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Abstract

We consider-person games with quasi-concave payoffs that depend on a player’s own action and
the sum of all players’ actions. We show that a discrete-time, stochastic process in which players
move towards better replies—thetter-reply dynamies-converges globally to a Nash equilibrium
if actions are either strategic substitutes or strategic complements for all players around each Nash
equilibrium that is asymptotically stable under a deterministic, adjusted best-reply dynamics. We
present an example of a 2-person game with a unique equilibrium where the derivatives of the best-
reply functions have different signs and the better-reply dynamics does not converge.
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1. Introduction

In his study of duopoly, Cournot (1960) introduced the noncooperative equilibrium
later generalized by Nash (1950; 1951), and investigated its stability under a version
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of the best-reply dynamics in which firms alternate changing output from its current
level to a best reply to the opponent’s level. The more recent literature has studied
several versions of the best-reply dynamics, both in the framework of oligopoly mod-
els and in the more general setup of a noncooperative game, with the focus on find-
ing conditions that guarantee either the global or the local asymptotic stability of a
Nash equilibrium. The general message is that these conditions are very strong, espe-
cially when global stability of a particular Nash equilibrium is required, since in this
case they must imply uniqueness of the equilibrium. (See Al-Nowaihi and Levine, 1985;
Dastidar, 2000; and Vives, 1990 for results on convergence of the continuous-time version
of the dynamics, and Gabay and Moulin, 1980 and Moulin, 1984 for results on convergence
of the discrete-time dynamics.)

In this paper we are interested in studying global convergence to a Nash equilibrium,
but we do not require that the equilibrium be unique. Instead, we study conditions under
which the system eventually settles in an equilibrium, without imposing that all possible
paths converge to the same equilibrium. This is only the first of several differences between
our approach and the rest of the literature on the best-reply dynamics. A more fundamental
difference is that we look at stochastic, rather than deterministic, adjustment processes. In
our model players have status quo actions and are randomly selected, one at the time, to
sample new actions. When a player is selected to sample, she randomly draws one of her
available actions and only changes her status quo to the sampled action if this improves her
payoff (i.e., if the move constitutessangle-player improvementWe call the stochastic
process so generated thetter-reply dynamicsbecause players move from their current
actions to a better reply, not necessarily a best reply; even though players move in the
direction of their best replies, they can overshoot or undershoot them.

Our better-reply dynamics can be viewed as a simple stimulus—response model of the
behavior of boundedly rational players. It can be seen as a formalization of results from
experimental research in economics and psychology showing that players’ behavior grav-
itates towards actions that have been successful (see Roth and Erev, 1995). Our dynamics
is related to the recent literature on learning in games (see Fudenberg and Levine, 1998
for a survey). However, the focus of this literature is on how players may learn to play
a mixed strategy Nash equilibrium in a finite game (often with only two players), while
we focus on convergence to a pure strategy Nash equilibrium in a game with continuous
action spaces and several players. A distinguishing feature of our model is that the bound
on players’ rationality and knowledge is more severe than in most of the learning litera-
ture. The better-reply dynamics is consistent with a player not having precise knowledge,
or memory, of her own and her opponents’ payoff functions and past actions.

A standard criticism levied against the deterministic, best-reply dynamics first studied
by Cournot is that when a player moves to a best reply to her opponents’ current actions,
she acts as if her opponents never changed their actions, in spite of collecting repeated
evidence that actions do change. This criticism is less pertinent to our model, because our
players need not know the actions of their opponents or their own best-reply functions.
Our players simply experiment new actions and make definite changes after experiencing
an increase in payoff.

A version of the better-reply dynamics studied in this paper was first introduced by
Friedman and Mezzetti (2000). They noticed that in finite games having/dla finite
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improvement propertgweak FIP), the better-reply dynamics globally converges to a Nash
equilibrium. The weak FIP requires that starting from any action profile there exists a finite
path of single-player improvements that leads to a Nash equilibrium of the game. Friedman
and Mezzetti (2000) showed that finite supermodular games and generic, continuous, two-
person, quasi-concave games have the weak FIP.

The focus of our analysis in this paper is aggregative n-person, noncooperative
games. In an aggregative game the payoff of each player is a function of the player’s own
action and of the sum of the actions (or, equivalently, the mean action) of all players.
We take the players’ action spaces to be closed intervals on the real line and assume that
a player’s payoff is a quasi-concave function of her own action. We restrict attention to
games in which, for each player, the slope of the best-reply function is bounded below
by —1.1 The class of aggregative games contains many interesting games from economics
and political science. A wide class of oligopoly games, including Cournot’s original model,
models of the private provision of a public good, models of the joint exploitation of a
common resource, collective actions models, and macroeconomic models with catching-
up-with-the-Joneses are all examples of aggregative games.

Two recent papers that also study aggregative games are Kukushkin (2004) and Dubey
et al. (2004). Kukushkin (2004) established that every deterministic best response path
leads to a Nash equilibrium in finite aggregative games satisfying one of three possible
versions of a single crossing condition. Dubey et al. (2004) proved existence of a pure
strategy Nash equilibrium in a fairly general class of aggregative games (including games
with non-convex strategy sets), when actions are either strategic complements, or strategic
substitutes.

After describing the model in the next section, in Section 3 we study the stochastic
process generated by the better-reply dynamics. We provide a sufficient condition for the
better-reply dynamics to globally converge to a Nash equilibrium of almost all aggregative
games. This condition is that actions be either strategic substitutes or strategic comple-
ments for all players (i.e., the derivatives of the best-reply functions have the same sign)
at all Nash equilibria that are asymptotically stable under a deterministic, continuous-time,
adjusted best-reply dynamics. This sufficient condition is a local condition, actions need
to be either strategic complements or strategic substitutes only at the Nash equilibria. Fur-
thermore, actions are allowed to be strategic substitutes at some equilibria and strategic
complements at other equilibria; we only need to rule out equilibria where actions are
strategic complements for some players and strategic substitutes for other players.

In Section 4 we provide an example of a 2-person game with a unique Nash equilibrium
at which the derivatives of the two best-reply functions have different signs; we show that
in such a game the stochastic process generated by the better-reply dynamics does not
converge to the equilibrium. This demonstrates that our condition on the derivatives of the
best reply functions at the Nash equilibria cannot be easily relaxed; without it the better
reply dynamics may fail to converge.

1 In most aggregative games such an assumption is not very restrictive; for example, in the Cournot model it
requires that the difference between price and marginal cost is a decreasing function of the firm’s output.
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In Section 5 we prove that aggregative games have the weak finite improvement prop-
erty. This implies that any discretization of a game with a continuous action space also has
the weak FIP and that in such a discretized game the better-reply dynamics converges to an
action profile that is close to a Nash equilibrium of the original game. At first, it may seem
puzzling that with a discrete state space global convergence requires less stringent condi-
tions (actions need not be strategic complements or substitutes at a Nash equilibrium). The
puzzle is easily resolved by noting that although a discretized version of the non-convergent
example of a 2-person game described in Section 4 would converge to the Nash equilib-
rium, the average time that it takes to converge goes to infinity as the discretized version
converges to the continuous game.

Section 6 contains some concluding remarks. There we argue that our convergence re-
sults for the stochastic better-reply dynamics are considerably stronger than existing results
on the convergence of the deterministic best-reply dynamics. The proofs of our results, ex-
cept for Theorems 1 and 6, are in Appendix A.

2. Themode€

We studyn-person gameg = (N, {A;}ien, {U;i}ien) Where each playei € N =
{1, ..., n} has a one dimensional, compact, convex strategy setR and a payoff func-

.....

forallae Aitis U;(a) = ¢;i(a;, X)), whereX =ay+---+a, andAx ={ay + --- + ay:

a; € A; for all i € N} is the set of admissible sums. (Note that this condition always hold

for 2-person games.) We assume thatis twice continuously differentiable in its argu-

ments and strictly quasi-concave with respeci;ta A;; thatis,U;(a;, a_;) > U;(a], a_;),

with a! # a!, impliesU; (Aa; + (1 — X)a],a_;) > U;(a],a_;) for all & € (0, 1). The par-

tial derivative ofU; with respect tay;, dU; /da; must have the same form &5.2 It is thus

possible to define a functioh; that depends on; and X' as follows:

aUj(a)  0¢; 0oi

bar o ) Ty
At an interior solution, playei’s best response functiah (a—;) only depends on the

sum of the opponent’s actions_; = ¥ — g;; that is, there is a functioB; (X_;) such

thatb; (a—;) = Bi(X_;),foralla_; € A_; = X; A;. The functionB; (¥_;) is an implicit

solution to the equation

Di(a;, X¥) = (a;, X). 1)

Dj(Bi(X_), Bi(¥_) + X_;) =0. 2

If for some X_; we haveD,; (a;,a; + X_;) # 0 for all a; € A;, thenB; is simply the right
endpoint ofA; if D; > 0, and the left one ifD; < 0. Strict quasi-concavity of/; with
respect tay; € A; implies that:

2 Sincel; is twice continuously differentiable ant} is compact, the partial and cross partial derivativesof
are bounded and obtain a maximum and a minimum.
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(i) B; is continuous and single-valued (i.e., the implicit equation (2) has, at most, a unique
solution for all X_;; at this solutionU; attains its maximum) and
(i) playeri’s payoff declines as; moves away fronB; (X_;).

This latter property and differentiability @f; imply that for alla; € A; and all¥ € Ax:

Di(a;j, 2) >0 ifa; <Bi(X_); Di(a;, ¥) <0 ifa; > B;(¥) )
and
dD;(a;, X) 9Di(a;, X) L 9Dilai. %)
da,' - aa,- X
whereA? is the interior of A. We also make the additional assumption that the partial
derivative of D; with respect tay; is negative everywhere; that is, for adl € A; and all
Y eAyx:
0Di(;, ) _ ¢, T) ¢, D)
daj  da? IXda;

<0 ifa;=Bi(Z_;)eA? (4)

(5)

This condition does not imply, and is not implied by, the concavity/ pivith respect tay; .

For example, itU; (a) = ﬁal? +y X2, then this assumption requirgs< 0, while concavity
requiresg + y < 0. In many games condition (5) is not very restrictive; together with
condition (4), it implies that the slope of the best-reply function of each player is bounded
below by—1:

dB;(¥_;)  9Di(a;, X¥)/0X¥  9Di(a;, X)/0a;
dX_;  dDi(a;, X)/da; dDj(a;, X)/da;

Sinced D; (a;, X)/da; is a continuous functionl(; is twice continuously differentiable) on
a compact domain, it attains a maximum; since the function must be negative, it follows

that the value at the maximum must be negative. Thil(a;, X')/da; must be bounded
away from zero.

—1>-1 fora;=B;(X_)).

Definition 1. The games = (N, {A;}ien, {Ui}icn) is anaggregative gami for all i € N:

(a) A; C R is compact and convex;

(b) U;(a) = ¢;(a;, X) is twice continuously differentiable in all its arguments and strictly
guasi-concave with respectdpe A;;

(c) U; satisfies condition (5).

Examples of aggregative games include oligopoly, and many collective action and
search models.

Example 1. In a homogeneous product, Cournot oligopoly witHirms, leta; be the
output level of firmi and X be total outputP (X)) is the inverse demand functiof; (a;)

is the cost function of firmi andU;(a) = P(X)a; — C;(a;). Condition (5) requires that

the difference between price and marginal cost be a decreasing function of a firm’s output,
P'(2)—C/(a;) <O.
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Example 2. In a collective action problem, each oflayers privately chooses at a cost
Ci(a;) (a; could bei’s private provision of a public good, or her private use of a common
resource). The sum of individual choices determines the beWgtil) to the player and
U;(a) = V;(X) — C;(a;). Condition (5) is satisfied provided cost is a convex function.

3. Thebetter-reply dynamics. convergence results

We are interested in studying the convergence properties of a stochastic, discrete time,
adjustment process, called thetter-reply dynamigsin which, at each point in time a
player is randomly selected to sample among her available actions. The selected player
only changes her status quo to the sampled action if this improves her payoff. We assume
that the probability that a randomly selected playeamples a strategy belonging to any
subsetE of A; is positive if E has positive Lebesgue measure. Formally, we associate with
the strategy spacg; of playeri a probability measuré®; defined on the Borel subsets
of A;. For any Borel seE C A; the numberP; (E) expresses the likelihood that player
samples a strategy that belongsoThe only condition we impose oB; is that for any
open intervall C A; we haveP; (1) > 0. This does not exclude singular measures; that is,
the measureé®; can have one or more pointsvhereP; ({x}) > 0.

Let a\x; denote then-tuple (a1, ...,ai—1,xi,ai+1,-..,a,) € A. The strategy profile
a\x; € A is asingle-player improvememivera € A if and only if the payoff to player is
higher under\ x; than unde: U; (a\x;) > U;(a).

Definition 2 (The better-reply dynamigsConsider a continuous gamge Let P; be a
probability measure on the Borel subsetsAgfsuch that for any open intervdl C A;,
P;(I) > 0. At each discrete time periadthere is a status quo action profile. A single
playeri € N is randomly selected, with all players having positive selection probability.
Playeri randomly samples action € A; according to the probability measupe. If a’\x;

is a single-player improvement ovef, then it becomes the new status qu©;* = a’\x;.

If U;(a'\x;) < U;(a") then the status quo does not changel = a'.

The process described in Definition 2 is essentially the same as the one defined by
Friedman and Mezzetti (2000), except that they had finite strategy spaces and required all
players to have the same probability of being selected to sample a new strategy and all
strategies to have the same probability of being sampled. Note that the experimentation of
a new strategy on the part of the player sampling at tifmes no effect on the other players.

In particular, it does not affect the payoff that other players associate with their status quo
action. The simplest way to justify this assumption is to think of time as a continuous
variable, with players experimenting new actions at (possibly random) discrete points in
time. When a player is sampling a new strategy at timghe has experienced the same
payoff for the time intervalr — 1, t) and views it as the status quo payoff.

We will derive results that hold for almost all transversal, aggregative games* beta
Nash equilibrium of agamg= (N, A, U) andB/(X*,) be the derivative of playeis best
reply function atz*. Playeri andj’s best reply functions at* are said to bé&ransversalf
they are not tangent; that is,Hlf(Efl.)B;.(Efj) # 1. The game; is called atransversal
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gameif at all Nash equilibriaz*, B;(Z‘ii)B}(Efj) #1foralli andj #i (i.e., if the best-

reply functions of all pairs of players are transversal). Transversal games have a finite num-
ber of equilibria (equilibria are isolated). L&t(n, g) be the set of:-person, transversal,
aggregative games withequilibria,a(1), ..., a(q) (we can unambiguously order equilib-

ria by puttingay(h — 1) < ag(h) for all h, ax(h — 1) < az(h) if a1(h — 1) = ay(h),...).
Consider the mag, : S(n, ) — R" that associates to each gage S(n, ) the vector

sq of the slopes of the best-reply functions at the Nash equilibrig of

sy =(B(Z-1(D), ..., By(Z-n (D), ..., Bi(Z-1(9)), ..., B, (Z-n(9)))-

Let 7(§)) be the range o&;. We will say that a property? holds for almost all games
in S(n, q) if there exists a subsdt* of I(g;) such that (i)](é;) \ I* has zero Lebesgue
measure iR"?, and (ii) the propertyP holds for all gameg with &/ (g) € I*. A property
holds foralmost all transversal, n-person, aggregative garifes holds for almost all
games inS(n, q), forall g.

We begin with some preliminary results. If Eq. (5) holds, then for any g¥ea A x
there is (at most) a unique solutidf; (X) to the implicit equation:

D;(M;(%),X)=0. (6)

If Eq. (6) does not have a solution ity (i.e., D;(a;, X) # 0foralla; € A;), thenletM; (X)
be the right endpoint of the interval; if D;(a;, X) > 0 and the left endpoint otherwise.
The functionM; (%) is a piece-wis&! function and at points where it is not differentiable
it has a right and a left derivative. We will use the convention that at such paifitsdd
is the left derivative ofM; (X).

Consider the following system of differential equations:

di=Mi(X)—a;, i=12...n. (7

If g is an aggregative game, then one can showMiat’) — a; and B; (¥_;) — a; have
always the same sign. For this reason, we will call (7)dbetinuous-time, adjusted best-
reply (CAB) dynamics

Lemmal. Letg = (N, {A;}ien, {Ui}ien) be an aggregative game. For alle A, we have

(@) (Mi(¥) —ai)(Bi(X-;) —a;) >0, and
(b) Bi(XY_;) =a;, if and only IfMl(E) =a;.

Recall that, given a system of ordinary differential equations f(a), with f(a) a
Lipschitz function, we can think of the unique solutioh with initial conditiona®, as
the trajectory of the deterministic dynamical system starting’aiAny pointa € A with
the property that there exists a sequence, ... such that lin),_, .c a™ = a is called an
w-limit point of the trajectorya’; the set of all such points is called thaelimit setof the
trajectorya’. If the w-limit set of the trajectory:’ contains a single elemeat € A, then
a* is a stationary point (i.e.f (a*) = 0) and if the system starts af then it will converge
to a*; lim,_,  a’ = a*. The system of ordinary differential equatiois= f(a) globally
convergesif for all ° € A the w-limit set of the system with initial condition® is a
singleton.
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If it is globally convergent, then from any given initial state the system converges
to an equilibriuma*; lim;_, o a’ = a*. Note that global convergence of a system does not
imply that the system has a unique equilibrium or stationary point. Rather, it means that
starting from any initial position one of the equilibria is eventually reached. Cycling or
chaotic dynamics are ruled out. Lemma 2 shows that the CAB dynamics defined by (7)
globally converges to some Nash equilibrium of the game

Lemma 2. Let ¢ be ann-person, aggregative game. Then the CAB dynamics defined by
Eq.(7) is globally convergent.

The intuition behind the global convergence of the CAB dynamics defined by Eq. (7)
is simple. By adding up the differential equations in (7) one obtains a single ordinary
differential equation inX'. Such an equation cannot exhibit any cyclic or chaotic behavior.
Lemma 2 is needed to establish the next lemma, which shows that for almost all
transversal, aggregative games there is a finite sequence of single-player improvements
that ends arbitrarily close to a Nash equilibrium.

Lemma 3. For almost all transversal-person, aggregative gamgsgiven any- > 0 and
any strategy profile?, there is a finite sequence of single-player improvements that starts
ata® and ends inside a ball of radiusaround an isolated Nash equilibriuat of g.

Lemma 3 implies that with probability one the better-reply dynamics ends up arbitrarily
close to a Nash equilibrium of an aggregative game. This is because, with probability one,
the better-reply dynamics will eventually follow a path arbitrarily close to a trajectory of the
deterministic system (7). The next lemma provides sufficient conditions for convergence
to a Nash equilibrium when the system is already close to the equilibrium.

Lemma 4. Letg be ann-person, aggregative game. Consider a Nash equilibritrof g.
Let B be the first derivative of the best-reply functiBi(X_;) of playeri evaluated at:*.
Assume that eithefa) B/ > Ofor all i and)_/_, B//(1+ B!) <1, or (b) 0> B/ for all i.
Then there exists a neighborho®dof the Nash equilibriuma* such that almost every path
a® at, a2, ... generated by the stochastic process described in DefinRtitivat starts in

V stays inV and, moreovelim, .., a’ =a*.

Two sets of conditions guarantee that when starting close to a Nash equilibtium
almost all paths generated by the better-reply dynamics converge fthe first condi-
tion is that all the derivatives; of the best-reply functions evaluatedadthave the same
sign; that is, actions are either locally strategic substitutes or locally strategic comple-
ments. The second condition)s;_, B//(1+ B/) < 1. Note that ifB/ <0 for alli ¢ N
this condition is automatically satisfied, because (4) and (5) guarante that-1 for
alli e N. Let C; be the derivative of thé/; functions defined in Eq. (6), evaluatedat
Equation (6) implies thaf; = B//(1+ B}), henceB; > —1 is equivalent taC; < 1. Fur-
thermore "/, B//(1+ B!) < 1is equivalent t®_;_, C; < 1. This condition is sufficient
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for a* to be locally asymptotically stable under the CAB dynamics defined by EG. (7).
Note also that if 3~ B/ > —1 foralli, or B; > O foralli and)";_, B//(1+ B]) < 1, then

at the equilibriunu* the best reply functions of all players are transversal, since it must be
B/B’ < 1foralli, .

The next theorem shows that the stochastic better-reply dynamics globally converges
if actions are either locally strategic substitutes or locally strategic complements for
all players at all Nash equilibria that are asymptotically stable under the CAB dynam-
ics. To use Lemma 4 in the proof, we also need to add the technical assumption that
>4 B//(1+ B)) # 1% Note that actions are allowed to be strategic substitutes at a Nash
equilibrium and strategic complements at another equilibrium, as we only need to rule out
equilibria where actions are strategic complements for some players and strategic substi-
tutes for other players.

Theorem 1. Letg be a transversak-person, aggregative game. Suppose that at each Nash
equilibriuma* that is asymptotically stable under the CAB dynamics defined bg7Eq.

(@) Yig B{(Z*)/I1+ B/(Z*)]#1, and
(b) the derivatives of all the best-reply functions have the same sign.

Then, regardless of the initial position, for almost any pathal, a2, ... generated by
the stochastic process described in Definitdnthe better-reply dynamigswve have
lim,_  a' =a*, wherea* is a Nash equilibrium of the gamge

Proof. First we must argue as in Lemma 3 that, starting from any non-equilibrium point,
the patha®, al, 42, ... will eventually end up in some neighborhodtiof a locally as-
ymptotically stable equilibriuna* of the system (7). Once there we can apply Lemma 4
to conclude the proof. (Recall that at an asymptotically stable equilibrium of (7) it must
be) ;1 B//(1+ B)) <1, hence} ;_, B//(1+ B]) # 1 at such an equilibrium implies
I .B/14+B)<1) O

Theorem 1 is the main result of the paper. Why is global convergence obtained and why
do we need actions to be either strategic substitutes or strategic complements around a Nash
equilibrium? An intuitive explanation consists of two parts. First, in aggregative games the
stochastic process generated by the better-reply dynamics will eventually get within a small
ball around a Nash equilibrium. Second, if the derivatives of the best reply functions have
the same sign at a Nash equilibrium, players always move in the same direction and when
close to equilibrium the stochastic process will not exit from a small ball around it. If the
derivatives of the best reply functions have different signs at a Nash equilibrium, there is
no tendency for players to move in the same direction. In the next section we will present
an example that shows that in this case the better-reply dynamics of Definition 2 need not
globally converge, because the stochastic process may leave any small ball around a Nash
equilibrium.

3 Y* 1 Ci > 1thena™ is unstable, while iy ! _; C; =1 thena™* could be either stable or unstable.
4 This assumption is satisfied by almost all games.
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Consider again the examples introduced in Section 2.

Example 1. In the case of a homogeneous product, Cournot oligopoly, a sufficient con-
dition for the slopes of the best-reply functions to have the same (negative) sign is
P”(X*) <0 (i.e., at the total output level corresponding to a Nash equilibrium the slope
of the inverse demand function is decreasing).

Example 2. In a collective action problem, the slopes of the best-reply functions have
the same (negative) sign at a Nash equilibrizifrprovided each player's marginal benefit
function is decreasing ix™*, V/"(¥*) < 0.

The next theorem shows that for 2-person games condition (5) need not be satisfied (i.e.,
the slope of the best-reply functions need not be bounded belevibfor the better-reply
dynamics to globally converges to a Nash equilibrium.

Theorem 2. Let ¢ be a transversal2-person game with payoff functions that are
quasi-concave in own action. SuppoBg(as)B,(a;) > 0 (i.e., the derivatives of the
best-reply functions have the same $igih each Nash equilibriuna™ of g such that

B} (a%)/(1+ Bj(a})) + By(aj)/(1+ By(aj)) < 1. Then, regardless of the initial posi-
tion, for almost any path®, a®, a2, ... generated by the stochastic process described in
Definition2 we havelim,_,  a’ = a*, wherea* is a Nash equilibrium of.

4. An example of non-conver gence of the better-reply dynamics

In this section we construct an example of a 2-person, quasi-concavegfami¢h a
unique Nash equilibriuma* = (0, 0) at which the derivatives of the best-reply functions
have different signs and show that for almost all paths:®, . .. the better-reply dynamics
does not converge to the equilibrium. First we introduce a needed lemma.

Lemma 5. Let o0, pl, ... be an infinite path of a discrete time Markov process with
0% > 0.5 Suppose the probability law governing the stochastic process in the int@val
satisfies the following inequalities

t+1 1
P(p—t = 224) > 2 (8)
o
pt+l
P( P <£)<82 foranye > 0. (9)

Then for almost all path?, p1, ... there exist¥" such thatp” > r.

5 The stochastic process considered in this lemma may depend on some hidden, time-varying variables, pro-
vided that their values do not influence the validity of inequalities (8) and (9).
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Now we are ready to construct our example. The strategy set of each playker? is
A; =[—2,2]. Let 81, B2 > 0 and define the best-reply functions of the players as follows:

—piraz foras e [ B L ]
Bi(az) = | P foraz > 4,
——2+g%‘12_’12ﬁ1 for ap < _ﬂ_ll’
Boai foraj e [_ﬂ_lz’ ﬂ_lg]’
Bo(ay) = 72/32;352_“{2 foray > =+ 7
Blp2  forap < —4.

Let the utility function of each player be the square of the Euclidean distance from the best
reply. This defines a two-player, continuous gagfehaving a unique Nash equilibrium
at the pointe* = (0, 0). If 81 < 1, then condition (5) is satisfied. In this game the CAB
dynamics defined by (7) always converges:to Also, around the equilibrium the game
has linear best-reply functions wit (0) B,(0) = — 182 < 0.

Theorem 3 shows that in the garé, if the evolution of the action profile follows
the better-reply dynamics, then play will not converge to the Nash equilibaitinfor
simplicity we will suppose that each player's sampling probability is uniformAgr=
[—2, 2] and that the probability that each player is selected to sample a new stratg¢gy is 1

Theorem 3. In the gameg®, consider the stochastic process generated by the better-reply
dynamics described in Definitiod Assume that each player's sampling probability is
uniform onA; = [—2, 2] and that the probability that each player is selected to sample a
new strategy id/2. For all 81 > O there existgy > 0 such that if8> > o, then for almost

all pathsa®, 4, ..., witha® = (0, 0), the stochastic process does not converge to the Nash
equilibriuma* of g£.

Lemma 3 shows that there is a positive probability that in the gafnéiscussed in this
section the stochastic process described in Definition 2 enters any small neighbbrhood
of the equilibrium(0, 0); Theorem 3 shows that it is also the case that almost any path of
the process will leave the neighborhodIn fact, almost all orbits are dense in the square
[—2, 2)%; that is, any set of positive measure is visited infinitely many times. This explains
why in Theorem 2 we must impose the conditiB{(a;) B,(a;) > 0 at a Nash equilibrium
a* to guarantee that the system globally converges.

Theorem 3 is related to a result by Gale and Rosenthal (1999). They studied a model
with an experimenter and an imitator. At each point in time, the experimenter samples new
actions and moves to a better response, while the imitator adjusts her action towards the
current action of the experimenter. The experimenter’'s (player 1) best-reply function is
B1 = yap, wherey could be positive or negative. Gale and Rosenthal (1999) showed that
if y is negative (and sufficiently small) then the system leaves any sufficiently small neigh-
borhood of the unique Nash equilibriug@, 0) with probability one, while ify is positive
then the system globally converges to the equilibrium. To relate this result to our model,
note that we can think that the imitator acts as if her best-reply function Beee a;.
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Then, applying our better-reply dynamics, we would also obtain global convergence when
y > 0 and no convergence for a sufficiently small, negative

5. Thebetter-reply dynamicsfor finite games

So far we have considered games with continuous strategy sets. In this section we show
that there are important differences in the convergence properties of the better-reply dy-
namics with a discrete and with a continuous state space.

Friedman and Mezzetti (2000) introduced the following definition.

Definition 3. The gameg has theweak finite improvement propertyweak FIP) if from all
action profiles: € A there exists a finite sequence of single-player improvements that ends
in a pure strategy Nash equilibrium.

The weak FIP is an important property in the study of adaptive dynamics in finite games.
In a finite game with the weak FIP the better-reply dynamics converges to a Nash equilib-
rium. For continuous games, Friedman and Mezzetti (2000) proved the following theorem.

Theorem 4. Any transversal2-person, quasi-concave game has the weak FIP.

We will extend Theorem 4 by showing that almost all transversgkerson, aggregative
games also have the weak FIP. We begin with a lemma that deals with 2-person games with
quadratic payoffd; (a) = a; — y;(a? — 2B;a1a2)?, wherea;, f;, y; > 0 are constants. In
such games the best-reply amfi functions are:

Bi(aj) = Bia;,
M;(a1+ a2) = Ci(a1 + a2), (10)

whereg; isa constantand; = 8;/(1+ B:),i =1,2, j #1i.

Lemma 6. Let C be the set of all pair€1, C2 with C; <1 and C1 + C2 < 1 and let

g ={{1,2}, A, U) be a transversaR-person game with best-reply aid; functions given
by (10)with (C1, C2) € C.% For almost all(C1, C») € C (i.e., with the possible exception of
a subset of having zero Lebesgue meashige following claims hold

(a) Given any action profile® = (a2, a9) and any numbe# e (-1, 1), there exists a
finite sequence of single-player improvemeaf§ at, ..., a”} such thata! + al =
0(al + ad).

(b) If 6 =0, the sequenci:®, a?, ..., a”} can be chosen so that = (0, 0).

6 Note that the game is transversal. For 2-person games the best reply functions at a Nash equilibrium are
transversal if and only iB182 # 1, or equivalentlyC1 + Co # 1.
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Let £(8ag) be the line inR? with slope—1 which intercepts the segment with endpoints
a% and—aY at the interior pointag. Part (a) of Lemma 6 says that it is possible to find a
single-player improvement path that starta%taind reaches a poiat  on the linet(6ap)
after T steps. Part (b) says that if the line goes through the origin we can chdose
(0, 0); that is, there is a single-player improvement path fudtio the Nash equilibrium
(0,0). Lemma 6 is used in the proof of the following theorem.

Theorem 5. Almost all transversalgz-person, aggregative games have the weak finite im-
provement property.

We will use Theorem 5 to show that in any sufficiently fine, finite discretization of
almost all continuous, aggregative games, the better-reply dynamics converges in finite
time to a point arbitrarily close to a Nash equilibrium. To do so, we need first to modify
the better reply dynamics to fit the case in which the strategy space of each player is finite.

Definition 4 (The better-reply dynamics for finite gaeSonsider a finite game’". At
each discrete time periadthere is a status quo action profile A single playeri € N is
randomly selected, with all players having positive selection probability. Plagedomly
samples an action; € Asz with all the elements ofAf having positive probability of
being sampled. IUF (a'\x;) > UF (a’) thena'*1 = a'\x;. If UF (a'\x;) < UF (a") then
atl=qa'.

We now discretize the strategy sets of a continuous game. So as not to introduce artifi-
cial instability, we assume that all the actions corresponding to a Nash equilibrium in the
original game are available to the players in the discretized version.

Definition 5. Let A; = [a;, a;] be the strategy set of playein the continuous gamg =
(N, {Ai}ien, {Ui}ien). We say that a partition; =a;0 < a;1 <aj2 < <ajg =a;
of A; ise-fineifforall h=1,...,H: |a; — ain—1| < e. We call a finite gamg’ =
(N AAFYien AU Yien), whereAT = AF x ... x Al ane-fine discretization of the con-
tinuous game if the following properties hold:

(a) Eachsett! is ane-fine partition ofA; .

(b) If a* =(a],...,a;) is a Nash equilibrium of, thena; € AIF foralli e N.

(c) The payoff functioni]f of the gameg? are the restrictions of the payoff functions
U; of the gameg to the setA”.

All transversal, continuous gamegshave a finite number of Nash equilibria and thus
admit at least one-fine discretizatiorg ", for anye > 0. By choosing: sufficiently small,
the finite gamez© can be made arbitrarily close to the continuous ggmé/e now show
that for a sufficiently fine discretizatiogf’ of an aggregative gamg, the better-reply dy-
namics converges in finite time to a Nash equilibriumgdf which lies within a small
distance from a Nash equilibrium gf
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Theorem 6. For almost all transversalg-person, aggregative gamegsand for all» > 0
there existgo > 0 such that ifg” is ane-fine discretization of and0 < ¢ < &g, theng”
has the weak FIP and the Markov process described in Defimtimnverges in finite time
to a Nash equilibriunu? of ¢gf which is contained in a ball of radius around a Nash
equilibriuma™ of g.

Proof. Theorem 5 shows that, given any- 0, each trajectory’ of the dynamical system
(7) can be replaced by a finite sequence of single-player improvements leading first inside
a ball of radiusr around a Nash equilibrium™ of ¢ and then inta:*. This implies that,
givenr, if ¢ is sufficiently small (i.e.g < o), then anye-fine discretizatiorz© of g has the
property that starting from all® € A* there is a finite sequence of single-player improve-
ments leading inside a ball of radiusround a Nash equilibrium @f. Observe, however,
that inside the ball there may be Nash equilibria of the discretized gdntbat are not
Nash equilibria ofg. For example, in Fig. 1 the profil& is not a Nash equilibrium of
the original game, but it is an equilibrium of arfine discretization. We can nevertheless
conclude thag’ has the weak finite improvement property. It follows that, starting from
any state:® € A”, almost all paths of the stochastic process described in Definition 4 will
reach a Nash equilibrium gff" in finite time. O

Comparing Theorem 6 with Theorem 1 reveals that global convergence to Nash equi-
librium requires less stringent conditions when the state space is discrete than when it is
continuous (actions need not be strategic complements or substitutes at any Nash equilib-
rium). This may seem puzzling. In particular, the convergence result of Theorem 6 for a
discrete state space, and the non-convergence of the example in Section 4 with a continuous
state space may seem in conflict. However, observe that we can use the proof of Theorem 3

B,(a,) B,(a))

a, /
Te

6¢e

Se

/
y
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2ge

2

e 2& 38 4 58 6g 7Te

Fig. 1. Nash equilibria of a discretized game.
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to show that in ar-fine discretization of the gamg® described in Section 4, the average
time that the better-reply dynamics of Definition 5 takes to converge to the Nash equilib-
rium goes to infinity ag goes to zero. Thus, there is really no conflict between Theorems 6
and 3.

6. Conclusions

We have studied the global convergence properties of a stochastic adjustment process,
the better-reply dynamics, in which at each discrete point in time a player is randomly
selected to sample one of her available actions. The player only changes her current action
if the sampled action improves her payoff.

Our convergence results are considerably stronger than existing results on the conver-
gence of the deterministic best-reply dynamics. Gabay and Moulin (1980) and Moulin
(1984) (see also Moulin, 1986) showed that the deterministic, discrete-time, best-reply dy-
namics globally converges to the unique Nash equilibrium if players’ payoff functions are
strictly concave and an additional condition on the second derivatives of the payoff function
is satisfied. This condition requires that the sum of the absolute values of the cross partial
derivatives of a player’s payoff function with respect to her own action and the other play-
ers’ actions is less than the absolute value of the second derivative of the player’s payoff
function with respect to her own action. Al-Nowaihi and Levine (1985) proved global con-
vergence to the unique Nash equilibrium for the continuous-time version of the best-reply
dynamics of the homogeneous-product, Cournot model when the difference between price
and marginal cost is a decreasing function of the firm’s output, the best-reply functions
have negative slope everywhere and there are at most 5 firms (Al-Nowaihi and Levine
show that the claim made by Hahn, 1962 and Okuguchi, 1964 that this result holds for
any number of firms is incorrect). Dastidar (2000) showed that if there is a unique Cournot
equilibrium, then the equilibrium is locally stable under fairly general conditions. Vives
(1990) observed that a result of Hirsch (1985) implies that the continuous-time, best-reply
dynamics globally converges to a Nash equilibrium if the signs of the partial derivatives of
the best-reply functions of all players are positive everywhere. Thorlund-Petersen (1990)
studied a variant of the deterministic, discrete-time, best-reply dynamics of the Cournot
model, in which players best reply to the time average of the total output of their oppo-
nents, rather than to their current total output. This dynamics is analogous to the process
known as fictitious play in finite games (see Fudenberg and Levine, 1998 for a survey
of results on fictitious play in finite games). Thorlund-Petersen (1990) showed that if the
difference between price and marginal cost is a decreasing function of the firm’s output
and the best-reply functions have negative slope everywhere, then his dynamics globally
converges to the unique Nash equilibrium, independently of the number of firms.

We have shown that when the action space is continuous, global convergence to a Nash
equilibrium in an aggregative game occurs provided that the actions of all players are ei-
ther locally strategic complements or locally strategic substitutes at all Nash equilibria that
are stable under the deterministic, continuous-time, adjusted best-reply dynamics defined
by Eq. (7). We used an example to show that if the slopes of the best-reply functions at
a Nash equilibrium have different signs, then the better-reply dynamics may not converge
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to a Nash equilibrium. We also showed that in any discretization of a continuous aggrega-
tive game the better-reply dynamics converges to an action profile that is close to a Nash
equilibrium of the original game.
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Appendix A

Proof of Lemmal. If B;(X_;) = a; then (a) holds. Consider anye A with B; (X_;) > q;.
Condition (3) guarantees that for any given.; = Z#i aj, if B;(¥_;) > a;, then
D;(a;,a; + X_;) = D;(a;, ) > 0. Equation (5) implies that for any givex, the function
D;(a;, X) is decreasing iw;. So, if M;(X) = M;(a; + X_;) were less thanm;, it would
follow that D; (M; (X)), X) > D;(a;, X) > 0. This implies that Eq. (6) does not have a so-
lution, and thatM; (X) is equal to the right endpoint of the inten]. Thus,M; (%) > a;,
which is a contradiction. It follows that; < M;(X). A similar argument can be made for
the caser; > B;(X_;). This concludes the proof of part (a).

By (2) and (6), if B; (¥_;) = a;, then it must also b&/; (X) = q;, since for alla_;:

M;(Bi(X¥-i) + X_;) = Bi(X_)),

while if M;(X) =a;, thenB;(X_;) = a;, since for all¥
Bi(Z — M;i(2)) = Mi(D).

This concludes the proof of part (b).0

Proof of Lemma 2. If we sum the system (7) we obtain a differential equation Xor
Namely:

n
3= ZMZ»(E) -
i=1

This is a single ordinary differential equation satisfying a Lipschitz condition. Because one
dimensional autonomous equations cannot exhibit oscillations, it follows that given any
initial condition X° the trajectoryX’ is monotonic. SinceZ’ is also bounded, it follows
that there is2>° (X% e Ay such that

(2% = lim »'.

—>00

This implies that for any € N: M;(X") — M;(£°°(x9)) ast — oo. Hence, for large
the system (7) with initial condition® € A, such tha®"/_; a? = £°, becomes:

di = M; (2%°(2%) —a; + hi(t, 2°), i=1.2...,n,

where the functions; satisfyh; (t, % — 0, ast — oc. This immediately yields that for
alli e N, al? — M;(Z®°(2%) ast — oo; that is, thew-limit set of the system (7) with
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initial condition «° contains a single element € A and for alli € N, a’ = M;(X%),
wherex* =3>"" | a’. Lemma 1 part (b) then implieg" = B; (X'*,) for all i € N; that is,
a* is a Nash equilibrium of. O

Proof of Lemma 3. Since the gamg is transversal, it follows that the set of Nash equilib-
ria is finite. Taker > 0 and any® € A. If a° is not already contained in a ball of radius
around a Nash equilibrium, consider the dynamics (7) for the gamvéh initial condi-
tion «°. By Lemma 2, there is a tim& > 0 such that for alk > T, the trajectory:’ lies
in some neighborhood, contained in a ball of radius around a Nash equilibrium*.
The only possible instance in whielt is not an isolated, asymptotically stable equilib-
rium of (7) is if (7) has a stable manifold converging to an unstable Nash equilibrium, and
a° belongs to such a manifold (i.e., it belongs to a trajectory converging to an unstable
equilibrium).” In such an instance a small deviation (say by play&om the trajectory:’
leads to another trajectory that converges to an asymptotically stable, isolated equilibrium
of (7). Since, as we shall see below, we can always replace the continuous dynamics with a
finite sequence of single-player improvements, it is always possible to find a single-player
improvement that leads away from a trajectory belonging to a stable manifold of an unsta-
ble equilibrium. Hence it is always possible to reach a neighborfibadntained in a ball
of radiusr around an isolated, asymptatically stable equilibrium of (7).

To replace the continuous dynamic with a finite sequence of single-player improve-
ments, we will use a simple Euler scheme to approximate the integral alirieke an
integerZ € N and consider th&-th approximationi’ of a’ defined as follows:

Z
tz :ET, z:O,l,...,Z,
a® =add
T n (Al)
G = afz+E[M< ‘*) _&[z] ¢=01...7Z-1,
i=1

=a%, fort, <t<t,11.

As Z — oo, a' converges ta:’ uniformly on [0, T']. In particular there is & large
enough for whicha” e V,. If we show that for each =0, 1,2,...Z there is a finite
single-player improvement path frofir to a’=+1 then we are done, because the existence
of a path fromia® = 49 to 4’z € V, follows.

To show that there is an improvement path fréto a'=+1, take:

W =a

T n
' _yh_1+€l12|:Mh< &?)—&’z], h=12....n.
i=1

Here ¢, is the n-dimensional vector whoskth element is 1 and all other elements
are zero. SinceM,, is a continuous functionZ can be chosen large enough to make

~t,

7 A stable manifold of an unstable equilibriuat, if one exists, has the property that for all pointsn the
manifold Y7, a; = Y1 af = ¥,
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Mh(Z;’:laf) as close as desired @, (3>_;_; yih) anda’= as close as desired fid+1.
This implies that

B n T n
" (Za;—-) g |:Mh (Zy,h) _y;;} o
L i=1 . i=1

By Lemma 1, we have

_ ) -
Mh<zy,h>—y;: (5 (o) -st] 0
L i=1 _ i£h

This implies that the move from"~1 to y" by player# is in the direction of his best reply;
that is, it is a single-player improvement. This completes the proof.

We now present a useful lemma. Consider the quadratic fodafined for any: € R”
and forg; #£0,i =1, ...,n, as follows:

n

J/(a)=Z%a,-2—2< > aia‘;)=aQaT (A.2)

i=1 1<i<j<n

whereQ is the following matrix:

1

I -1 ... -1
' 1

-1 ... -1 B

Lemma 7. (a) The functiony : R” — R is bounded from below with greatest lower bound
equal toOifand only if 3; > 0fori =1,...,nand >} ; B;/(1+ Bi) < 1. If the second
inequality is strict, thery has a unique global minimum &9, 0, ..., 0).

(b)If 0> pB; > -1, fori =1,...,n, then the functiory is bounded from above with
least upper bound equal @ If the second inequality is strict, thenhas a unique global
maximum a{0, 0, ..., 0).

(c) If n =2, theny is bounded from above with least upper bound equd tband
onlyifO> B;,i =1, 2andp182 < 1. If the second inequality is strict, thenhas a unique
global maximum af0, 0).

Proof. Parts (a) and (b) follow from Theorem 2 of Al-Nowaihi and Levine (1985). Part (c)
follows from the definition of negative semi-definiteness of:a2 matrix. O

We are now ready to prove Lemma 4 and Theorem 2.

Proof of Lemma 4. Consider a Nash equilibrium @f. By changing coordinates we can
assume, without loss of generality, that this equilibrium is at the g6ina, ..., 0) € R".

For action profiles: sufficiently close to the equilibrium, we can linearize the best-reply
function B; of each player and writ#; (X'_;) = 8; X¥_;. Thus, a move by playear from
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a= (a1, az,...,ay) t0a = (a1,az,...,a;—1,4;,a+1, ..., a,) is payoff improving if and
only if

la; — i X—i| <lai — Bi X—il.

Geometrically, this means that to improve her payoff playeust move to a point on the
line segment parallel to the vectgr= (0,0, ...,1,0,...,0) (with 1 in thei-th position),
with one endpoint at: = (a;, a—;), the middle point a{; Z#i aj,a_;) and the other
endpoint ab = (b;, a_;) = (28; Z#i a;j — a;,a—;). Consider now the function defined
in Eq. (A.2), assumingg; # 0; we claim thaty (a) = y (b). We will check this claim for
i =1; we have:

1 n
y(®) = y(@=2-[@0151- a1)? —af] —2) [(p1¥ -1 —ara; —aia,]
j=2

=41 52, — 41 ¥ 1 — 4p1 2% + 41 ¥4 =0.

Now suppose we are in case (a) in the statement of the lemma; thiatsisQ for all
i=1,...,n,andd_"_; Bi/(1+ B;) < 1. Then, for any givem_;, the functiona; — y (a)
is quadratic ing; and goes tetoo as|a;| — oo. Hence, sincer (a) = y (b), for all points
d on the line segment connectingandb we havey (d) < y (a) with strict inequality ifd
is inside the segment; a single-player improvement by any playggtuces the value of.

We now show that there exists a neighborhdoaf the Nash equilibrium@, ..., 0)
such that ifa® € V then almost all patha®, a?,a?, a3, ... generated by the stochastic
process described in Definition 2 stay all the tim&inMoreover ,

lim a' =(0,0,...,0).

t—0o0

Let the neighborhood be given by{x: y(x) < ¢} for somec > 0. It follows that any
infinite path {a’}?°, of the stochastic process witt? € V is associated with a nonin-
creasing sequence of real numbet&?), y (a1), y (a?), ¥y (@®), ... and thusa’ € V, for

all z. Note that in this sequence we have infinitely many times a strict inequality, since if
a' #(0,0,...,0) then there is a positive probability that one of the players samples a strat-
egy that improves his payoff, hence for some: 1, y (a"*1) < y(a"). By Lemma 7 the
sequence (a®), y (al), ... is bounded from below, since the functiprreaches its strict,
global minimum at(0, 0). Hence it must converge.

To see that lim, . a’ = (0,0,...,0), assume to the contrary that there exists a sub-
sequence(a”}® ; of {a'}%°, with lim)_sa”" = a, with y(a) = m > 0. Sincea #
(0,0,...,0), there isp > 0 ande > 0 such that with probability of at leagt the sto-
chastic process moves fromto a pointb for which y (b) < y(a) — ¢. Because of the
continuous nature of the game, it must also be true that with probability of atjethst
stochastic process moves frarh to b, wherea” is any point on the path convergingdo
that is sufficiently close ta. It follows that the probability that the functign stays above
m along a path of the stochastic process is zero. Since this is true for ang, for almost
any pathy goes to zero and therefore limy, a’ = (0,0, ..., 0).

In case (b) in the statement of the theorem, first note that (4) and (5) implg;tbat-1
for all i. Then we can apply Lemma 7 and the proof is similar to the proof of (a), except
that we need to use the functiery in place ofy. O



280 M. Dindo§, C. Mezzetti / Games and Economic Behavior 54 (2006) 261-292

Proof of Theorem 2. Consider the best-reply dynamics:

d1= Bi(ap) —ay,
dp = Bo(a1) — ao, (A.3)

with initial condition (a2, a9) = a°. It follows from Liouville’s theorem (see Corchon and
Mas-Colell, 1996) that the-limit set of every solution of this system is a Nash equilib-
rium a* of g and that for almost any initial conditio@zg’, ag) the point in thew-limit set

is a stable equilibrium (a stable manifold of an unstable equilibrium is at most one dimen-
sional)®° By approximating the system (A.3) with an Euler scheme as in the proof of
Lemma 3, we can then argue that for any neighborhdaaf a* there is a positive proba-
bility p > 0 that the stochastic patt?, a®, a2, ... generated by the better-reply dynamics
will eventually end up and stay ifi. If by W we denote the union of a set of small neigh-
borhoods of all stable equilibria of the system (A.3), then there exists an intemyet a
numberp > 0 such that regardless of our initial position the pathat, a2, ..., a* gener-
ated by the better-reply dynamics leadsitowith probability at leasp. Once a path is in

W, it stays there indefinitely. On the other hand/fif¢ W then again with probability at
leastp the patha®, a**1, ak+2, ... 4% leads toW. It follows that eventually almost every
path ends .

We have shown that the better-reply dynamics leads with probability one to an arbi-
trarily small neighborhood of a stable equilibriuri of the system (A.3). We now show
thata* is a stable equilibrium of (A.3) if and only B} (a3)/(1+ B{(a3)) + By(aj)/(1+
Bj(a})) < 1 (which is equivalent ta:* being asymptotically stable under the adjusted
best-reply dynamics (7)). To see this, consider the linearization of (A.3) awund

a1 = Bi(aﬁ)az —az,
dz = B5(a3)a1 — az. (A.4)

The stability of a* under (A.3) implies that the real parts of the eigenvalues of the
linearized system (A.4) must be non-positive. The characteristic equation of (A.4) is
1+ 22= B} (a})B,(a}) and thus the linearized system has a zero eigenvalae,

if and only if B} (a3) By(aj) = 1, which is ruled out by the assumption that the gajie
transversal B; (a5) By(ay) # 1 at all Nash equilibria). Thus, the equilibriuai of (A.3) is
stable if and only ifB] (a3) B5(a}) < 1. Finally note thatB; (a;) B5(a;) < 1 is equivalent

to Bi(a3)/(1+ By(a3)) + By(ay)/(1+ By(ay)) < 1.

Now suppose that the inequaliB (a3) B5(a7) > 0 also holds. Then Lemma 4 applies
and for almost any pati®, «%, . .. in a small neighborhood af* generated by the better-
reply dynamics described in Definition 2 we have lim, a’ = a*. This concludes the
proof. O

8 The equilibriuma* is stable if for every neighborhood of a* there is a neighborhood’ c V of a* such
that every trajectory’ with a9 in V' is defined and it/ for all ¢ > 0.

9 Corchon and Mas-Colell (1996) also showed that with more than two players the best-reply dynamics need
not converge; there are games with payoff functions that yield chaotic dynamics (e.g., if the differential equations
are Lorenz’s equations; see Guckenheimer and Holmes, 1983).
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Proof of Lemma5. To prove this lemma it is sufficient to prove that if the inequalities (8)
and (9) are satisfied on the interv@l co), then

k—o00 pf

O4k+1
lim P<p _ >2ﬁ> —1 forall®eN (A.5)

and thus lim_, o p* = co.

By the central limit theorem for the binomial distribution (e.g., see Billingsley, 1986),
if p is the probability of a random everit,is the number of independent draws, ands
the random variable that counts the occurrence of the event, then

X —kp
———— ~N(0,1) ask— (A.6)
vkp(1—p)
whereN (0, 1) is the standard normal distribution with distribution function
Y
DY) = — fex{ Sz}d (A7)
= —— —_—— S, .
2 P 2
—00

It is convenient to také = 2*K for some integek > 0. Suppose that the random event
is p'*+1/p! > 22", By (8) the probabilityp of this event is greater thar/4; then we have

t+1 24K—2 _ 24K
[ 7752 <250) 20 (25220) L ok e
0

V24K p(1— p)

By (9), the probabilityp of the random evenp’*1/p" e [1/2"*1, 1/2™] is less than
1/22" form=1,...,3K/2— 1, and hence

pt+1 1 1 24K +1
(5 <[z | <o)
B (24K+12m _ 24Kp

V2K p(1—p)

Similarly, the probabilityp of the random eveng’t1/p’ e [1/25K/2, 1/23K/2is
pl+l 1 1
p<P (p— S W) < 2K

and by (A.6) and (A.7) we have

. pt+1 1 1 K41

2K+1 _ 24K
:1—@(;”) ~0 ask — . (A.10)
24K p(1—p)

Finally, the probabilityp of the random eveng’t1/p’ > 1/25K/2 s

pl+l 1 251( -1
p=Pp pt 225K/2 = 25K

) —1 askK — oo. (A.9)
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and thus

.pt-i-l 1 _,0t+1 1 K

2K1-p)—1
=1—q>< 1-p >—>1 ask — oo. (A.11)

V24K p(1— p)

Equation (A.8) says that a& — oo, for almost all pathg?, p1, ..., p2* the num-
ber of indicest € {1,2,...,2*} for which p'*1/p’ > 22" is at least 2—2. Clearly,
sincek = 2*K, the number of indices for which p'*1/p’ € [1/2,1] is at most 2X.
As K — oo, by (A.9) the number of indices for which p'*1/p" e [1/27+1, 1/2™],
m=1,2,...,3K/2—1,is atmost 2 +1-2n and by Eq. (A.10) the number of indicefor
which p'*1/p! € [1/25K/2 1/23K/2] is at most £+1. Finally, by Eq. (A.11), ak — oo
the number of indices for which p'*+1/p’ < 1/25K/2 is zero. Then we can estimate that
for a sufficiently largek :

024K

pt°+24K+1 N Pas!
pto o ot
4K 2 3K/2-1 24K +1-2m oK +1
2\? — 24K 1 1
>(2%)" 2% ] (—2m+1> (—25K S) (A.12)
m=1

To evaluate the product on the right-hand side of (A.12) we first use logarithms to change
the product into a sum:

3K/2-1 1 24K +1-2m
ln( 1_[ <2m+1> )

m=1

3K/2-1
= 24K+1< Z 272 (g — 1)) In2

m=1

22m

. —24K+1(Z mt ) N2> —2*+1|n2 (A.13)
m=1

where the second inequality follows from
m + 1 >
m=1

Using inequality (A.13) in Eq. (A.12) gives:

0, 24K —
P (224)24K o2 g2 sk g2ty @t et

0
0!
_ 27(5]()21( 224K — 2221{(22[(75](271() - 2221{ _ 2 /24](.

This is exactly what we claimed in (A.5). Hence the lemma follows.
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Proof of Theorem 3. Denote witha?®, with d(¢) > t, the first action profile different
from a' in a path of the stochastic process described in Definition 2, and M@ ® e
S C A | a' = a) the probability thaz?®) belongs to the set given thaiz = a’ (i.e.,a is the
status quo at time). Define the distancg*(a) of a pointa = (a1, a2) € [—2,2] x [—2, 2]
from the origin(0, 0) by

p*(a) = max{|ail, laz|}. (A.14)

By letting p! = p*(a’) andp'*1 = p*(a?®), we can define a new process that keeps track
of the evolution of the distance*. Let A(r) = {a € A: p*(a) =r}, A= (r) = {a € A:
p*(a) <r}andAt(r) ={a € A: p*(a) >r}. Definer4?) as the Lebesgue (or uniform)
probability measure ovet”; then we have

P(pt+1 <s|p'=r)= / P(ad(’) €A (s)|a" =a) drA®),
A(r)

P(p* 250 =r) = / P(a?® € AT(s) | a' = a) dAAD),
A

Let V = {a: p*(a) < ¢"} be a small neighborhood of the poif@, 0). To prove our
claim about nonconvergence we need to show that almost all paths startingaveV;
that is, there isT” for which a” ¢ V. To establish this we will show that the probability
law of the process governing the evolution of the distapitaatisfies the inequalities in
Lemma 5.

First note that we can take’ > 0 small enough so that in the neighborhdodiround
(0, 0) the game has linear best-reply functions. Second, recall thatsifthe prevailing
strategy profile, then the strategies that improve player 1's payoff are the strategies belong-
ing to the interval/y (a) with endpoints:; and—281a2 — a1, while the strategies improving
player 2's payoff are the ones in the intervala) with endpointsz, and 82a1 — ax.

We will begin by showing that iV we haveP (p'*1 > 2%y | o' =r) > 1/4 for all r
with ¢¥ > r > 0 and hence Eq. (8) holds. Suppgsge= r, or equivalentlya’ € A(r). Let
Ay (r) ={a € A(r): |a1| = r} be the vertical sides of the squatgr) in R? (see Fig. 2)
and14v(® be the Lebesgue (or uniform) probability measure ovt. Observe that

1
P(p'tt> 22 | pl = r)y> > / P(a®® e A+(224r) |a' =a)datv ).
Av ()
We will show that forB, > 22° + 1+ 1 itis P(a?® e AT(22'r) |a' € Ay (r)) > 1/2 and
henceP (p'+1 > 22'r | p' = r) > 1/4. ForBs > 22 + 1+ 1 we have
P(a?® e AT(2%r) | d' € Av(r)

2Bor —aly — 22"y 2Bor — 2a)
2Bor — 2a£ 2Bor — 2a£ + |2ﬂla£ + 2r|
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B,(a)

B,(a,)

Ay(r)

AXD| JATE

7 er
A (1) A &

-r |[AS(r) - er
. er \ AS0)

ANr)| AXr

£ €

/ x
Ay)

Fig. 2. The setA(r) ={a € A: p(a) =r}.

where the first term is the probability thag(” > 22y given that player 2 is the first to
move, and the second term is the probability that player 2 is the first to move. It follows

that P (a®® € A*(22'r) | a' € Ay (r)) > 1/2 provided that
2(2ﬁ2r —ah— 224r) > 2Bor — 2ah + |2,31a’2 +2r
Bor > 227 + |Brab + r|

, or

which holds if 8 > 22 414 B1. This completes the proof that i Eq. (8) holds.

It remains to show that Eq. (9) also holdslin Takea’ € A(r), so thatp’ = r. We need
to show thatP (o't < er | p' =r) <e?forall ¢V > r >0 and all 1> ¢ > 0. The only
way the distance from the origin can decrease rapidly, theltis < er, is if lal| < er for

somei =1, 2, and playerj #i moves tcxzj.’(” with |a7(’)| < la}|. Let (see Fig. 2)
Ag(r) = {a € A(r): 0<aj <er andah = r},
A2(r)={a € A(r): a} =r and 0< a < er},
Ad(r) = la€ A(r): aj=rand —er < a5 <0},
Ag(r) = {a e A(r): 0< atl <er anda’2 = —r},
A2(r) ={a € A(r): —er <aj<0anddy=—r},
AS(r)={a e A(r): d}

AZ(r) ={a € A(r): aj=—rand 0< ah <er},

A?(r) =1ia € A(r). —er gatl <0 andaézr}.

=—rand—sr<a§<0},
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Let »4:") be the uniform probability measure ovéf (r); and observe that

8
P(p*<er|p'=r) = ¢ Z / (@ eA(er)|d' =a) . (AL5)
A’ (r)
There are four different cases. (1) If eithee A;}(r) Oorace A?(r), then we have
2¢r 2¢e
P(a?® ¢ A— '—a) < ; A.16
(@ eA™enld =a) < o @lafl +2p1r) 1+ 281 —

(2) If eithera € A%(r) ora € AS(r), then we have

2er
12B2r — 2lab|| 4 (2r + 2B1]ab])
(3) If eithera € A3(r) ora e A!(r), then we have
2er 2¢

P < A (o) 1 —a) < : A18
(a €A (er)|a a) (2Bor +2|ah)) +r +er = 1+28; ( )

P(ad(’) €A (er)|a' =a) < <€ (A.17)

Finally, (4) if eithera € A%(r) ora € A(r), then we have

2¢er
P(a®® e A= (er) |a' =a) < <e. A.19
( ) (2B2lai| +2r) + 2|B1r — |ajl| (A19)

Adding up the left-hand sides of Egs. (A.16) and (A.18) we obtain

2¢ n 2¢ 2 for B 1
< L& > —
14281 1+2p2 27 apy
Thus, for a sufficiently largg, Eq. (A.15) implies thatP (o' t1 < er | p' =r) < £2. This
completes the proof that Eq. (8) holdsWn
Applying Lemma 5 to the stochastic process governing the evolution of the distance
of the state of the system from the origin, we see that for @9) # «’ € V and for
a sufficiently largek, a"*t* ¢ V. Hence we cannot hav@®, 0) = a* = lim;_, . a’. This
concludes the proof. O

Proof of Lemma 6. Without loss of generality we can assume that< C». Also, since

we only need to prove that (a) and (b) in the lemma hold for almosiallC») € C, we

can assume thal; £ C2 andCq, C2 # 0. Therefore, there are three distinct cases we have
to consider. All cases must satisfy + C> < 1.

(1) 0<C1 < C2<1,or equivalently G< 81 < 2 < oo.
(2) C1 <0< C2 <1, or equivalently-oco < 81 <0 < 82 < c0.
(3) C1 < C2 <0, or, equivalently-co < 81 < 82 < 0.

Recall that 141 is the slope of the best-reply function of the first player gads the
slope of the best-reply function of the second player indhei; plane. The lemma says
that, starting from any point®, and for any givers € (—1, 1), it is possible to construct
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a sequence of single-player improvements that reaches some point on the straight line
x1+xz=9(ag+ag).

Case 1When 0< C1 < Cap, conditionC1 + C2 < 1 is equivalent to 181 > B; that is,
the slope in ther; — a2 plane of player 1's best-reply function is greater than the slope of
the best-reply function of player 2. Consider the functiodefined by

1 1
y(a) = Eaf + Ea% — 2a1ao.
Foranye > 0, the sef = {a € R?: y(a) = ¢} is an ellipse centered at the origin. Denote by
E andE_ the intersections of with the region that lies between the best-reply functions

in the first and third quadrant, respectively. CleaHy, andE_ are symmetric with respect

to the origin. Moreover, the slope of the ellipse in the- a; plane is zero for the two points

on the best-reply function of player 1, and it is infinity for the two points on the best-reply
function of player 2 (see Fig. 3). The symmetry of the ellipse, the slope of player 1's best-
reply function being greater than the slope of player 2’s best-reply function, and the slope
of the ellipse being zero or infinity at the intersections with the best-reply functions imply
that starting from any € E. we can define two finite sequende$, a*, a?, ..., a"2} and

{69, b1, b2, ..., b™1} of points on the ellips& with the following properties:

(1) a®=0"=(ar,a2) e E4,a™ e E_,andb™ € E_;

() {at,d?,...,a"2) = {(2Bra2 — a1, a2), (2Praz — a1, 2P2(2praz — a1) — a), ..., a'?}
a?d{bl, b?,..., b} = {(a1, 2B2a1 — a2), (2B1(2B2a1 — az) — a1, 2Bza1 — az), ...,
b*1};

@) a"¢ELUE_forh=1,....,To—1andb" ¢ E, UE_forh=1,...,T1 — 1.

a
> Bi(a)

E
o Bia)

NIV

Fig. 3. The ellipseE = {a € RZ: y(a) =c}.
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Each step in the sequences consists of a payoff neutral change by one of the two players.
Players take turns changing action; in the sequén®e:®, a2, ..., a™2} player 1 is the first
to change action, in the other sequence the first to change action is player 2.

By letting 1(a) = a’t andgy(a) = a’2 we can define two continuous maps frain
into £_. Consider a smooth parameterizatifp: [0, 1] — E of the arcE . of the ellipse
E and note that by letting_ = — f; we obtain a smooth parametrization of the &rc,
f-:[0,1] — E_. We are now ready to define two continuous méps [0, 1] x {1, 2} —
[0,1] x {1,2}, h =1, 2 with

@i (1,i) = (7 ei (f+(0))), j G, t, b)) foranyre[0,1], i =1,2andh =1,2,

where, for allt € [0, 1], j (i, t, h) is defined as follows:

e {h if @1(—i (f1 (1) = — f1 (1),
S 3—h if @1(—gi (f (1) # — f1 (1) andga(—gi (f1+ (1)) = — f+(0).
(A.20)

Note that the symmetry of the ellipse (see Fig. 3), implies that one of the two conditions in
Eqg. (A.20) must be true. In fact, it is only whery; (f(¢)) coincides with an endpoint of
the arcE . that the functiong; andg, take on the same values (in this case wejsetl).
Continuity of the map¥’, ¢1 andg, implies that®;, is also continuous. We now argue
that®, is a homeomorphism, that is, a continuous bijection. First, we show that the map is
onto; that is, given any poirt, j) € [0, 1] x {1, 2} we can find(z, i) € [0, 1] x {1, 2} such
that®s (1, 1) = (r, j). To see this, let = £ (¢, *(f-(x)) and note that eithed, (1, 1) =
(t, j),or®u(t,2) = (z, j). That@, is 1-to-1 follows fromyf_, f1 andg; being 1-to-1. In
fact, the mapb; is of classC?.
Consider the sdD, 1] x {1, 2}; by identifying, or gluing together, the poid, 1) with
(0, 2) and the point1, 1) with (1, 2) we can view the sd0, 1] x {1, 2} as a circles and the
map@®; as a homeomorphism frot to S. Let sy, 52, s3 be three points on the circlgy
and suppose that as we move clockwise on the circle starting frome encounter first
s2 and thenss. We say that the mag.. is orientation preservingf as we move clockwise
on the circle starting from®, (s1) we encounter firstb, (s2) and thend: (s3). The map
@, is orientation reversingf as we move clockwise on the circle starting frabn(s1) we
encounter first, (s3) and thend: (s2). Since it is a homeomorphisnd, must be either
orientation preserving, or orientation reversing. In fact@if is orientation preserving,
then @: is orientation reversing and vice versa. In the reminder of the proof we will use
the orientation preserving map and denote it simplgpas
Recall that the covering space of a cirdé is the real line; that is, we can find a
homeomorphisn# : [0, 1) — ST with lim,_,1/(x) = h(0) and then define the maf :
R — ST by letting H(x + z) = h(x) for all x € [0,1) and all integers, € Z. The lift
of the orientation preserving map is the function® : R — R defined by5(x +2z)=
h=Y(®(H(x + 2))) for all x € [0, 1) and all integerg € Z. (We could add any integer
to @; the lift of @ is uniquely defined up to the addition of an integer.) fét= @ o o1
and define the following limit:

1.~
r(®,x)= lim —(cb"(x)—x) forx e R.
n—oon
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This definition was proposed by Poincare; he showed that this limit exists and is indepen-
dent ofx (e.g., see Milnor, 1999) (if we added an integer to the lift then the limit would
only be unique up to addition of an integer); thatigp, x) = r(®) for all x € R. We call
r(®) the rotational number of the mah. Except for a zero measure set of cases, the rota-
tional number of is irrational. In fact for fixed3; there are only countably many choices
of B2 that yield a rational rotational number.

A rotation by« is a mapry : ST — ST whose lift7, : R — R is 7 (x) = x + «. Let
" =1y o r™ 1 If @ is an irrational number, then for afl € S the set of points in
the infinite sequence, (1), r2(t), r2(t), ... is dense inSt. A theorem by Denjoy (1932)
implies that aC2 homeomorphisn® with an irrational rotation number(®) = « is con-
jugate to a rotation byr; that is, there exists a homeomorphigms® — S such that
@ =g Lor, og. This implies that for alk € ST the set of points in the infinite sequence
@ (1), D2(1), P3(1), ... is dense inSt, whered” = & o ®"~1. As a consequence, given
anya® e R? and anye > 0, we can find a finite sequena&, a?, ..., a™ of payoff neutral
single-player moves from® to a™ where|a™ + a°| < ¢; that is, the points® anda™ are
almost symmetric with respect to the origid, 0). By continuity and quasi-concavity of
the players’ payoffs, given any> 0, we can then find a finite sequence of single-player
improvements:®, al, ..., a™ such thata” —a"| < 8 forall h =1, ..., m; that is, the fi-
nite sequence of single-player improvements can be chosen to be as close as desired to
the sequence of payoff neutral single-player moves. By chodsiag — |a” + a°| we
obtain thatja” + a°| < ¢; that is, we can construct a finite sequence of single-player im-
provements from any poinrt® to a point arbitrarily close te-a°. Think of this sequence
as a sequence of horizontal and vertical stepsgfar(—1, 1) at least one of this steps
must cross the ling1 + xo = 9<ag> + ag), say it crosses at* in the step from:" to a/+1.
Quasi-concavity of the payoff functions then implies that the sequehet', ..., a", a*
is a finite sequence of single-player improvements. To conclude the proof, we only need to
show that i = 0 we can reach the origin. This simply follows from the fact that there will
be a first step, let say fromt* to **1, when the sequence fron? to a point arbitrarily
close to—a® must cross one of the axis. Lef*! be the point on the intersection of line
segment with endpoints’, a1 and one of the axis. Again, quasi-concavity of the pay-
off functions implies that:®, a%, ..., a*, b1, (0, 0) is a finite sequence of single-player
improvements. This concludes the proof of this case.

Case 2 If we graph the best-reply functions in the — a2 plane, the line correspond-
ing to the best-reply function of player 1 passes through the second and fourth quadrant,
whereas that of player 2 goes through the first and third quadrant. It is sufficient to show
that from any starting point? it is possible to construct a sequence of single-player im-
provements that spirals away from the equilibrig@)0), since this implies that such a
sequence crosses the region between the lipgsc,; = a‘l’ +ag andx; +x2 = —(a? +ag).
Then, there is another sequence that reaches a point on any ne, = 9(a‘l) + ag), with
—1 <6 < 1. There is no loss of generality in choosing a starting potht (a?, B2a2)
on the best reply of player 2 (it is always possible to reach such a point with a fi-
nite sequence of single-player improvements). Let @ < 1 and consider the sequence

a® al, a2, a3, a*, ... where
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a,
B | (a2)

B,(a)

Fig. 4. A sequence of single-player improvements.

Q) a% = M(Zﬂlaz — al) +@A- ,u)az, and a2 = a2 = al,Bz,

(2) a% = a% and a2 = (Zﬂgal - a2) +1- M)al,

(3) a3 = 1u(2p1a5 — al) +(1—was and a3 =d3,
3

(4) af = af and a2 = feaj.
This is a sequence of single-player improvements, since each time a player moves it
changes action in the direction of his best reply by an amount less than twice the distance
between its current action and his best reply, see Fig. 4uFaufficiently close to 1a%,
which is on player 2's best-reply function, is further away fran0) thana®. To see this
note that lim, 1 |al| [28182(2B182 — 2) + (2B182 — 1)2]|a§’| > |al| By iterating this
construction we can obtain a sequence with any finite number of steps, spiraling away from
the origin.
Finally, from any starting point® the equilibrium(0, 0) can be reached by two single-
player improvements; first a player moves to one of the axis and then the other moves from
the axis to(0, 0).

Case 3 Change the choice variable of player 2 fremto —ay. More precisely, let
X1 =a1, x2 = —ap, ande; = —pB; fori =1, 2, and view the gamg as one in which player
choosesy;. The best-reply functions in this game ag(x2) = a1x2 and Ba(x1) = a2x1.
Since we now have & a2 < a1, wWe are in the same situation as in Case 1, modulo a per-
mutation of player 1 with player 2, and we can use its proof. (Note that after the change
of variable: (i) the numbers correspondingdp andC, areas/(1+ «a1) andaz/(1+ a2);
(i) 0 <az/(L+a2) <a1/(A+a1) < 1; (i) a1/(1+ a1) + a2/(1+ a2) < 1). This con-
cludes the proof. O
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Proof of Theorem 5. First note that by Lemma 3 a finite number of single-player im-
provements are sufficient to move th@layers from an arbitrary starting point to a ball
of any given radius > 0 around an isolated Nash equilibriugi. We now proceed by
induction. We know from Theorem 4 that every transversal, 2-person, aggregative game
has the weak FIP. More precisely, the proof in Friedman and Mezzetti (2000) shows that
from any small neighborhood of a Nash equilibrium that is asymptotically stable under the
dynamics defined by (7) there is a finite, single-player, improvement path leading to the
equilibrium. Suppose that almost all transversgal— 1)-person, aggregative games have
this property. We will show then that the property must also holdifperson games.
Consider a transversal;person, aggregative gange By Lemma 3, from any starting
pointa®, we will reach a point” that lies in a neighborhood, around an asymptotically
stable Nash equilibrium*. By changing coordinates we can assume, without loss of gen-
erality, that the Nash equilibriuat is at the origina® = (0, ..., 0). Sincer is arbitrary, we
can choose it small enough so that the players’ payoff functions are closely approximated
by quadratic functions. This implies that the best-reply functions are of the form

Bi(X_j)~piX_; (A.21)
which in turn implies that
du; (a)
4~ Ditai, )= vi(Bi Z — L+ Bai)
wherey; is a constant. Then, by Eq. (6), th& functions are
Bi
M;(X)=C;X, whereC; = . A.22
(2) i (A.22)

Quasi-concavity ofU; (condition (4)) impliesy; > 0, while condition (5) requires
y;(1+ B;) > 0. Hence we havgg; > —1 and 1- C; = 1/(1 + B;) > 0O, or, equivalently,

C; < 1. Furthermore, since* is asymptotically stable under the dynamics defined by
Eq. (7), itmustbe 7 ; C; < 1.

We need to show that from” there is a finite sequence of single-player improve-
ments leading td0, ..., 0). Note that)"7_; C; < 1 implies that there are at least two
playersi and j such thatC; 4+ C; < 1; without loss of generality, we will assume that
C,—1 + C, < 1. Furthermore, since transversality of the gagnemplies 8,_18, # 1,
or equivalentlyC,_1 + C, # 1, it must beC,_1 + C,, < 1. Define a new gamg =
({1,2,...,n — 1}, A;, U;) with (n — 1) players as follows. The first — 2 players are
as in gameg; that is, fori = 1,2, ..., n — 2 the strategy sets ar; = A; and the payoff
functions ard]M,- (a) = ¢;(a;, Z?;i aj), whereg; is i’s payoff function ing. Player(n — 1)
in g has the strategy sel,_1=A,_1+ A,, and his payoff function is:

2 2
~ Cho1+Cr —
Unl(a)lﬂn1—<1 nCn 1_n Zaj_an 1)

wherefi,_1 is a constant. Letting:‘_(,,_l) = Z;f;l aj, the best-reply function of player
(n — 1) in g is given by:
Cn 1+ Cn o

Bia(Z-u-n) = 1-C,.-C,

—(n—1)-
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Leta” be the strategy profile ig corresponding ta” in g: a" = (a3}, ....a,_,.a, ;) =
(@j,....a,_,,a,_1 + a;). Note thata" is in a small neighborhood of thé¢: — 1)-
dimensional zero vector, which is a Nash equilibrium of the gamEklence, by the in-
duction hypothesis, there is a finite sequefic# single-player improvements fstarting
ata” and leading tqal,..., a;_1)=1(0,...,0). Observe that each step in this sequence
in which the improving playeris <n — 1 also corresponds to an improvement for player
i in gameg. Next, consider a step, say fraito b =a\ b,_1, inthe sequencﬂ in which
the improving playerirg is (n — 1). Leta,—_1 = anfl + a,? We will show that we can find
a finite sequenc@ in g going from(as, ...,d,—2,a ,? 1.4 ) to (ai,...,dn—2,a nT 1,aT)
wherea 1t al = = b,_1, in which at each step either play@r— 1) or playern improves
her payoff

First, note that the payoff of playér — 1) in gameg must have improved in moving
from a to b; that is,b,_1 must be closer to playen — 1)'s best replyﬁn_l(f_(,,_l)) than
an—1. This implies that

by—1="Adn—1+ (L= 1) (2§n71(§7(n71>) —dn-1)
_ . Ch1+Cy < _ (0 0
)‘( n-1ta ) (1=2) (21 Ch1-C, 2 (-1 (an—l + an))

Ch1+GCy >
Sl SR > P A.23
1- Chic1—Cy = ( )

for somex € (0, 1), where Zﬁn_l(f_(n_l)) —ap-1 is the point on the line going through
d,_1andB,_1(X_,_1)) whose distance from,_1(X_(,_1)) is the same a&, 1. Next,
consider the 2-person gan§e= {({n — L, n}, X,—1 x X,,,{U,—1, Uy,}) derived fromg by
forcing players =1, ...,n — 2 to play actionsi; and by changing the — 1 andn coor-
dinate as follows:

=(2r— 1)(n1+a)+2(1 A)

Cr-1Z_(n-1) ] ChZ (1)
—_— Xp=ap — ————————.
1-Ch1—-Gy 1-Ch1—-Gy

The strategy spaceséwarexi =A;—C; 5_(,,_1)/(1— C,—1—Cp).Using (A.21), (A.22)
and (A.24), simple algebra shows that the best reply and#htinctions ing are:

(A.24)

Xp—1=dp-1—

Bi(xj) =

1_ C xj bLj=n—=Ln, i#],
Mi(xn-1+x0) =Ci(xp—1+xp) i, j=n—1ln, i#]
Letx,?_1 andx? be the actions correspondingctg)_1 anda? under the new coordinates,
and lety,_1 correspond td,_1. By Egs. (A.23) and (A.24),
Ch1+Cy

1 =bpq— — 5 2. —1
Yn—1 n—1 1-C, 1-C, n-1 = ( )( 1+x)

Since(2x — 1) € (=11, Lemma 6 implies that for almost all gamésthere exists a

f|n|te sequenceS of single-player improvements fror(xn 1 X 0) to (xn X xI), where
n71 + xn =(2n — 1)(x 1t X ) This sequence corresponds toa sequéhcegameg
going from(az, . .., dn—2, S_l,an) to (@1, ...,dn—2,al 1, al), wherea! | +al =b,_1.
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The profile (a3, ...,a;_;) in g corresponds to the profil€), ..., 0, a,_1,a,), with
an—1 + a, = 0, in g. Thus, combining the sequencgsand S we obtain a finite se-
guence of single-player improvements in the gagngoing from a” to some profile
O,...,0,a,-1,a,), where the projectioria,_1, a,,) of this profile on the last two coor-
dinates is in a small neighborhood @, 0). Since (0, 0) is a Nash equilibrium of the
2-person gamg derived fromg by forcing players =1, ...,n — 2 to play actioru; =0,
we know from Theorem 4 that there is a finite sequeﬁm single-player improvements
in g leading to(0, 0). Each step of the sequen’éeorresponds to an improvement by either
player(n — 1) or playern in gameg and thus there is a finite sequence of single-player im-
provements irg going from(0, ..., 0, a,_1, a,) to the Nash equilibriunt0, ..., 0). This
concludes the proof. O
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