the rate the client reads incoming data 
e�g�� �	�	 Kbit�s for mo�

dem�� �
�k�
inet is a random variable with the same distribution as a network RTT�

Remark ���

The model explains how congestion in the network may lead to rejection of in�

coming transaction requests� To this end� suppose the network is congested for

some time period� Then the network RTT increases� and consequently� TCP ac�

knowledgments of the receipt of �le blocks are delayed� so that the throughput of

�le blocks from the I�O bu�er to the client over the TCP connection decreases�

This means that the �les are �drained� at a lower rate� This� in turn� implies

Figure �	 IO processing phase	



R�D� van der Mei � Web Server Performance Modeling ��

that I�O bu�ers become available to the HTTP threads at a lower rate� so that

HTTP threads may have to wait 
idle� for a longer time period to get access to

an I�O bu�er to �dump� the �le� Consequently� the HTTP Listen Queue will

tend to �ll up� leading eventually to rejection of incoming transaction requests�

In this way� congestion in the network for some sustained period of time may

cause the server itself to run into performance problems�

Remark ���

With the advent of transactions involving dynamic content� Web servers must

handle requests for non�HTML 
e�g�� script output� �les� which are generally

much more CPU�intensive than static HTML �les� Files with dynamic content

are typically implemented into common scripting standards such as Common

Gateway Interface 
CGI� and Application Programmng Interface 
API�� In many

Web server implementations� the HTTP thread responsible for running a script

must wait for the execution of the script to be completed before handling another

transaction request� In the model presented above� the impact of dynamic content

on the Web server performance can be incorporated by modifying the �service�

time distribution� of the HTTP threads accordingly� Note that in other server

implementations 
e�g�� Microsoft Internet Information Server ��� and later�� the

server is equipped with a dedicated script engine� The HTTP thread checks if

a script must be run� and if so� the HTTP thread forwards the request to the

script engine� As soon as the script object has been delivered to the script engine�

the HTTP thread is ready to handle newly incoming transaction requests 
so the

HTTP thread does not wait for the script execution to complete�� Extension of

the model to incorporate such a dedicated script engine is fairly straightforward�

�� Validation

We have implemented the model in a simulation tool to predict the Web

server performance� To assess the validity of the model� we have performed

experiments to compare performance predictions based on the simulation model

with measurements in a test lab environment� The results are outlined below�

Consider a Web server with the following parameter settings� � CPUs�

NTCP � ����� BHTTP � ���� NHTTP � ��� BIO � ����� NIO � ��� �fetch����

ms 
consisting of ��� ms for HTTP processing and 	�� ms for running dy�

namic content� see also Remark ����� TCP maximum window size � 	 Kbytes�



�� R�D� van der Mei � Web Server Performance Modeling

Figure �	 Throughput as a function of the transaction request rate	

MSS����� bytes� RTT�� ms 
based on measurements�� The clients and the

server were connected via a ��� Mbit�s Fast Ethernet� so that �NC � �client����

Mbit�s� A load generator was used to �bombard� the server with transaction

requests at given transaction rates� Figure � shows the server throughput as a

function of transaction request rate 
in transactions per second�� and Figure �

shows the average end�to�end response time 
in seconds� as a function of trans�

action request rate� The results in Figures � and � show that the performance

predictions based on the simulation model closely match the results in the test

lab� We have performed various other validation experiments� and the accuracy

of those results was found to be comparable to that shown in Figures � and ��

�� Simulation

We have performed a variety of numerical experiments to obtain insight

into the performance capabilities and limitations of Web servers� The results are

outlined below� The simulation tool is very useful to answer �what�if� questions

to understand the performance under various parameter settings� and can ulti�

mately be used to develop tuning guidelines for the con�guration of Web servers�



R�D� van der Mei � Web Server Performance Modeling ��

Figure �	 Average response time as a function of the transaction request rate	

However� derivation of tuning guidelines requires a deeper insight into how the

performance�limiting component of the server varies for di�erent parameter con�

�gurations� which requires many more simulation experiments to be performed�

We emphasize that the simulation results discussed below are only a �rst step in

that direction� and are only valid in the speci�c settings considered�

Consider the model with the following parameters 
referred to throughout

as model I�� � CPUs� NTCP � ����� BHTTP � ��	� NHTTP � ��	� NIO � ����

BIO � �� Kbytes� MSS���� bytes� �fetch is exponentially distributed with mean

� ms� the �le size is geometrically distributed with mean � Kbytes� the network


Internet� RTTs are exponentially distributed with mean ��� ms� �NC � ���

Mbit�s� �client � �	�	 Kbit�s� maximum TCP window size � � Kbyte� File�

retrieval requests arrive according to a batch Poisson process� where the batch�

size distribution 
representing the number of in�line images per Web page� is

geometrically distributed with mean ��� See Remark ��� for a discussion on

the assumptions� Figure 	 shows the throughput 
i�e�� the number of successful

transactions per second� as a function of transaction request rate� and Figure

� shows the end�to�end response time 
in seconds� as a function of transaction

request rate 
model I�� Figure 	 shows that the transaction throughput increases



�� R�D� van der Mei � Web Server Performance Modeling

Figure �	 Throughput as a function of the transaction request rate �for model I�	

linearly with request rate up to a certain threshold value� Close examination of

the results in Figure 	 indicates that the maximum throughput is limited by the

bandwidth of the T� connection� restricting the number of successful transactions

to about �� per second� Figure � shows that the response time is fairly constant

when the server is lightly loaded� but increases rather sharply when the load

approaches the capacity of the �rst bottleneck 
i�e�� the T� line speed�� When the

o�ered load exceeds the capacity of the server� the server saturates� transactions

are rejected� and the average response time tends to a constant threshold� Note

that the response time does not increase without bound� because the HTTP

Listen Queue is �nite and transaction requests �nding a full bu�er are rejected�

Next� consider what happens if the observed bottleneck in model I is removed

by replacing the T� network connection by a T� line 
which can process as much

as �� Mbit�s�� This model is referred to as model II� Figures �� and �� show

the throughput and average response time as a function of transaction request

rate� The results in Figure �� show that by replacing the T� with a T� network

connection� the maximum throughput has increased considerably� but the server

can not saturate the T� line� In fact� examination of the results shows that

the number of I�O bu�ers 
assumed to be NIO � ���� has now become the



R�D� van der Mei � Web Server Performance Modeling ��

Figure �	 Average response time as a function of the transaction request rate �for model I�	

performance�limiting factor� restricting the throughput to about ��� transactions

per second� Note that at maximum server throughput� the T� network connection

is only ��� loaded� Similar to the results for model I� we observe that the

average delay increases fairly sharply when the server approaches its performance

bottleneck� We also observe in Figure �� that the threshold for average delay has

dropped from about �� seconds to only about ��� seconds�

To proceed� suppose that in an attempt to remove the observed bottleneck

in model II� it is decided to double the number of I�O bu�ers 
so that NIO � ���

instead of ����� This model is referred to as model III� Figure �� shows the

average response time as a function of the transaction request rate for this model�

The results in Figure �� show that by doubling the number of I�O bu�ers� the

response times tend to increase when the transaction rate approaches about ���


about two times the maximum throughput observed in model II�� In fact� the

results show that in model III the number of I�O bu�ers 
although doubled

compared to model II� is still the performance�limiting factor� We also observe

that the average response time has dropped slightly compared to model II�

The numerical examples considered above assumed that the average RTT is

��� ms� which is rather typical in Wide Area Networks 
WANs� such as the In�



�� R�D� van der Mei � Web Server Performance Modeling

Figure ��	 Throughput as a function of the transaction request rate �for model II�	

ternet� For comparison� let us consider the performance of Web servers in a Local

Area Network 
LAN� environment� To this end� we consider the model with the

same parameters as in model III� but where the average RTT has decreased to

only � ms and where the MSS is ���� bytes 
realistic in LAN environments� see

���� The model is referred to as model IV� Figure �� shows the average response

time as a function of the transaction request rate for model IV� The results show

that the maximum throughput has increased dramatically to about 	�� transac�

tions per second and that the average response time has decreased signi�cantly


compared to the models II and III�� The performance�limiting factor has now

become the CPU processing speed� rather than the number of I�O bu�ers�

Remark ���

The results in Figures �� and �� address an interesting observation regarding

network environments and server benchmarking� In a WAN environment� the

network RTT is signi�cant� so that the TCP window �ow control mechanism

results in a relatively slow draining of the I�O bu�ers� making the I�O sub�

system a serious potential performance bottleneck� In a LAN environment� in

contrast� the network RTT is relatively short and the I�O sub�system drains the



R�D� van der Mei � Web Server Performance Modeling ��

Figure ��	 Average response time as a function of the transaction request rate �for model II�	

output bu�ers quickly� making the I�O sub�system a less likely bottleneck� Web

server benchmarking experiments are typically performed in a high�speed LAN

environment� where the TCP and I�O processing phases are unlikely to limit

performance� Therefore� applying the absolute outcomes of the benchmarking

experiments as an estimation of the actual Web server performance capabilities

may lead to overly optimistic performance predictions when the server operates

in a WAN environment� Ignoring the network environment may lead to highly

inaccurate and overly optimistic performance predictions based on benchmarking�

Remark ���

To limit the number of simulations� we made a number of assumptions that

may or may not be accurate in speci�c cases� For instance� we assume incoming

transaction requests form a batch Poisson process� The literature� however� is not

conclusive regarding the nature of the arrival process of transaction requests of�

fered to a Web server� Interestingly� the results in ��� show that the user�initiated

arrivals of �sessions� are well�modeled by a homogeneous Poisson arrival process�

while lower�level 
e�g�� packet�level� tra�c streams are not captured well by a

Poisson process� In fact� recent studies based on tra�c measurements have re�



�� R�D� van der Mei � Web Server Performance Modeling

Figure ��	 Average response time as a function of the transaction request rate �for model III�	

vealed that packet�level tra�c streams in telecommunication networks may have

a complicated auto�correlation structure� exhibiting long�range dependence 
cf��

e�g�� ���������� Moreover� we assume that the network RTTs are exponentially

distributed� Again� the literature is not conclusive regarding the stochastic be�

havior of RTTs� Furthermore� we assume that the number of �le�retrieval re�

quests generated by a single page�retrieval request is geometrically distributed

with mean ��� This assumption may be unrealistic in some situations� In this

context� note that number of simultaneously outstanding TCP connections per

client may be limited� the maximum number of parallel TCP connections is a

tunable browser parameter� We acknowledge that these assumptions may have

a signi�cant impact on the results presented above� It would be very useful and

interesting to study the impact of the assumptions on the observed results�

In the context of the simulation model proposed here� we emphasize that

these assumptions are not restrictions posed by the model� the model itself does

not impose any restriction on the request arrival process� nor on the number of

�les per page� nor on the distribution of RTTs and their correlation structures�

Remark ���

The dynamics of the TCP �ow control mechanism are notoriously complex� and



R�D� van der Mei � Web Server Performance Modeling ��

Figure ��	 Average response time as a function of the transaction request rate �for model IV�	

the performance of TCP depends on a signi�cant number of TCP parameter set�

tings� such as the slow�start algorithm� the maximum send and receive window

sizes� etc� We refer to ��� for an excellent detailed description of the TCP trans�

action �ows� The primary focus of this paper is to present an end�to�end model

of the transaction �ows related to the application protocol HTTP� rather than

to provide a detailed model for the TCP transaction �ows� In order to cover the

impact of the TCP �ow control mechanism to some extent� while keeping the

parameter space limited� we have implemented a simpli�ed version of the TCP

protocol stack in the model used for the simulations� We implement the dynam�

ics of the TCP �ow control mechanism according to the model described in ���

Note that many simulation tools include a standard TCP �ow control module�

�� Concluding Remarks and Topics for Further Research

We have presented a new queueing model for the end�to�end performance

of Web servers� The model describes the impacts and interactions of the TCP

sub�system� HTTP sub�system� I�O sub�system� and network� To predict the

performance of Web servers 
in terms of end�to�end response time and e�ective



�� R�D� van der Mei � Web Server Performance Modeling

throughput�� the model has been implemented in a simulation tool� The perfor�

mance predictions based on the simulation model have been validated extensively

with results in a test lab environment� To illustrate the usefulness of the model�

we have performed a number of preliminary simulation runs� and the results pro�

vide several interesting insights into the performance capabilities of Web servers�

Since performance testing in a lab environment is extremely time consuming� the

simulation tool provides an excellent vehicle for answering �what�if� questions in

support of decisions regarding Web server con�guration tuning�

The model described here presents many opportunities and challenges for

further research� First� in order to identify performance tuning guidelines� we

must obtain a better understanding of the impact of the di�erent system param�

eters 
e�g�� the arrival process� bu�er sizes� �le�size distribution� number of HTTP

threads� number and size of the I�O bu�ers� etc�� on the performance of Web

servers� To this end� we must perform many more simulation runs to compare

the performance of Web servers under many con�guration settings�

In addition� the model can be extended in several directions� For example� in

order to process transaction requests involving dynamic content 
e�g�� CGI�API

scripts� Java servlets�� many servers are equipped with a script engine 
with a

set of dedicated threads�� The model may be extended to explicitly cover the

impact of such a script engine implementation� Furthermore� the performance

of Web servers may be signi�cantly impacted by the threading and object scope

models that are employed by the Web server� For instance� in some threading

models it may occur that di�erent threads need to wait 
idle� for access to the

same object� leading to additional contention and delay� It would be interesting

to explicitly model the impact of the threading and object scoping models�

In the current model� the transaction request rate is independent of the

number of transactions in progress� In many applications� however� the customer

population is �xed 
e�g�� in a corporate Intranet environment with a limited user

population�� Those scenarios may be modeled by a closed queueing network�

Next� in the current model a TCP connection is established for every �le

transfer 
i�e�� HTTP version ��� ���� causing signi�cant overhead� To overcome

this performance penalty� the concept of persistent connections has been proposed


HTTP ��� 	��� It would be interesting to implement persistent connections in

the model� and quantify the impact on the performance of Web servers�

Although the simulation tool has been found to be very e�ective in predict�

ing Web server performance� the computation time may be signi�cant� especially



R�D� van der Mei � Web Server Performance Modeling ��

when the bu�er sizes and numbers of threads are large� Therefore� it may be

desirable to complement the simulation model with fast�to�evaluate analytic ap�

proximations to obtain performance predictions within a negligible time interval


at the expense of some accuracy�� In ���� we propose such an analytic approxi�

mation� and show that the predictions match well with the simulation results�

Acknowledgments

The authors wish to thank Pravin Johri for implementing the simulation model�

They also want to thank the anonymous referees� whose comments and sugges�

tions have led to a signi�cant improvement in the presentation of this paper�

References

��� Arlitt� M	F	 and Williamson� C	L	 ������� Internet Web servers� workload characterization

and performance implications� IEEE Trans� Netw� �� �������

��� AT�T Easy World Wide Web service� http�www	att	comeasywww

��� AT�T Just�Me service� http�www	att	comjust�me

��� AT�T Connect �N Save VoIP service� http�www	connectnsave	att	com

��� Berners�Lee� T	� Fielding� R	 and Frystyk� H	 ������� Hypertext transfer protocol �

HTTP�	�� RFC ����� Internet request for comments

��� Crovella� M	 and Bestavros� A	 ������� Self�similarity in World�Wide Web tra
c� evidence

and possible causes� Proc� ACM Sigmetrics �Philadelphia� PA�� �������

��� Dilley� J	� Friedrich� R	� Jin� T	 and Rolia� J	 ������� Web server performance measurements

and modeling techniques� Perf� Eval� ��� ����

��� Fielding� R	� Gettys� J	� Mogul� J	� Frystyk� H	 and Berners�Lee� T	 ������� Hypertext

transfer protocol � HTTP�	�� RFC ����� Internet request for comments

��� Heidemann� J	� Obraczka� K	 and Touch� J	 ������� Modeling the performance of HTTP

over several transport protocols� IEEE Trans� Netw� �� �������

���� Leland� W	� Taqqu� M	� Willinger� W	 and Wilson� D	 ������� On the self�similar nature of

Ethernet tra
c� IEEE Trans� Netw� �� ����

���� Paxson� V	 and Floyd� S	 ������	 Wide area tra
c� the failure of Poisson� IEEE Trans�

Netw� �� �������

���� Reeser� P	K	� Van der Mei� R	D	 and Hariharan� R	 ������� An analytic model of an HTTP

Web server	 In� Teletra�c Engineering in a Competitive World� eds	 P	 Key and D	 Smith�

Proceedings ��th International Teletra
c Congress �Elsevier�� ���������

���� Slothouber� L	P	� A Model of Web Server Performance� http�louvx	biap	comwhite�

papersperformanceoverview

���� Stevens� W	R	 ������� TCP�IP Illustrated� Volume � �Addison Wesley�

���� WebStone� Mindcraft Inc	� http�www	mindcraft	com

���� Weiberle� S	� Private Communications with support engineers from Sun Microsystems

View publication statsView publication stats

https://www.researchgate.net/publication/225254567

