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Telecommunication Systems � ������ ��� �

Web Server Performance Modeling

R�D� van der Mei� R� Hariharan and P�K� Reeser

AT�T Labs� ��� Laurel Avenue� Middletown� NJ ����	� USA

The advent of Web technology has made Web servers core elements of future

communication networks	 Although the amount of tra
c that Web servers must

handle has grown explosively during the last decade� the performance limitations

and the proper tuning of Web servers are still not well understood	 In this paper

we present an end�to�end queueing model for the performance of Web servers� en�

compassing the impacts of client workload characteristics� server harwaresoftware

con�guration� communication protocols� and interconnect topologies	 The model

has been implemented in a simulation tool� and performance predictions based on

the model are shown to match very well with the performance of a Web server in a

test lab environment	 The simulation tool forms an excellent basis for development

of a Decision Support System for the con�guration tuning and sizing of Web servers	

Keywords�World Wide Web� HTTP� Web server� httpd� performance� throughput�

delay� response time� blocking� TCPIP� Internet� intranets

�� Introduction

Over the past few years� the World Wide Web 
WWW� has experienced

tremendous growth� which is not likely to slow down in the near future� The

explosion of Internet Commerce service o�erings 
e�g�� ��� has insured that the

�Web� will remain at the center of mainstream communications� Furthermore�

the recent emergence of Internet Telephony 
IT� service o�erings has brought the

heretofore�separate world of the Internet into the realm of traditional telecom�

munications� IT services range from simple �click�to�dial� o�erings that use the

Internet for voice call setup 
e�g�� ��� to end�to�end voice communications that

use the Internet for packetized voice transport 
e�g�� ����

At the heart of most Internet Commerce and Telephony service o�erings is

the Web server� Web servers� which are typically based on the Hypertext Transfer

Protocol 
HTTP� running over TCP�IP� are expected to perform millions of

transaction requests per day at an �acceptable� Quality of Service 
QoS� level in
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terms of transaction throughput 
connect and error rates� and latency 
packet

transfer and response times� experienced by the end users� To cope with the

increasing volume of transaction requests� as well as the increasing demands of

real�time voice communications� a thorough understanding of the performance

capabilities and limitations of HTTP Web servers is crucial�

Web server performance is a complicated interplay between a variety of com�

ponents� such as server hardware platform� Web server software� server operating

system� network bandwidth� �le sizes� caching� etc� Experience has taught that

the performance of Web servers can be increased tremendously by proper tuning

of the components of the server� In order to properly con�gure these di�erent

components� it is crucial to understand how these components interact� and how

they impact the end�to�end performance�

To compare the performance of di�erent Web server platforms� several

benchmarking tools have been brought to the market 
e�g�� ����� These tools

typically ��re o�� a large number of transaction requests and measure the re�

sponsiveness of the server� Although these tools are certainly useful to compare

the performance of di�erent server platforms� there are a number of drawbacks�

First� most benchmarking tools to some extent consider the Web server as a

�black box�� and as such fail to provide insight into which of the components of

the server are the performance limiting factors for a given parameter setting� Sec�

ond� performing benchmarking experiments in a test environment is extremely

time consuming� Due to the lack of insight into the impact of the individual

components of the Web server on the performance� experiments must be done for

many di�erent workload scenarios�

In the literature� a signi�cant number of papers have appeared focusing

on workload characterization of the tra�c on the Internet and in intranet envi�

ronments� based on tra�c measurements� Arlitt and Williamson �� present a

workload characterization study for Internet Web servers� based on a variety of

data sets� Their main conclusions 
in the context of the present paper� are that

the mean transfer size is small but that the transfer�size distribution is heavy

tailed� that the successive reference epochs to the same �le are well�modeled by

a Poisson process� and that a small number of pages account for the vast major�

ity of the page requests� Paxson and Floyd ��� analyze tra�c traces for Wide

Area Networks 
WANs� and show that user�initiated �session� arrivals are well�

modeled by Poisson processes� but that packet�level tra�c streams may deviate

considerably from Poisson processes� and may exhibit self�similarity over di�er�
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ent time scales� We refer to Leland et al� ��� and Crovella and Bestavros ���

and references therein� for discussions on the phenomenon of self�similarity of the

tra�c streams in LAN and WAN environments�

Only a few papers in the literature are focused on the modeling of Web

server performance� Slothouber ��� proposes to model a Web server as an open

queueing network� However� the model ignores essential lower�level details of

HTTP and TCP�IP protocols� even though they strongly impact the Web server

performance� In an excellent piece of work� Heidemann et al� �� present ana�

lytic models for the interaction of HTTP with several transport layers 
such as

TCP� T�TCP and UDP�� including the impact of slow�start algorithms� Dilley

et al� �� present a high�level layered model of an HTTP server� and build a tool

framework to collect and analyze empirical data� Although the papers mentioned

here provide signi�cant insights into the performance of Web servers� none of the

papers provide a model for the end�to�end performance of the communication

between the client and the server�

In this paper� we propose an end�to�end performance model for Web

servers� encompassing the impacts of client workload characteristics� server

harware�software con�guration� communication protocols� and interconnection

topologies� HTTP transactions proceed along a number of phases in successive

order� Therefore� the transaction �ows within a Web server can be described by

a tandem queueing model� consisting of the following sub�models� 
�� a multi�

server zero�bu�er blocking model for the TCP connection setup phase� 
�� a

multi�server �nite�bu�er blocking model for the HTTP application processing�

and 
�� a �nite�bu�er polling model for the network I�O controller� The inter�

actions between the di�erent sub�models are discussed in detail� In the present

paper� we focus on HTTP version ��� ��� However� we emphasize that the model

can be extended to incorporate improved versions of HTTP in a straightforward

manner� The model has been implemented in a simulation tool that can be used

to obtain insights into how the di�erent components of the model interact� and

how they impact the end�to�end performance� The performance predictions have

been validated by experiments performed in a test lab� The results demonstrate

that the predictions based on the simulation tool are very close to the test results�

The simulation tool forms an excellent basis for the development of a Decision

Support System for the proper tuning and sizing of Web servers�

The remainder of this paper is organized as follows� In section � we de�

scribe and model the transaction �ows within an HTTP server� In section � the
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performance predictions based on the model are validated against performance

results in a test lab environment� We have performed a number of simulation

experiments to obtain a better understanding of how the performance�limiting

component within a Web server varies for di�erent parameter settings� The re�

sults of these experiments are outlined in section �� Finally� section � contains

several concluding remarks and addresses a number of topics for further research�

�� Transaction Flows and Modeling

An HTTP transaction proceeds through a Web server along three successive

phases� 
�� TCP connection setup� 
�� HTTP layer processing and 
�� network

I�O processing� In this section� we describe and model the dynamics of each of

these phases� Combining these per�phase models� we obtain a tandem queueing

model� as illustrated in Figure �� We emphasize that in practice the interplay

between the di�erent Web server components is extremely complicated and may

be highly implementation speci�c� The model described herein aims to give

a generic simpli�ed description of the transaction �ows within the Web server�

covering the main performance limiting components� but omitting many 
possibly

relevant� details� In order to keep the model tractable and to limit the size of

the parameter space� several assumptions must be made� We emphasize that the

model discussed below should be viewed from that perspective�

Figure �	 Queueing model for a Web server	
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���� TCP Connection Setup Phase

Before data can be transmitted between the client and the server� a two�way

connection 
a TCP socket� must be established� The TCP sub�system consists

of a so�called TCP Listen Queue served by a server daemon� A TCP connection

is established by a three�way handshake procedure� which proceeds along the

following steps 
see for instance ��� for more details��

� The client sends a connection request 
SYN� to the server�

� If there is a slot available at the TCP Listen Queue� then the request occupies

one slot and the server daemon sends an acknowledgment 
SYN�ACK� to the

client� otherwise� the connection request is rejected�

� Upon receipt of a SYN�ACK� the client sends an acknowledgement 
ACK� and

a transaction request 
e�g�� GET� to the server� Upon arrival of the transaction

request� the TCP Listen Queue slot is released�

Immediately after the TCP socket has been established� the server daemon for�

wards the transaction request to the HTTP sub�system 
discussed in section

����� After the transaction has been processed� the server typically sends a FIN

message to the client to terminate the TCP socket�

To model the TCP connection setup phase� denote by NTCP the size of the

TCP Listen Queue 
i�e�� the number of slots�� The TCP connection setup phase

can be modeled as a blocking model with NTCP servers and zero waiting bu�er

space� where a �server� represents a slot in the TCP Listen Queue and customers

represent connection requests� If an incoming customer �nds all servers busy 
i�e��

all slots are occupied by other pending connection requests�� then the request is

refused� otherwise� the request is taken into service immediately� A service time

represents the time between 
�� the arrival of the connection request at the TCP

Listen Queue and 
�� the time at which the transaction request 
after receiving

the SYN�ACK� arrives� as illustrated in Figure �� In this way� the duration of

a service time corresponds to one network round�trip time 
RTT� between the

server and the client� The size of the TCP Listen Queue 
NTCP � is con�gurable�

���� HTTP Processing Phase

After a TCP connection has been established� the transaction request is

ready to be parsed and interpreted by the HTTP sub�system� which consists of
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Figure �	 The ��way handshake procedure during the TCP connection setup phase	

an HTTP Listen Queue served by one or more multi�threaded HTTP daemons�

The dynamics of the HTTP sub�system are described as follows�

� If an HTTP thread is available� then the thread fetches the requested �le


either from a �le system or from cache memory� and puts the �le into a

network I�O bu�er 
if available�� The thread is then released to process the

next transaction request�

� If all I�O bu�ers are occupied at that time� then the HTTP thread remains

idling until an I�O bu�er becomes available� If there is more than one thread

waiting for an I�O bu�er to become available� some 
implementation�speci�c�

assignment rule is used to determine in which order free�coming I�O bu�ers

are assigned to the waiting threads�

� If there is no HTTP thread available 
i�e�� all threads are busy�� then the

transaction request enters the so�called HTTP Listen Queue 
if possible�� and

waits until it gets assigned a thread to handle the request�

� If the HTTP Listen Queue is full� the transaction request is rejected� the

connection is torn down� and the client receives a connection refused message�

Note that connection refusal messages may be generated in two ways� 
��

blocking at the TCP sub�system 
when all slots at the TCP Listen Queue are

occupied� see section ����� and 
�� blocking at the HTTP sub�system 
when the

HTTP Listen Queue is full��

The size of the requested �le is generally unknown beforehand� Therefore�

the �le size may exceed the I�O bu�er size� In that case� the �le is partitioned

into a number of parts� P�� � � � � Pk� each of which �lls one I�O bu�er 
except

for the trailing part Pk�� In the case k � �� all segments of a given �le must
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make use of the same I�O bu�er� Thus� an HTTP server is not allowed to dump

di�erent parts of the same �le into di�erent I�O bu�ers� Therefore� if k � �

then P� 
i�e�� the �rst segment of the �le� is placed into the I�O bu�er� Then�

the HTTP thread responsible for handling the transaction has to remain idling


blocked� until the bu�er has been drained completely before it can place P�

into the bu�er� and so on� An exception is made for Pk 
the �nal part of the

partitioned �le�� as soon as Pk has been placed into the I�O bu�er� the thread

is ready to serve another transaction request 
and does not have to idle until Pk

has been drained completely�� Figure � illustrates the �le partitioning for k � ��

The HTTP sub�system can be modeled by a multi�server �nite�bu�er block�

ing system with NHTTP servers and bu�er size BHTTP � The servers represent

the HTTP threads� the customers represent transaction requests� and the bu�er

represents the HTTP Listen Queue� If a server is available� then the customer is

taken into service immediately� Otherwise� the customer enters the HTTP Listen

Queue� if the queue is full� then the customer is rejected� De�ne the service time

�trans of a customer 
transaction request� as the time interval between 
�� the

time at which a thread starts to fetch the requested �le and 
�� the time at which

all parts of the �le have been placed into an I�O bu�er� The service time� �trans�

consists of the following three parts�

�trans � �fetch � �wait � �drain� 
��

where �fetch represents the time required to fetch the �le� �wait represents the time

the server has to wait to get access to an I�O bu�er and �drain represents the

time to put the entire �le into an I�O bu�er 
possibly in parts�� In general� the

requested �le is partitioned into parts P�� � � � � Pk� where k �� Nfile� the number

Figure �	 File partitioning during the HTTP processing phase	
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of I�O bu�ers that the �le needs 
in Figure � we have Nfile � ��� Therefore�

�drain can be further decomposed as

�drain � �
���
drain � � � �� �

�k���
drain � 
��

where �
�i�
drain is the time needed to put Pi into an I�O bu�er and drain Pi 
i �

�� � � � � k���� Recall that the time needed to drain the trailing part of the �le does

not contribute to the �service time�� so that �
�k�
drain is excluded here� Denoting

the �le size by F and the I�O bu�er by BIO� Nfile is given by

Nfile � d
F

BIO
e� 
��

where the dxe is de�ned as the smallest integer that is larger than or equal to x� It

is assumed that the time to place a part of the �le into an I�O bu�er 
after an I�O

bu�er has been assigned to the responsible HTTP thread� is negligible� Figure �

illustrates the components of a �service time� in the HTTP sub�system for the

case Nfile � � 
see also Figure ��� In general� �fetch is an independent random

variable� while the probability distributions of the random variables �wait� Nfile

and �drain� and their correlation structure� are output parameters that generally

depend on the performance of the I�O sub�system 
modeled in the next section��

The size of the I�O bu�ers 
BIO� is con�gurable� and is typically tuned to

entirely store the vast majority of the requested �les� in the sense that ProbfF �

BIOg � �� where � is close to � 
e�g�� ���� or ������ Hence� in most cases� the

requested �le �ts within a single I�O bu�er and therefore� need not be partitioned�

The bu�er size 
BIO�� the number of I�O bu�ers 
NIO�� the size of the HTTP

Listen Queue 
BHTTP �� and the number of threads 
NHTTP � are con�gurable�

Figure �	 The HTTP processing phase	
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���� I�O Processing Phase

The di�erent I�O bu�ers are �drained� over a common network connection

to the network 
e�g�� the Internet or an intranet�� The scheduling of access for

the di�erent output bu�ers to the network connection is done by a so�called I�O

controller that �visits� the bu�ers in some order 
e�g�� in a round�robin fashion��

The communication between the server and the client is based on the TCP�IP

protocol suite� TCP�IP is a connection�oriented protocol� and is controlled by a

windowing mechanism 
see ��� for more details�� The transmission unit for the

TCP�IP�based network connection is the Maximal Segment Size 
MSS�� i�e�� the

largest amount of data that TCP will send to the client in one segment� Therefore�

the �les residing in the I�O bu�ers are 
virtually� partitioned into blocks of � MSS


except for the trailing part of the �le�� The windowing mechanism implies that

a block of a �le residing in an output bu�er can only be transmitted if the TCP

window is open� that is� if blocks can still be transmitted before receiving an

acknowledgment� Notice that the arrival of acknowledgments generally depends

on the congestion in the network� Therefore� the rate at which each of the I�O

bu�ers can �drain� their contents is a�ected by congestion in the network�

The dynamics of the I�O subsystem can be modeled as a single�server polling

model with NIO queues� each of size BIO� where NIO is the number of I�O bu�ers

and BIO is the I�O bu�er size� The server represents the I�O controller and the

queues represent the I�O bu�ers� The �service times� represent the time to

�drain� 
i�e�� transmit and acknowledge� � �le block�

The total time to drain the contents of an I�O bu�er �drain I�O buffer can

be expressed as follows�

�drain I�O buffer �
X

k

�
�k�
I�O block� 
��

where �
�k�
I�O block is the time needed to drain the k�th block in the I�O bu�er�

�
�k�
I�O block can be further decomposed as

�
�k�
I�O block � �

�k�
RC � �

�k�
DB� 
��

where �
�k�
RC denotes the time until the server visits the I�O bu�er in question 
i�e��

the residual cycle time�� and �
�k�
DB denotes the time to �drain� the �le block� The

latter� in turn� can be decomposed further as follows�

�
�k�
DB � �

�k�
link � �

�k�
inet � �

�k�
client� 
��
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where �
�k�
link is the time to put the block on the output link� �

�k�
inet is the time to

send the block and return an acknowledgment� and �
�k�
client is the time required

by the client interface 
e�g�� a modem or LAN card� to read the block� Figure �

illustrates the dynamics of the model for the case where the I�O bu�er contains

� blocks� numbered B�� B� and B�� respectively� The time to put a �le block of

size B�k� onto a network connection is given by the following expression�

�
�k�
link �

B�k�

�NC
� 
��

where �NC is the line speed of the connection to the network� Moreover� the time

required by the client to read a �le block of size B�k� is given by

�
�k�
client �

B�k�

�client
� 
	�

where �client is the rate the client reads incoming data 
e�g�� �	�	 Kbit�s for mo�

dem�� �
�k�
inet is a random variable with the same distribution as a network RTT�

Remark ���

The model explains how congestion in the network may lead to rejection of in�

coming transaction requests� To this end� suppose the network is congested for

some time period� Then the network RTT increases� and consequently� TCP ac�

knowledgments of the receipt of �le blocks are delayed� so that the throughput of

�le blocks from the I�O bu�er to the client over the TCP connection decreases�

This means that the �les are �drained� at a lower rate� This� in turn� implies

Figure �	 IO processing phase	
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that I�O bu�ers become available to the HTTP threads at a lower rate� so that

HTTP threads may have to wait 
idle� for a longer time period to get access to

an I�O bu�er to �dump� the �le� Consequently� the HTTP Listen Queue will

tend to �ll up� leading eventually to rejection of incoming transaction requests�

In this way� congestion in the network for some sustained period of time may

cause the server itself to run into performance problems�

Remark ���

With the advent of transactions involving dynamic content� Web servers must

handle requests for non�HTML 
e�g�� script output� �les� which are generally

much more CPU�intensive than static HTML �les� Files with dynamic content

are typically implemented into common scripting standards such as Common

Gateway Interface 
CGI� and Application Programmng Interface 
API�� In many

Web server implementations� the HTTP thread responsible for running a script

must wait for the execution of the script to be completed before handling another

transaction request� In the model presented above� the impact of dynamic content

on the Web server performance can be incorporated by modifying the �service�

time distribution� of the HTTP threads accordingly� Note that in other server

implementations 
e�g�� Microsoft Internet Information Server ��� and later�� the

server is equipped with a dedicated script engine� The HTTP thread checks if

a script must be run� and if so� the HTTP thread forwards the request to the

script engine� As soon as the script object has been delivered to the script engine�

the HTTP thread is ready to handle newly incoming transaction requests 
so the

HTTP thread does not wait for the script execution to complete�� Extension of

the model to incorporate such a dedicated script engine is fairly straightforward�

�� Validation

We have implemented the model in a simulation tool to predict the Web

server performance� To assess the validity of the model� we have performed

experiments to compare performance predictions based on the simulation model

with measurements in a test lab environment� The results are outlined below�

Consider a Web server with the following parameter settings� � CPUs�

NTCP � ����� BHTTP � ���� NHTTP � ��� BIO � ����� NIO � ��� �fetch����

ms 
consisting of ��� ms for HTTP processing and 	�� ms for running dy�

namic content� see also Remark ����� TCP maximum window size � 	 Kbytes�
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Figure �	 Throughput as a function of the transaction request rate	

MSS����� bytes� RTT�� ms 
based on measurements�� The clients and the

server were connected via a ��� Mbit�s Fast Ethernet� so that �NC � �client����

Mbit�s� A load generator was used to �bombard� the server with transaction

requests at given transaction rates� Figure � shows the server throughput as a

function of transaction request rate 
in transactions per second�� and Figure �

shows the average end�to�end response time 
in seconds� as a function of trans�

action request rate� The results in Figures � and � show that the performance

predictions based on the simulation model closely match the results in the test

lab� We have performed various other validation experiments� and the accuracy

of those results was found to be comparable to that shown in Figures � and ��

�� Simulation

We have performed a variety of numerical experiments to obtain insight

into the performance capabilities and limitations of Web servers� The results are

outlined below� The simulation tool is very useful to answer �what�if� questions

to understand the performance under various parameter settings� and can ulti�

mately be used to develop tuning guidelines for the con�guration of Web servers�
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Figure �	 Average response time as a function of the transaction request rate	

However� derivation of tuning guidelines requires a deeper insight into how the

performance�limiting component of the server varies for di�erent parameter con�

�gurations� which requires many more simulation experiments to be performed�

We emphasize that the simulation results discussed below are only a �rst step in

that direction� and are only valid in the speci�c settings considered�

Consider the model with the following parameters 
referred to throughout

as model I�� � CPUs� NTCP � ����� BHTTP � ��	� NHTTP � ��	� NIO � ����

BIO � �� Kbytes� MSS���� bytes� �fetch is exponentially distributed with mean

� ms� the �le size is geometrically distributed with mean � Kbytes� the network


Internet� RTTs are exponentially distributed with mean ��� ms� �NC � ���

Mbit�s� �client � �	�	 Kbit�s� maximum TCP window size � � Kbyte� File�

retrieval requests arrive according to a batch Poisson process� where the batch�

size distribution 
representing the number of in�line images per Web page� is

geometrically distributed with mean ��� See Remark ��� for a discussion on

the assumptions� Figure 	 shows the throughput 
i�e�� the number of successful

transactions per second� as a function of transaction request rate� and Figure

� shows the end�to�end response time 
in seconds� as a function of transaction

request rate 
model I�� Figure 	 shows that the transaction throughput increases
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Figure �	 Throughput as a function of the transaction request rate �for model I�	

linearly with request rate up to a certain threshold value� Close examination of

the results in Figure 	 indicates that the maximum throughput is limited by the

bandwidth of the T� connection� restricting the number of successful transactions

to about �� per second� Figure � shows that the response time is fairly constant

when the server is lightly loaded� but increases rather sharply when the load

approaches the capacity of the �rst bottleneck 
i�e�� the T� line speed�� When the

o�ered load exceeds the capacity of the server� the server saturates� transactions

are rejected� and the average response time tends to a constant threshold� Note

that the response time does not increase without bound� because the HTTP

Listen Queue is �nite and transaction requests �nding a full bu�er are rejected�

Next� consider what happens if the observed bottleneck in model I is removed

by replacing the T� network connection by a T� line 
which can process as much

as �� Mbit�s�� This model is referred to as model II� Figures �� and �� show

the throughput and average response time as a function of transaction request

rate� The results in Figure �� show that by replacing the T� with a T� network

connection� the maximum throughput has increased considerably� but the server

can not saturate the T� line� In fact� examination of the results shows that

the number of I�O bu�ers 
assumed to be NIO � ���� has now become the
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Figure �	 Average response time as a function of the transaction request rate �for model I�	

performance�limiting factor� restricting the throughput to about ��� transactions

per second� Note that at maximum server throughput� the T� network connection

is only ��� loaded� Similar to the results for model I� we observe that the

average delay increases fairly sharply when the server approaches its performance

bottleneck� We also observe in Figure �� that the threshold for average delay has

dropped from about �� seconds to only about ��� seconds�

To proceed� suppose that in an attempt to remove the observed bottleneck

in model II� it is decided to double the number of I�O bu�ers 
so that NIO � ���

instead of ����� This model is referred to as model III� Figure �� shows the

average response time as a function of the transaction request rate for this model�

The results in Figure �� show that by doubling the number of I�O bu�ers� the

response times tend to increase when the transaction rate approaches about ���


about two times the maximum throughput observed in model II�� In fact� the

results show that in model III the number of I�O bu�ers 
although doubled

compared to model II� is still the performance�limiting factor� We also observe

that the average response time has dropped slightly compared to model II�

The numerical examples considered above assumed that the average RTT is

��� ms� which is rather typical in Wide Area Networks 
WANs� such as the In�
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Figure ��	 Throughput as a function of the transaction request rate �for model II�	

ternet� For comparison� let us consider the performance of Web servers in a Local

Area Network 
LAN� environment� To this end� we consider the model with the

same parameters as in model III� but where the average RTT has decreased to

only � ms and where the MSS is ���� bytes 
realistic in LAN environments� see

���� The model is referred to as model IV� Figure �� shows the average response

time as a function of the transaction request rate for model IV� The results show

that the maximum throughput has increased dramatically to about 	�� transac�

tions per second and that the average response time has decreased signi�cantly


compared to the models II and III�� The performance�limiting factor has now

become the CPU processing speed� rather than the number of I�O bu�ers�

Remark ���

The results in Figures �� and �� address an interesting observation regarding

network environments and server benchmarking� In a WAN environment� the

network RTT is signi�cant� so that the TCP window �ow control mechanism

results in a relatively slow draining of the I�O bu�ers� making the I�O sub�

system a serious potential performance bottleneck� In a LAN environment� in

contrast� the network RTT is relatively short and the I�O sub�system drains the
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Figure ��	 Average response time as a function of the transaction request rate �for model II�	

output bu�ers quickly� making the I�O sub�system a less likely bottleneck� Web

server benchmarking experiments are typically performed in a high�speed LAN

environment� where the TCP and I�O processing phases are unlikely to limit

performance� Therefore� applying the absolute outcomes of the benchmarking

experiments as an estimation of the actual Web server performance capabilities

may lead to overly optimistic performance predictions when the server operates

in a WAN environment� Ignoring the network environment may lead to highly

inaccurate and overly optimistic performance predictions based on benchmarking�

Remark ���

To limit the number of simulations� we made a number of assumptions that

may or may not be accurate in speci�c cases� For instance� we assume incoming

transaction requests form a batch Poisson process� The literature� however� is not

conclusive regarding the nature of the arrival process of transaction requests of�

fered to a Web server� Interestingly� the results in ��� show that the user�initiated

arrivals of �sessions� are well�modeled by a homogeneous Poisson arrival process�

while lower�level 
e�g�� packet�level� tra�c streams are not captured well by a

Poisson process� In fact� recent studies based on tra�c measurements have re�
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Figure ��	 Average response time as a function of the transaction request rate �for model III�	

vealed that packet�level tra�c streams in telecommunication networks may have

a complicated auto�correlation structure� exhibiting long�range dependence 
cf��

e�g�� ���������� Moreover� we assume that the network RTTs are exponentially

distributed� Again� the literature is not conclusive regarding the stochastic be�

havior of RTTs� Furthermore� we assume that the number of �le�retrieval re�

quests generated by a single page�retrieval request is geometrically distributed

with mean ��� This assumption may be unrealistic in some situations� In this

context� note that number of simultaneously outstanding TCP connections per

client may be limited� the maximum number of parallel TCP connections is a

tunable browser parameter� We acknowledge that these assumptions may have

a signi�cant impact on the results presented above� It would be very useful and

interesting to study the impact of the assumptions on the observed results�

In the context of the simulation model proposed here� we emphasize that

these assumptions are not restrictions posed by the model� the model itself does

not impose any restriction on the request arrival process� nor on the number of

�les per page� nor on the distribution of RTTs and their correlation structures�

Remark ���

The dynamics of the TCP �ow control mechanism are notoriously complex� and
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Figure ��	 Average response time as a function of the transaction request rate �for model IV�	

the performance of TCP depends on a signi�cant number of TCP parameter set�

tings� such as the slow�start algorithm� the maximum send and receive window

sizes� etc� We refer to ��� for an excellent detailed description of the TCP trans�

action �ows� The primary focus of this paper is to present an end�to�end model

of the transaction �ows related to the application protocol HTTP� rather than

to provide a detailed model for the TCP transaction �ows� In order to cover the

impact of the TCP �ow control mechanism to some extent� while keeping the

parameter space limited� we have implemented a simpli�ed version of the TCP

protocol stack in the model used for the simulations� We implement the dynam�

ics of the TCP �ow control mechanism according to the model described in ���

Note that many simulation tools include a standard TCP �ow control module�

�� Concluding Remarks and Topics for Further Research

We have presented a new queueing model for the end�to�end performance

of Web servers� The model describes the impacts and interactions of the TCP

sub�system� HTTP sub�system� I�O sub�system� and network� To predict the

performance of Web servers 
in terms of end�to�end response time and e�ective
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throughput�� the model has been implemented in a simulation tool� The perfor�

mance predictions based on the simulation model have been validated extensively

with results in a test lab environment� To illustrate the usefulness of the model�

we have performed a number of preliminary simulation runs� and the results pro�

vide several interesting insights into the performance capabilities of Web servers�

Since performance testing in a lab environment is extremely time consuming� the

simulation tool provides an excellent vehicle for answering �what�if� questions in

support of decisions regarding Web server con�guration tuning�

The model described here presents many opportunities and challenges for

further research� First� in order to identify performance tuning guidelines� we

must obtain a better understanding of the impact of the di�erent system param�

eters 
e�g�� the arrival process� bu�er sizes� �le�size distribution� number of HTTP

threads� number and size of the I�O bu�ers� etc�� on the performance of Web

servers� To this end� we must perform many more simulation runs to compare

the performance of Web servers under many con�guration settings�

In addition� the model can be extended in several directions� For example� in

order to process transaction requests involving dynamic content 
e�g�� CGI�API

scripts� Java servlets�� many servers are equipped with a script engine 
with a

set of dedicated threads�� The model may be extended to explicitly cover the

impact of such a script engine implementation� Furthermore� the performance

of Web servers may be signi�cantly impacted by the threading and object scope

models that are employed by the Web server� For instance� in some threading

models it may occur that di�erent threads need to wait 
idle� for access to the

same object� leading to additional contention and delay� It would be interesting

to explicitly model the impact of the threading and object scoping models�

In the current model� the transaction request rate is independent of the

number of transactions in progress� In many applications� however� the customer

population is �xed 
e�g�� in a corporate Intranet environment with a limited user

population�� Those scenarios may be modeled by a closed queueing network�

Next� in the current model a TCP connection is established for every �le

transfer 
i�e�� HTTP version ��� ���� causing signi�cant overhead� To overcome

this performance penalty� the concept of persistent connections has been proposed


HTTP ��� 	��� It would be interesting to implement persistent connections in

the model� and quantify the impact on the performance of Web servers�

Although the simulation tool has been found to be very e�ective in predict�

ing Web server performance� the computation time may be signi�cant� especially
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when the bu�er sizes and numbers of threads are large� Therefore� it may be

desirable to complement the simulation model with fast�to�evaluate analytic ap�

proximations to obtain performance predictions within a negligible time interval


at the expense of some accuracy�� In ���� we propose such an analytic approxi�

mation� and show that the predictions match well with the simulation results�
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