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Abstract

We considern-person games with quasi-concave payoffs that depend on a player’s own acti
the sum of all players’ actions. We show that a discrete-time, stochastic process in which
move towards better replies—thebetter-reply dynamics—converges globally to a Nash equilibriu
if actions are either strategic substitutes or strategic complements for all players around eac
equilibrium that is asymptotically stable under a deterministic, adjusted best-reply dynamic
present an example of a 2-person game with a unique equilibrium where the derivatives of th
reply functions have different signs and the better-reply dynamics does not converge.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In his study of duopoly, Cournot (1960) introduced the noncooperative equilib
later generalized by Nash (1950; 1951), and investigated its stability under a v
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of the best-reply dynamics in which firms alternate changing output from its cu
level to a best reply to the opponent’s level. The more recent literature has s
several versions of the best-reply dynamics, both in the framework of oligopoly
els and in the more general setup of a noncooperative game, with the focus on
ing conditions that guarantee either the global or the local asymptotic stability
Nash equilibrium. The general message is that these conditions are very strong
cially when global stability of a particular Nash equilibrium is required, since in
case they must imply uniqueness of the equilibrium. (See Al-Nowaihi and Levine,
Dastidar, 2000; and Vives, 1990 for results on convergence of the continuous-time v
of the dynamics, and Gabay and Moulin, 1980 and Moulin, 1984 for results on conver
of the discrete-time dynamics.)

In this paper we are interested in studying global convergence to a Nash equilib
but we do not require that the equilibrium be unique. Instead, we study conditions
which the system eventually settles in an equilibrium, without imposing that all pos
paths converge to the same equilibrium. This is only the first of several differences be
our approach and the rest of the literature on the best-reply dynamics. A more funda
difference is that we look at stochastic, rather than deterministic, adjustment proces
our model players have status quo actions and are randomly selected, one at the
sample new actions. When a player is selected to sample, she randomly draws on
available actions and only changes her status quo to the sampled action if this impro
payoff (i.e., if the move constitutes asingle-player improvement). We call the stochasti
process so generated thebetter-reply dynamics, because players move from their curre
actions to a better reply, not necessarily a best reply; even though players move
direction of their best replies, they can overshoot or undershoot them.

Our better-reply dynamics can be viewed as a simple stimulus–response mode
behavior of boundedly rational players. It can be seen as a formalization of results
experimental research in economics and psychology showing that players’ behavio
itates towards actions that have been successful (see Roth and Erev, 1995). Our d
is related to the recent literature on learning in games (see Fudenberg and Levine
for a survey). However, the focus of this literature is on how players may learn to
a mixed strategy Nash equilibrium in a finite game (often with only two players), w
we focus on convergence to a pure strategy Nash equilibrium in a game with cont
action spaces and several players. A distinguishing feature of our model is that the
on players’ rationality and knowledge is more severe than in most of the learning
ture. The better-reply dynamics is consistent with a player not having precise know
or memory, of her own and her opponents’ payoff functions and past actions.

A standard criticism levied against the deterministic, best-reply dynamics first st
by Cournot is that when a player moves to a best reply to her opponents’ current a
she acts as if her opponents never changed their actions, in spite of collecting re
evidence that actions do change. This criticism is less pertinent to our model, becau
players need not know the actions of their opponents or their own best-reply func
Our players simply experiment new actions and make definite changes after exper
an increase in payoff.

A version of the better-reply dynamics studied in this paper was first introduce
Friedman and Mezzetti (2000). They noticed that in finite games having theweak finite
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improvement property(weak FIP), the better-reply dynamics globally converges to a N
equilibrium. The weak FIP requires that starting from any action profile there exists a
path of single-player improvements that leads to a Nash equilibrium of the game. Frie
and Mezzetti (2000) showed that finite supermodular games and generic, continuou
person, quasi-concave games have the weak FIP.

The focus of our analysis in this paper is onaggregative, n-person, noncooperativ
games. In an aggregative game the payoff of each player is a function of the player
action and of the sum of the actions (or, equivalently, the mean action) of all pla
We take the players’ action spaces to be closed intervals on the real line and assu
a player’s payoff is a quasi-concave function of her own action. We restrict attent
games in which, for each player, the slope of the best-reply function is bounded
by −1.1 The class of aggregative games contains many interesting games from eco
and political science. A wide class of oligopoly games, including Cournot’s original m
models of the private provision of a public good, models of the joint exploitation
common resource, collective actions models, and macroeconomic models with ca
up-with-the-Joneses are all examples of aggregative games.

Two recent papers that also study aggregative games are Kukushkin (2004) and
et al. (2004). Kukushkin (2004) established that every deterministic best respons
leads to a Nash equilibrium in finite aggregative games satisfying one of three po
versions of a single crossing condition. Dubey et al. (2004) proved existence of a
strategy Nash equilibrium in a fairly general class of aggregative games (including g
with non-convex strategy sets), when actions are either strategic complements, or s
substitutes.

After describing the model in the next section, in Section 3 we study the stoc
process generated by the better-reply dynamics. We provide a sufficient condition
better-reply dynamics to globally converge to a Nash equilibrium of almost all aggreg
games. This condition is that actions be either strategic substitutes or strategic c
ments for all players (i.e., the derivatives of the best-reply functions have the same
at all Nash equilibria that are asymptotically stable under a deterministic, continuous
adjusted best-reply dynamics. This sufficient condition is a local condition, actions
to be either strategic complements or strategic substitutes only at the Nash equilibri
thermore, actions are allowed to be strategic substitutes at some equilibria and s
complements at other equilibria; we only need to rule out equilibria where action
strategic complements for some players and strategic substitutes for other players.

In Section 4 we provide an example of a 2-person game with a unique Nash equil
at which the derivatives of the two best-reply functions have different signs; we show
in such a game the stochastic process generated by the better-reply dynamics d
converge to the equilibrium. This demonstrates that our condition on the derivatives
best reply functions at the Nash equilibria cannot be easily relaxed; without it the
reply dynamics may fail to converge.

1 In most aggregative games such an assumption is not very restrictive; for example, in the Cournot m
requires that the difference between price and marginal cost is a decreasing function of the firm’s output.
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In Section 5 we prove that aggregative games have the weak finite improvemen
erty. This implies that any discretization of a game with a continuous action space al
the weak FIP and that in such a discretized game the better-reply dynamics converg
action profile that is close to a Nash equilibrium of the original game. At first, it may s
puzzling that with a discrete state space global convergence requires less stringen
tions (actions need not be strategic complements or substitutes at a Nash equilibrium
puzzle is easily resolved by noting that although a discretized version of the non-conv
example of a 2-person game described in Section 4 would converge to the Nash e
rium, the average time that it takes to converge goes to infinity as the discretized v
converges to the continuous game.

Section 6 contains some concluding remarks. There we argue that our converge
sults for the stochastic better-reply dynamics are considerably stronger than existing
on the convergence of the deterministic best-reply dynamics. The proofs of our resu
cept for Theorems 1 and 6, are in Appendix A.

2. The model

We studyn-person gamesg = 〈N, {Ai}i∈N, {Ui}i∈N 〉 where each playeri ∈ N =
{1, . . . , n} has a one dimensional, compact, convex strategy setAi ⊂ R and a payoff func-
tion Ui :A → R, with A ≡�i=1,...,nAi , that only depends on playeri ’s own action and the
sum of the actions of all players. That is, there exists a functionφi :Ai ×AΣ → R such that,
for all a ∈ A it is Ui(a) = φi(ai,Σ), whereΣ = a1 + · · · + an andAΣ = {a1 + · · · + an:
ai ∈ Ai for all i ∈ N} is the set of admissible sums. (Note that this condition always
for 2-person games.) We assume thatUi is twice continuously differentiable in its argu
ments and strictly quasi-concave with respect toai ∈ Ai ; that is,Ui(a

′
i , a−i ) � Ui(a

′′
i , a−i ),

with a′
i 	= a′′

i , impliesUi(λa′
i + (1 − λ)a′′

i , a−i ) > Ui(a
′′
i , a−i ) for all λ ∈ (0,1). The par-

tial derivative ofUi with respect toai , ∂Ui/∂ai must have the same form asUi .2 It is thus
possible to define a functionDi that depends onai andΣ as follows:

Di(ai,Σ) = ∂Ui(a)

∂ai

= ∂φi

∂ai

(ai,Σ) + ∂φi

∂Σ
(ai,Σ). (1)

At an interior solution, playeri ’s best response functionbi(a−i ) only depends on th
sum of the opponent’s actionsΣ−i = Σ − ai ; that is, there is a functionBi(Σ−i ) such
thatbi(a−i ) = Bi(Σ−i ), for all a−i ∈ A−i =�j 	=i Aj . The functionBi(Σ−i ) is an implicit
solution to the equation

Di

(
Bi(Σ−i ),Bi(Σ−i ) + Σ−i

) = 0. (2)

If for someΣ−i we haveDi(ai, ai + Σ−i ) 	= 0 for all ai ∈ Ai , thenBi is simply the right
endpoint ofAi if Di > 0, and the left one ifDi < 0. Strict quasi-concavity ofUi with
respect toai ∈ Ai implies that:

2 SinceUi is twice continuously differentiable andAi is compact, the partial and cross partial derivatives ofUi

are bounded and obtain a maximum and a minimum.
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(i) Bi is continuous and single-valued (i.e., the implicit equation (2) has, at most, a u
solution for allΣ−i ; at this solutionUi attains its maximum) and

(ii) player i ’s payoff declines asai moves away fromBi(Σ−i ).

This latter property and differentiability ofUi imply that for allai ∈ Ai and allΣ ∈ AΣ :

Di(ai,Σ) � 0 if ai < Bi(Σ−i ); Di(ai,Σ) � 0 if ai > Bi(Σ−i ) (3)

and
dDi(ai,Σ)

dai

= ∂Di(ai,Σ)

∂ai

+ ∂Di(ai,Σ)

∂Σ
� 0 if ai = Bi(Σ−i ) ∈ A0

i (4)

whereA0
i is the interior ofA. We also make the additional assumption that the pa

derivative ofDi with respect toai is negative everywhere; that is, for allai ∈ Ai and all
Σ ∈ AΣ :

∂Di(ai,Σ)

∂ai

= ∂2
i φ(ai,Σ)

∂a2
i

+ ∂2
i φ(ai,Σ)

∂Σ∂ai

< 0. (5)

This condition does not imply, and is not implied by, the concavity ofUi with respect toai .
For example, ifUi(a) = βa2

i + γΣ2, then this assumption requiresβ < 0, while concavity
requiresβ + γ < 0. In many games condition (5) is not very restrictive; together w
condition (4), it implies that the slope of the best-reply function of each player is bou
below by−1:

dBi(Σ−i )

dΣ−i

= −∂Di(ai,Σ)/∂Σ

dDi(ai,Σ)/dai

= ∂Di(ai,Σ)/∂ai

dDi(ai,Σ)/dai

− 1> −1 for ai = Bi(Σ−i ).

Since∂Di(ai,Σ)/∂ai is a continuous function (Ui is twice continuously differentiable) o
a compact domain, it attains a maximum; since the function must be negative, it fo
that the value at the maximum must be negative. Thus,∂Di(ai,Σ)/∂ai must be bounde
away from zero.

Definition 1. The gameg = 〈N, {Ai}i∈N, {Ui}i∈N 〉 is anaggregative gameif for all i ∈ N :

(a) Ai ⊂ R is compact and convex;
(b) Ui(a) = φi(ai,Σ) is twice continuously differentiable in all its arguments and stri

quasi-concave with respect toai ∈ Ai ;
(c) Ui satisfies condition (5).

Examples of aggregative games include oligopoly, and many collective actio
search models.

Example 1. In a homogeneous product, Cournot oligopoly withn firms, let ai be the
output level of firmi andΣ be total output.P(Σ) is the inverse demand function,Ci(ai)

is the cost function of firmi andUi(a) = P(Σ)ai − Ci(ai). Condition (5) requires tha
the difference between price and marginal cost be a decreasing function of a firm’s o
P ′(Σ) − C′′

i (ai) < 0.
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Example 2. In a collective action problem, each ofn players privately choosesai at a cost
Ci(ai) (ai could bei ’s private provision of a public good, or her private use of a comm
resource). The sum of individual choices determines the benefitVi(Σ) to the player and
Ui(a) = Vi(Σ) − Ci(ai). Condition (5) is satisfied provided cost is a convex function.

3. The better-reply dynamics: convergence results

We are interested in studying the convergence properties of a stochastic, discre
adjustment process, called thebetter-reply dynamics, in which, at each point in time
player is randomly selected to sample among her available actions. The selected
only changes her status quo to the sampled action if this improves her payoff. We a
that the probability that a randomly selected playeri samples a strategy belonging to a
subsetE of Ai is positive ifE has positive Lebesgue measure. Formally, we associate
the strategy spaceAi of player i a probability measurePi defined on the Borel subse
of Ai . For any Borel setE ⊂ Ai the numberPi(E) expresses the likelihood that playei
samples a strategy that belongs toE. The only condition we impose onPi is that for any
open intervalI ⊂ Ai we havePi(I ) > 0. This does not exclude singular measures; tha
the measurePi can have one or more pointsx wherePi({x}) > 0.

Let a\xi denote then-tuple (a1, . . . , ai−1, xi, ai+1, . . . , an) ∈ A. The strategy profile
a\xi ∈ A is asingle-player improvementovera ∈ A if and only if the payoff to playeri is
higher undera\xi than undera: Ui(a\xi) > Ui(a).

Definition 2 (The better-reply dynamics). Consider a continuous gameg. Let Pi be a
probability measure on the Borel subsets ofAi such that for any open intervalI ⊂ Ai ,
Pi(I ) > 0. At each discrete time periodt there is a status quo action profileat . A single
player i ∈ N is randomly selected, with all players having positive selection probab
Playeri randomly samples actionxi ∈ Ai according to the probability measurePi . If at\xi

is a single-player improvement overat , then it becomes the new status quo,at+1 = at\xi .
If Ui(a

t\xi) � Ui(a
t ) then the status quo does not change,at+1 = at .

The process described in Definition 2 is essentially the same as the one defi
Friedman and Mezzetti (2000), except that they had finite strategy spaces and requ
players to have the same probability of being selected to sample a new strategy
strategies to have the same probability of being sampled. Note that the experimenta
a new strategy on the part of the player sampling at timet has no effect on the other playe
In particular, it does not affect the payoff that other players associate with their statu
action. The simplest way to justify this assumption is to think of time as a contin
variable, with players experimenting new actions at (possibly random) discrete po
time. When a player is sampling a new strategy at timet , she has experienced the sa
payoff for the time interval(t − 1, t) and views it as the status quo payoff.

We will derive results that hold for almost all transversal, aggregative games. Leta∗ be a
Nash equilibrium of a gameg = 〈N,A,U 〉 andB ′

i (Σ
∗−i ) be the derivative of playeri ’s best

reply function ata∗. Playeri andj ’s best reply functions ata∗ are said to betransversalif
they are not tangent; that is, ifB ′(Σ∗ )B ′ (Σ∗ ) 	= 1. The gameg is called atransversal
i −i j −j
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i (Σ

∗−i )B
′
j (Σ

∗−j ) 	= 1 for all i andj 	= i (i.e., if the best-
reply functions of all pairs of players are transversal). Transversal games have a finit
ber of equilibria (equilibria are isolated). LetS(n, q) be the set ofn-person, transversa
aggregative games withq equilibria,a(1), . . . , a(q) (we can unambiguously order equili
ria by puttinga1(h − 1) � a1(h) for all h, a2(h − 1) � a2(h) if a1(h − 1) = a1(h), . . .).
Consider the mapξn

q :S(n, q) → R
nq that associates to each gameg ∈ S(n, q) the vector

sn
q of the slopes of the best-reply functions at the Nash equilibria ofg:

sn
q = (

B ′
1

(
Σ−1(1)

)
, . . . ,B ′

n

(
Σ−n(1)

)
, . . . ,B ′

1

(
Σ−1(q)

)
, . . . ,B ′

n

(
Σ−n(q)

))
.

Let I (ξn
q ) be the range ofξn

q . We will say that a propertyP holds for almost all game
in S(n, q) if there exists a subsetI ∗ of I (ξn

q ) such that (i)I (ξn
q ) \ I ∗ has zero Lebesgu

measure inRnq , and (ii) the propertyP holds for all gamesg with ξn
q (g) ∈ I ∗. A property

holds for almost all transversal, n-person, aggregative gamesif it holds for almost all
games inS(n, q), for all q.

We begin with some preliminary results. If Eq. (5) holds, then for any givenΣ ∈ AΣ

there is (at most) a unique solutionMi(Σ) to the implicit equation:

Di

(
Mi(Σ),Σ

) = 0. (6)

If Eq. (6) does not have a solution inAi (i.e.,Di(ai,Σ) 	= 0 for all ai ∈ Ai ), then letMi(Σ)

be the right endpoint of the intervalAi if Di(ai,Σ) > 0 and the left endpoint otherwis
The functionMi(Σ) is a piece-wiseC1 function and at points where it is not differentiab
it has a right and a left derivative. We will use the convention that at such points dMi/dΣ

is the left derivative ofMi(Σ).
Consider the following system of differential equations:

ȧi = Mi(Σ) − ai, i = 1,2, . . . , n. (7)

If g is an aggregative game, then one can show thatMi(Σ) − ai andBi(Σ−i ) − ai have
always the same sign. For this reason, we will call (7) thecontinuous-time, adjusted bes
reply (CAB) dynamics.

Lemma 1. Letg = 〈N, {Ai}i∈N, {Ui}i∈N 〉 be an aggregative game. For alla ∈ A, we have:

(a) (Mi(Σ) − ai)(Bi(Σ−i ) − ai) � 0, and
(b) Bi(Σ−i ) = ai , if and only ifMi(Σ) = ai .

Recall that, given a system of ordinary differential equationsȧ = f (a), with f (a) a
Lipschitz function, we can think of the unique solutionat , with initial condition a0, as
the trajectory of the deterministic dynamical system starting ata0. Any point a ∈ A with
the property that there exists a sequencet1, t2, . . . such that limm→∞ atm = a is called an
ω-limit point of the trajectoryat ; the set of all such points is called theω-limit set of the
trajectoryat . If the ω-limit set of the trajectoryat contains a single elementa∗ ∈ A, then
a∗ is a stationary point (i.e.,f (a∗) = 0) and if the system starts ata0 then it will converge
to a∗; limt→∞ at = a∗. The system of ordinary differential equationsȧ = f (a) globally
converges, if for all a0 ∈ A the ω-limit set of the system with initial conditiona0 is a
singleton.
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If it is globally convergent, then from any given initial statea0 the system converge
to an equilibriuma∗; limt→∞ at = a∗. Note that global convergence of a system does
imply that the system has a unique equilibrium or stationary point. Rather, it mean
starting from any initial position one of the equilibria is eventually reached. Cyclin
chaotic dynamics are ruled out. Lemma 2 shows that the CAB dynamics defined
globally converges to some Nash equilibrium of the gameg.

Lemma 2. Let g be ann-person, aggregative game. Then the CAB dynamics define
Eq. (7) is globally convergent.

The intuition behind the global convergence of the CAB dynamics defined by E
is simple. By adding up then differential equations in (7) one obtains a single ordin
differential equation inΣ . Such an equation cannot exhibit any cyclic or chaotic beha

Lemma 2 is needed to establish the next lemma, which shows that for almo
transversal, aggregative games there is a finite sequence of single-player improv
that ends arbitrarily close to a Nash equilibrium.

Lemma 3. For almost all transversal,n-person, aggregative gamesg, given anyr > 0 and
any strategy profilea0, there is a finite sequence of single-player improvements that s
at a0 and ends inside a ball of radiusr around an isolated Nash equilibriuma∗ of g.

Lemma 3 implies that with probability one the better-reply dynamics ends up arbit
close to a Nash equilibrium of an aggregative game. This is because, with probabilit
the better-reply dynamics will eventually follow a path arbitrarily close to a trajectory o
deterministic system (7). The next lemma provides sufficient conditions for conver
to a Nash equilibrium when the system is already close to the equilibrium.

Lemma 4. Letg be ann-person, aggregative game. Consider a Nash equilibriuma∗ of g.
LetB ′

i be the first derivative of the best-reply functionBi(Σ−i ) of playeri evaluated ata∗.
Assume that either(a) B ′

i > 0 for all i and
∑n

i=1 B ′
i/(1+ B ′

i ) < 1, or (b) 0> B ′
i for all i.

Then there exists a neighborhoodV of the Nash equilibriuma∗ such that almost every pat
a0, a1, a2, . . . generated by the stochastic process described in Definition2 that starts in
V stays inV and, moreover,limt→∞ at = a∗.

Two sets of conditions guarantee that when starting close to a Nash equilibriua∗
almost all paths generated by the better-reply dynamics converge toa∗. The first condi-
tion is that all the derivativesB ′

i of the best-reply functions evaluated ata∗ have the same
sign; that is, actions are either locally strategic substitutes or locally strategic co
ments. The second condition is

∑n
i=1 B ′

i/(1 + B ′
i ) < 1. Note that ifB ′

i < 0 for all i ∈ N

this condition is automatically satisfied, because (4) and (5) guarantee thatB ′
i > −1 for

all i ∈ N . Let Ci be the derivative of theMi functions defined in Eq. (6), evaluated ata∗.
Equation (6) implies thatCi = B ′

i/(1 + B ′
i ), henceB ′

i > −1 is equivalent toCi < 1. Fur-
thermore,

∑n
B ′/(1+ B ′) < 1 is equivalent to

∑n
Ci < 1. This condition is sufficien
i=1 i i i=1
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for a∗ to be locally asymptotically stable under the CAB dynamics defined by Eq.3

Note also that if 0> B ′
i > −1 for all i, or B ′

i > 0 for all i and
∑n

i=1 B ′
i/(1+ B ′

i ) < 1, then
at the equilibriuma∗ the best reply functions of all players are transversal, since it mu
B ′

iB
′
j < 1 for all i, j .

The next theorem shows that the stochastic better-reply dynamics globally con
if actions are either locally strategic substitutes or locally strategic complemen
all players at all Nash equilibria that are asymptotically stable under the CAB dy
ics. To use Lemma 4 in the proof, we also need to add the technical assumptio∑n

i=1 B ′
i/(1+ B ′

i ) 	= 1.4 Note that actions are allowed to be strategic substitutes at a
equilibrium and strategic complements at another equilibrium, as we only need to ru
equilibria where actions are strategic complements for some players and strategic
tutes for other players.

Theorem 1. Letg be a transversal,n-person, aggregative game. Suppose that at each N
equilibriuma∗ that is asymptotically stable under the CAB dynamics defined by Eq.(7):

(a)
∑n

i=1 B ′
i (Σ

∗−i )/[1+ B ′
i (Σ

∗−i )] 	= 1, and
(b) the derivatives of all the best-reply functions have the same sign.

Then, regardless of the initial position, for almost any patha0, a1, a2, . . . generated by
the stochastic process described in Definition2 (the better-reply dynamics) we have:
limt→∞ at = a∗, wherea∗ is a Nash equilibrium of the gameg.

Proof. First we must argue as in Lemma 3 that, starting from any non-equilibrium p
the patha0, a1, a2, . . . will eventually end up in some neighborhoodV of a locally as-
ymptotically stable equilibriuma∗ of the system (7). Once there we can apply Lemm
to conclude the proof. (Recall that at an asymptotically stable equilibrium of (7) it
be

∑n
i=1 B ′

i/(1 + B ′
i ) � 1; hence

∑n
i=1 B ′

i/(1 + B ′
i ) 	= 1 at such an equilibrium implie∑n

i=1 B ′
i/(1+ B ′

i ) < 1.) �
Theorem 1 is the main result of the paper. Why is global convergence obtained an

do we need actions to be either strategic substitutes or strategic complements around
equilibrium? An intuitive explanation consists of two parts. First, in aggregative game
stochastic process generated by the better-reply dynamics will eventually get within a
ball around a Nash equilibrium. Second, if the derivatives of the best reply functions
the same sign at a Nash equilibrium, players always move in the same direction an
close to equilibrium the stochastic process will not exit from a small ball around it. I
derivatives of the best reply functions have different signs at a Nash equilibrium, th
no tendency for players to move in the same direction. In the next section we will p
an example that shows that in this case the better-reply dynamics of Definition 2 ne
globally converge, because the stochastic process may leave any small ball around
equilibrium.

3 If
∑n

i=1 Ci > 1 thena∗ is unstable, while if
∑n

i=1 Ci = 1 thena∗ could be either stable or unstable.
4 This assumption is satisfied by almost all games.
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Consider again the examples introduced in Section 2.

Example 1. In the case of a homogeneous product, Cournot oligopoly, a sufficient
dition for the slopes of the best-reply functions to have the same (negative) s
P ′′(Σ∗) � 0 (i.e., at the total output level corresponding to a Nash equilibrium the s
of the inverse demand function is decreasing).

Example 2. In a collective action problem, the slopes of the best-reply functions
the same (negative) sign at a Nash equilibriuma∗ provided each player’s marginal bene
function is decreasing inΣ∗, V ′′

i (Σ∗) < 0.
The next theorem shows that for 2-person games condition (5) need not be satisfie

the slope of the best-reply functions need not be bounded below by−1) for the better-reply
dynamics to globally converges to a Nash equilibrium.

Theorem 2. Let g be a transversal,2-person game with payoff functions that a
quasi-concave in own action. SupposeB ′

1(a
∗
2)B ′

2(a
∗
1) > 0 (i.e., the derivatives of th

best-reply functions have the same sign) at each Nash equilibriuma∗ of g such that
B ′

1(a
∗
2)/(1 + B ′

1(a
∗
2)) + B ′

2(a
∗
1)/(1 + B ′

2(a
∗
1)) < 1. Then, regardless of the initial pos

tion, for almost any patha0, a1, a2, . . . generated by the stochastic process describe
Definition2 we have: limt→∞ at = a∗, wherea∗ is a Nash equilibrium ofg.

4. An example of non-convergence of the better-reply dynamics

In this section we construct an example of a 2-person, quasi-concave gamegE with a
unique Nash equilibriuma∗ = (0,0) at which the derivatives of the best-reply functio
have different signs and show that for almost all pathsa0, a1, . . . the better-reply dynamic
does not converge to the equilibrium. First we introduce a needed lemma.

Lemma 5. Let ρ0, ρ1, . . . be an infinite path of a discrete time Markov process withr >

ρ0 > 0.5 Suppose the probability law governing the stochastic process in the interval(0, r)

satisfies the following inequalities:

P

(
ρt+1

ρt
� 224

)
>

1

4
, (8)

P

(
ρt+1

ρt
� ε

)
< ε2 for anyε > 0. (9)

Then for almost all pathρ0, ρ1, . . . there existsT such thatρT > r .

5 The stochastic process considered in this lemma may depend on some hidden, time-varying variab
vided that their values do not influence the validity of inequalities (8) and (9).
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Now we are ready to construct our example. The strategy set of each playeri = 1,2 is
Ai = [−2,2]. Let β1, β2 > 0 and define the best-reply functions of the players as follo

B1(a2) =


−β1a2 for a2 ∈ [− 1

β1
, 1

β1

]
,

−2β1+β1a2−2
2β1−1 for a2 > 1

β1
,

−2+β1a2−2β1
2β1−1 for a2 < − 1

β1
;

B2(a1) =


β2a1 for a1 ∈ [− 1

β2
, 1

β2

]
,

2β2+β2a1−2
2β2−1 for a1 > 1

β2
,

2+β2a2−2β2
2β2−1 for a1 < − 1

β2
.

Let the utility function of each player be the square of the Euclidean distance from th
reply. This defines a two-player, continuous gamegE having a unique Nash equilibrium
at the pointa∗ = (0,0). If β1 < 1, then condition (5) is satisfied. In this game the C
dynamics defined by (7) always converges toa∗. Also, around the equilibrium the gam
has linear best-reply functions withB ′

1(0)B ′
2(0) = −β1β2 < 0.

Theorem 3 shows that in the gamegE , if the evolution of the action profilea follows
the better-reply dynamics, then play will not converge to the Nash equilibriuma∗. For
simplicity we will suppose that each player’s sampling probability is uniform onAi =
[−2,2] and that the probability that each player is selected to sample a new strategy/2.

Theorem 3. In the gamegE , consider the stochastic process generated by the better-
dynamics described in Definition2. Assume that each player’s sampling probability
uniform onAi = [−2,2] and that the probability that each player is selected to samp
new strategy is1/2. For all β1 > 0 there existsβ0 > 0 such that ifβ2 > β0, then for almost
all pathsa0, a1, . . . , with a0 	= (0,0), the stochastic process does not converge to the N
equilibriuma∗ of gE .

Lemma 3 shows that there is a positive probability that in the gamegE discussed in this
section the stochastic process described in Definition 2 enters any small neighborhU

of the equilibrium(0,0); Theorem 3 shows that it is also the case that almost any pa
the process will leave the neighborhoodU . In fact, almost all orbits are dense in the squ
[−2,2]2; that is, any set of positive measure is visited infinitely many times. This exp
why in Theorem 2 we must impose the conditionB ′

1(a
∗
2)B ′

2(a
∗
1) > 0 at a Nash equilibrium

a∗ to guarantee that the system globally converges.
Theorem 3 is related to a result by Gale and Rosenthal (1999). They studied a

with an experimenter and an imitator. At each point in time, the experimenter sample
actions and moves to a better response, while the imitator adjusts her action towa
current action of the experimenter. The experimenter’s (player 1) best-reply funct
B1 = γ a2, whereγ could be positive or negative. Gale and Rosenthal (1999) showe
if γ is negative (and sufficiently small) then the system leaves any sufficiently small n
borhood of the unique Nash equilibrium(0,0) with probability one, while ifγ is positive
then the system globally converges to the equilibrium. To relate this result to our m
note that we can think that the imitator acts as if her best-reply function wereB2 = a1.
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Then, applying our better-reply dynamics, we would also obtain global convergence
γ > 0 and no convergence for a sufficiently small, negativeγ .

5. The better-reply dynamics for finite games

So far we have considered games with continuous strategy sets. In this section w
that there are important differences in the convergence properties of the better-re
namics with a discrete and with a continuous state space.

Friedman and Mezzetti (2000) introduced the following definition.

Definition 3. The gameg has theweak finite improvement property(weak FIP) if from all
action profilesa ∈ A there exists a finite sequence of single-player improvements that
in a pure strategy Nash equilibrium.

The weak FIP is an important property in the study of adaptive dynamics in finite ga
In a finite game with the weak FIP the better-reply dynamics converges to a Nash e
rium. For continuous games, Friedman and Mezzetti (2000) proved the following the

Theorem 4. Any transversal,2-person, quasi-concave game has the weak FIP.

We will extend Theorem 4 by showing that almost all transversal,n-person, aggregativ
games also have the weak FIP. We begin with a lemma that deals with 2-person gam
quadratic payoffsUi(a) = αi − γi(a

2
i − 2βia1a2)

2, whereαi , βi , γi > 0 are constants. I
such games the best-reply andMi functions are:

Bi(aj ) = βiaj ,

Mi(a1 + a2) = Ci(a1 + a2), (10)

whereβi is a constant andCi = βi/(1+ βi), i = 1,2, j 	= i.

Lemma 6. Let C be the set of all pairsC1,C2 with Ci < 1 and C1 + C2 < 1 and let
g = 〈{1,2},A,U 〉 be a transversal,2-person game with best-reply andMi functions given
by (10)with (C1,C2) ∈ C.6 For almost all(C1,C2) ∈ C (i.e., with the possible exception
a subset ofC having zero Lebesgue measure) the following claims hold:

(a) Given any action profilea0 = (a0
1, a0

2) and any numberθ ∈ (−1,1), there exists a
finite sequence of single-player improvements{a0, a1, . . . , aT } such thataT

1 + aT
2 =

θ(a0
1 + a0

2).
(b) If θ = 0, the sequence{a0, a1, . . . , aT } can be chosen so thataT = (0,0).

6 Note that the gameg is transversal. For 2-person games the best reply functions at a Nash equilibriu
transversal if and only ifβ1β2 	= 1, or equivalentlyC1 + C2 	= 1.
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Let 
(θa0) be the line inR2 with slope−1 which intercepts the segment with endpoi
a0 and−a0 at the interior pointθa0. Part (a) of Lemma 6 says that it is possible to fin
single-player improvement path that starts ata0 and reaches a pointaT on the line
(θa0)

after T steps. Part (b) says that if the line goes through the origin we can chooseaT =
(0,0); that is, there is a single-player improvement path froma0 to the Nash equilibrium
(0,0). Lemma 6 is used in the proof of the following theorem.

Theorem 5. Almost all transversal,n-person, aggregative games have the weak finite
provement property.

We will use Theorem 5 to show that in any sufficiently fine, finite discretizatio
almost all continuous, aggregative games, the better-reply dynamics converges i
time to a point arbitrarily close to a Nash equilibrium. To do so, we need first to m
the better reply dynamics to fit the case in which the strategy space of each player is

Definition 4 (The better-reply dynamics for finite games). Consider a finite gamegF . At
each discrete time periodt there is a status quo action profileat . A single playeri ∈ N is
randomly selected, with all players having positive selection probability. Playeri randomly
samples an actionxi ∈ AF

i , with all the elements ofAF
i having positive probability o

being sampled. IfUF
i (at\xi) > UF

i (at ) thenat+1 = at\xi . If UF
i (at\xi) � UF

i (at ) then
at+1 = at .

We now discretize the strategy sets of a continuous game. So as not to introduc
cial instability, we assume that all the actions corresponding to a Nash equilibrium
original game are available to the players in the discretized version.

Definition 5. Let Ai = [a i, ai] be the strategy set of playeri in the continuous gameg =
〈N, {Ai}i∈N, {Ui}i∈N 〉. We say that a partitiona i = ai,0 < ai,1 < ai,2 < · · · < ai,H = ai

of Ai is ε-fine if for all h = 1, . . . ,H : |ai,h − ai,h−1| < ε. We call a finite gamegF =
〈N, {AF

i }i∈N, {UF
i }i∈N 〉, whereAF = AF

1 × · · · × AF
n anε-fine discretization of the con

tinuous gameg if the following properties hold:

(a) Each setAF
i is anε-fine partition ofAi .

(b) If a∗ = (a∗
1, . . . , a∗

n) is a Nash equilibrium ofg, thena∗
i ∈ AF

i for all i ∈ N .
(c) The payoff functionsUF

i of the gamegF are the restrictions of the payoff functio
Ui of the gameg to the setAF .

All transversal, continuous gamesg have a finite number of Nash equilibria and th
admit at least oneε-fine discretizationgF , for anyε > 0. By choosingε sufficiently small,
the finite gamegF can be made arbitrarily close to the continuous gameg. We now show
that for a sufficiently fine discretizationgF of an aggregative gameg, the better-reply dy
namics converges in finite time to a Nash equilibrium ofgF which lies within a smal
distance from a Nash equilibrium ofg.
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Theorem 6. For almost all transversal,n-person, aggregative gamesg and for all r > 0
there existsε0 > 0 such that ifgF is anε-fine discretization ofg and0 < ε < ε0, thengF

has the weak FIP and the Markov process described in Definition4 converges in finite time
to a Nash equilibriumaF of gF which is contained in a ball of radiusr around a Nash
equilibriuma∗ of g.

Proof. Theorem 5 shows that, given anyr > 0, each trajectoryat of the dynamical system
(7) can be replaced by a finite sequence of single-player improvements leading first
a ball of radiusr around a Nash equilibriuma∗ of g and then intoa∗. This implies that,
givenr , if ε is sufficiently small (i.e.,ε < ε0), then anyε-fine discretizationgF of g has the
property that starting from alla0 ∈ AF there is a finite sequence of single-player impro
ments leading inside a ball of radiusr around a Nash equilibrium ofg. Observe, howeve
that inside the ball there may be Nash equilibria of the discretized gamegF that are not
Nash equilibria ofg. For example, in Fig. 1 the profileN is not a Nash equilibrium o
the original game, but it is an equilibrium of anε-fine discretization. We can neverthele
conclude thatgF has the weak finite improvement property. It follows that, starting fr
any statea0 ∈ AF , almost all paths of the stochastic process described in Definition 4
reach a Nash equilibrium ofgF in finite time. �

Comparing Theorem 6 with Theorem 1 reveals that global convergence to Nash
librium requires less stringent conditions when the state space is discrete than wh
continuous (actions need not be strategic complements or substitutes at any Nash
rium). This may seem puzzling. In particular, the convergence result of Theorem 6
discrete state space, and the non-convergence of the example in Section 4 with a con
state space may seem in conflict. However, observe that we can use the proof of The

Fig. 1. Nash equilibria of a discretized game.
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to show that in anε-fine discretization of the gamegE described in Section 4, the avera
time that the better-reply dynamics of Definition 5 takes to converge to the Nash eq
rium goes to infinity asε goes to zero. Thus, there is really no conflict between Theore
and 3.

6. Conclusions

We have studied the global convergence properties of a stochastic adjustment p
the better-reply dynamics, in which at each discrete point in time a player is rand
selected to sample one of her available actions. The player only changes her curren
if the sampled action improves her payoff.

Our convergence results are considerably stronger than existing results on the
gence of the deterministic best-reply dynamics. Gabay and Moulin (1980) and M
(1984) (see also Moulin, 1986) showed that the deterministic, discrete-time, best-rep
namics globally converges to the unique Nash equilibrium if players’ payoff function
strictly concave and an additional condition on the second derivatives of the payoff fu
is satisfied. This condition requires that the sum of the absolute values of the cross
derivatives of a player’s payoff function with respect to her own action and the other
ers’ actions is less than the absolute value of the second derivative of the player’s
function with respect to her own action. Al-Nowaihi and Levine (1985) proved global
vergence to the unique Nash equilibrium for the continuous-time version of the best
dynamics of the homogeneous-product, Cournot model when the difference betwee
and marginal cost is a decreasing function of the firm’s output, the best-reply fun
have negative slope everywhere and there are at most 5 firms (Al-Nowaihi and L
show that the claim made by Hahn, 1962 and Okuguchi, 1964 that this result hol
any number of firms is incorrect). Dastidar (2000) showed that if there is a unique Co
equilibrium, then the equilibrium is locally stable under fairly general conditions. V
(1990) observed that a result of Hirsch (1985) implies that the continuous-time, bes
dynamics globally converges to a Nash equilibrium if the signs of the partial derivativ
the best-reply functions of all players are positive everywhere. Thorlund-Petersen
studied a variant of the deterministic, discrete-time, best-reply dynamics of the Co
model, in which players best reply to the time average of the total output of their o
nents, rather than to their current total output. This dynamics is analogous to the p
known as fictitious play in finite games (see Fudenberg and Levine, 1998 for a s
of results on fictitious play in finite games). Thorlund-Petersen (1990) showed that
difference between price and marginal cost is a decreasing function of the firm’s o
and the best-reply functions have negative slope everywhere, then his dynamics g
converges to the unique Nash equilibrium, independently of the number of firms.

We have shown that when the action space is continuous, global convergence to
equilibrium in an aggregative game occurs provided that the actions of all players
ther locally strategic complements or locally strategic substitutes at all Nash equilibr
are stable under the deterministic, continuous-time, adjusted best-reply dynamics
by Eq. (7). We used an example to show that if the slopes of the best-reply functi
a Nash equilibrium have different signs, then the better-reply dynamics may not con
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to a Nash equilibrium. We also showed that in any discretization of a continuous ag
tive game the better-reply dynamics converges to an action profile that is close to a
equilibrium of the original game.
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Appendix A

Proof of Lemma 1. If Bi(Σ−i ) = ai then (a) holds. Consider anya ∈ A with Bi(Σ−i ) > ai .
Condition (3) guarantees that for any givenΣ−i = ∑

j 	=i aj , if Bi(Σ−i ) > ai , then
Di(ai, ai +Σ−i ) = Di(ai,Σ) � 0. Equation (5) implies that for any givenΣ , the function
Di(ai,Σ) is decreasing inai . So, if Mi(Σ) = Mi(ai + Σ−i ) were less thanai , it would
follow that Di(Mi(Σ),Σ) > Di(ai,Σ) � 0. This implies that Eq. (6) does not have a
lution, and thatMi(Σ) is equal to the right endpoint of the intervalAi . Thus,Mi(Σ) � ai ,
which is a contradiction. It follows thatai � Mi(Σ). A similar argument can be made f
the caseai > Bi(Σ−i ). This concludes the proof of part (a).

By (2) and (6), ifBi(Σ−i ) = ai , then it must also beMi(Σ) = ai , since for alla−i :

Mi(Bi(Σ−i ) + Σ−i ) = Bi(Σ−i ),

while if Mi(Σ) = ai , thenBi(Σ−i ) = ai , since for allΣ

Bi

(
Σ − Mi(Σ)

) = Mi(Σ).

This concludes the proof of part (b).�
Proof of Lemma 2. If we sum the system (7) we obtain a differential equation forΣ .
Namely:

Σ̇ =
n∑

i=1

Mi(Σ) − Σ.

This is a single ordinary differential equation satisfying a Lipschitz condition. Becaus
dimensional autonomous equations cannot exhibit oscillations, it follows that give
initial conditionΣ0 the trajectoryΣt is monotonic. SinceΣt is also bounded, it follows
that there isΣ∞(Σ0) ∈ AΣ such that

Σ∞(
Σ0) = lim

t→∞Σt .

This implies that for anyi ∈ N : Mi(Σ
t) → Mi(Σ

∞(Σ0)) as t → ∞. Hence, for larget
the system (7) with initial conditiona0 ∈ A, such that

∑n
i=1 a0

i = Σ0, becomes:

ȧi = Mi

(
Σ∞(

Σ0))− ai + hi

(
t,Σ0), i = 1,2, . . . , n,

where the functionshi satisfyhi(t,Σ
0) → 0, ast → ∞. This immediately yields that fo

all i ∈ N , at → Mi(Σ
∞(Σ0)) as t → ∞; that is, theω-limit set of the system (7) with
i
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initial condition a0 contains a single elementa∗ ∈ A and for all i ∈ N , a∗
i = Mi(Σ

∗),
whereΣ∗ = ∑n

i=1 a∗
i . Lemma 1 part (b) then impliesa∗

i = Bi(Σ
∗−i ) for all i ∈ N ; that is,

a∗ is a Nash equilibrium ofg. �
Proof of Lemma 3. Since the gameg is transversal, it follows that the set of Nash equil
ria is finite. Taker > 0 and anya0 ∈ A. If a0 is not already contained in a ball of radiusr

around a Nash equilibrium, consider the dynamics (7) for the gameg with initial condi-
tion a0. By Lemma 2, there is a timeT > 0 such that for allt > T , the trajectoryat lies
in some neighborhoodVr contained in a ball of radiusr around a Nash equilibriuma∗.
The only possible instance in whicha∗ is not an isolated, asymptotically stable equil
rium of (7) is if (7) has a stable manifold converging to an unstable Nash equilibrium
a0 belongs to such a manifold (i.e., it belongs to a trajectory converging to an un
equilibrium).7 In such an instance a small deviation (say by playeri) from the trajectoryat

leads to another trajectory that converges to an asymptotically stable, isolated equi
of (7). Since, as we shall see below, we can always replace the continuous dynamics
finite sequence of single-player improvements, it is always possible to find a single-
improvement that leads away from a trajectory belonging to a stable manifold of an
ble equilibrium. Hence it is always possible to reach a neighborhoodVr contained in a bal
of radiusr around an isolated, asymptotically stable equilibrium of (7).

To replace the continuous dynamic with a finite sequence of single-player imp
ments, we will use a simple Euler scheme to approximate the integral curveat . Take an
integerZ ∈ N and consider theZ-th approximation̂at of at defined as follows:

tz = z

Z
T , z = 0,1, . . . ,Z,

â0 = a0,

âtz+1 = âtz + T

Z

[
M

(
n∑

i=1

â
tz
i

)
− âtz

]
, z = 0,1, . . . ,Z − 1,

ât = âtz , for tz � t < tz+1.

(A.1)

As Z → ∞, ât converges toat uniformly on [0, T ]. In particular there is aZ large
enough for whichâT ∈ Vr . If we show that for eachz = 0,1,2, . . .Z there is a finite
single-player improvement path from̂atz to âtz+1 then we are done, because the existe
of a path fromâ0 = a0 to âtZ ∈ Vr follows.

To show that there is an improvement path fromâtz to âtz+1, take:

y0 = âtz ,

yh = yh−1 + eh

T

Z

[
Mh

(
n∑

i=1

â
tz
i

)
− âtz

]
, h = 1,2, . . . , n.

Here eh is the n-dimensional vector whosehth element is 1 and all other elemen
are zero. SinceMh is a continuous function,Z can be chosen large enough to ma

7 A stable manifold of an unstable equilibriuma∗, if one exists, has the property that for all pointsa in the
manifold

∑n ai = ∑n a∗ = Σ∗.
i=1 i=1 i
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nd

h
l

t (c)

n

ply
Mh(
∑n

i=1 â
tz
i ) as close as desired toMh(

∑n
i=1 yh

i ) and âtz as close as desired tôatz+1.
This implies that[

Mh

(
n∑

i=1

â
tz
i

)
− â

tz
h

][
Mh

(
n∑

i=1

yh
i

)
− yh

h

]
> 0.

By Lemma 1, we have[
Mh

(
n∑

i=1

yh
i

)
− yh

h

][
Bh

(∑
i 	=h

yh
i

)
− yh

h

]
> 0.

This implies that the move fromyh−1 to yh by playerh is in the direction of his best reply
that is, it is a single-player improvement. This completes the proof.�

We now present a useful lemma. Consider the quadratic formγ defined for anya ∈ R
n

and forβi 	= 0, i = 1, . . . , n, as follows:

γ (a) =
n∑

i=1

1

βi

a2
i − 2

( ∑
1�i<j�n

aiaj

)
= aQaT (A.2)

whereQ is the following matrix:

Q =


1
β1

−1 . . . −1

−1
. . . . . . −1

...
...

...
...

−1 . . . −1 1
βn

 .

Lemma 7. (a) The functionγ :Rn → R is bounded from below with greatest lower bou
equal to0 if and only ifβi > 0 for i = 1, . . . , n and

∑n
i=1 βi/(1 + βi) � 1. If the second

inequality is strict, thenγ has a unique global minimum at(0,0, . . . ,0).
(b) If 0 > βi � −1, for i = 1, . . . , n, then the functionγ is bounded from above wit

least upper bound equal to0. If the second inequality is strict, thenγ has a unique globa
maximum at(0,0, . . . ,0).

(c) If n = 2, thenγ is bounded from above with least upper bound equal to0 if and
only if 0> βi , i = 1,2 andβ1β2 � 1. If the second inequality is strict, thenγ has a unique
global maximum at(0,0).

Proof. Parts (a) and (b) follow from Theorem 2 of Al-Nowaihi and Levine (1985). Par
follows from the definition of negative semi-definiteness of a 2× 2 matrix. �

We are now ready to prove Lemma 4 and Theorem 2.

Proof of Lemma 4. Consider a Nash equilibrium ofg. By changing coordinates we ca
assume, without loss of generality, that this equilibrium is at the point(0,0, . . . ,0) ∈ R

n.
For action profilesa sufficiently close to the equilibrium, we can linearize the best-re
function Bi of each player and writeBi(Σ−i ) = βiΣ−i . Thus, a move by playeri from
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a = (a1, a2, . . . , an) to â = (a1, a2, . . . , ai−1, âi , ai+1, . . . , an) is payoff improving if and
only if

|âi − βiΣ−i | < |ai − βiΣ−i |.
Geometrically, this means that to improve her payoff playeri must move to a point on th
line segment parallel to the vectorei = (0,0, . . . ,1,0, . . . ,0) (with 1 in thei-th position),
with one endpoint ata = (ai, a−i ), the middle point at(βi

∑
j 	=i aj , a−i ) and the othe

endpoint atb = (bi, a−i ) = (2βi

∑
j 	=i aj − ai, a−i ). Consider now the functionγ defined

in Eq. (A.2), assumingβi 	= 0; we claim thatγ (a) = γ (b). We will check this claim for
i = 1; we have:

γ (b) − γ (a) = 1

β1

[
(2β1Σ−1 − a1)

2 − a2
1

]− 2
n∑

j=2

[
(2β1Σ−1 − a1)aj − a1aj

]
= 4β1Σ

2−1 − 4a1Σ−1 − 4β1Σ
2−1 + 4a1Σ−1 = 0.

Now suppose we are in case (a) in the statement of the lemma; that is,βi > 0 for all
i = 1, . . . , n, and

∑n
i=1 βi/(1+ βi) < 1. Then, for any givena−i , the functionai �→ γ (a)

is quadratic inai and goes to+∞ as|ai | → ∞. Hence, sinceγ (a) = γ (b), for all points
d on the line segment connectinga andb we haveγ (d) � γ (a) with strict inequality ifd
is inside the segment; a single-player improvement by any playeri reduces the value ofγ .

We now show that there exists a neighborhoodV of the Nash equilibrium(0, . . . ,0)

such that ifa0 ∈ V then almost all pathsa0, a1, a2, a3, . . . generated by the stochas
process described in Definition 2 stay all the time inV . Moreover ,

lim
t→∞at = (0,0, . . . ,0).

Let the neighborhoodV be given by{x: γ (x) < c} for somec > 0. It follows that any
infinite path {at }∞t=0 of the stochastic process witha0 ∈ V is associated with a nonin
creasing sequence of real numbersγ (a0), γ (a1), γ (a2), γ (a3), . . . and thusat ∈ V , for
all t . Note that in this sequence we have infinitely many times a strict inequality, sin
at 	= (0,0, . . . ,0) then there is a positive probability that one of the players samples a
egy that improves his payoff, hence for somen � t , γ (an+1) < γ (an). By Lemma 7 the
sequenceγ (a0), γ (a1), . . . is bounded from below, since the functionγ reaches its strict
global minimum at(0,0). Hence it must converge.

To see that limt→∞ at = (0,0, . . . ,0), assume to the contrary that there exists a s
sequence{ah}∞h=0 of {at }∞t=0 with limh→∞ ah = a, with γ (a) = m > 0. Since a 	=
(0,0, . . . ,0), there isp > 0 andε > 0 such that with probability of at leastp the sto-
chastic process moves froma to a pointb for which γ (b) < γ (a) − ε. Because of the
continuous nature of the game, it must also be true that with probability of at leastp the
stochastic process moves fromah to b, whereah is any point on the path converging toa
that is sufficiently close toa. It follows that the probability that the functionγ stays above
m along a path of the stochastic process is zero. Since this is true for anym > 0, for almost
any pathγ goes to zero and therefore limt→∞ at = (0,0, . . . ,0).

In case (b) in the statement of the theorem, first note that (4) and (5) imply thatβi > −1
for all i. Then we can apply Lemma 7 and the proof is similar to the proof of (a), ex
that we need to use the function−γ in place ofγ . �
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Proof of Theorem 2. Consider the best-reply dynamics:

ȧ1 = B1(a2) − a1,

ȧ2 = B2(a1) − a2, (A.3)

with initial condition(a0
1, a0

2) = a0. It follows from Liouville’s theorem (see Corchon an
Mas-Colell, 1996) that theω-limit set of every solution of this system is a Nash equil
rium a∗ of g and that for almost any initial condition(a0

1, a0
2) the point in theω-limit set

is a stable equilibrium (a stable manifold of an unstable equilibrium is at most one d
sional).8,9 By approximating the system (A.3) with an Euler scheme as in the pro
Lemma 3, we can then argue that for any neighborhoodV of a∗ there is a positive proba
bility p > 0 that the stochastic patha0, a1, a2, . . . generated by the better-reply dynam
will eventually end up and stay inV . If by W we denote the union of a set of small neig
borhoods of all stable equilibria of the system (A.3), then there exists an integerk and a
numberp > 0 such that regardless of our initial position the patha0, a1, a2, . . . , ak gener-
ated by the better-reply dynamics leads toW with probability at leastp. Once a path is in
W , it stays there indefinitely. On the other hand ifak /∈ W then again with probability a
leastp the pathak, ak+1, ak+2, . . . , a2k leads toW . It follows that eventually almost ever
path ends inW .

We have shown that the better-reply dynamics leads with probability one to an
trarily small neighborhood of a stable equilibriuma∗ of the system (A.3). We now sho
thata∗ is a stable equilibrium of (A.3) if and only ifB ′

1(a
∗
2)/(1+ B ′

1(a
∗
2)) + B ′

2(a
∗
1)/(1+

B ′
2(a

∗
1)) < 1 (which is equivalent toa∗ being asymptotically stable under the adjus

best-reply dynamics (7)). To see this, consider the linearization of (A.3) arounda∗:

ȧ1 = B ′
1

(
a∗

2

)
a2 − a1,

ȧ2 = B ′
2

(
a∗

1

)
a1 − a2. (A.4)

The stability of a∗ under (A.3) implies that the real parts of the eigenvalues of
linearized system (A.4) must be non-positive. The characteristic equation of (A
(1 + λ)2 = B ′

1(a
∗
2)B ′

2(a
∗
1) and thus the linearized system has a zero eigenvalue,λ = 0,

if and only if B ′
1(a

∗
2)B ′

2(a
∗
1) = 1, which is ruled out by the assumption that the gameg is

transversal (B ′
1(a

∗
2)B ′

2(a
∗
1) 	= 1 at all Nash equilibria). Thus, the equilibriuma∗ of (A.3) is

stable if and only ifB ′
1(a

∗
2)B ′

2(a
∗
1) < 1. Finally note thatB ′

1(a
∗
2)B ′

2(a
∗
1) < 1 is equivalent

to B ′
1(a

∗
2)/(1+ B ′

1(a
∗
2)) + B ′

2(a
∗
1)/(1+ B ′

2(a
∗
1)) < 1.

Now suppose that the inequalityB ′
1(a

∗
2)B ′

2(a
∗
1) > 0 also holds. Then Lemma 4 appli

and for almost any patha0, a1, . . . in a small neighborhood ofa∗ generated by the bette
reply dynamics described in Definition 2 we have limt→∞ at = a∗. This concludes the
proof. �

8 The equilibriuma∗ is stable if for every neighborhoodV of a∗ there is a neighborhoodV ′ ⊂ V of a∗ such
that every trajectoryat with a0 in V ′ is defined and inV for all t > 0.

9 Corchon and Mas-Colell (1996) also showed that with more than two players the best-reply dynami
not converge; there are games with payoff functions that yield chaotic dynamics (e.g., if the differential eq
are Lorenz’s equations; see Guckenheimer and Holmes, 1983).
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Proof of Lemma 5. To prove this lemma it is sufficient to prove that if the inequalities
and (9) are satisfied on the interval(0,∞), then

lim
k→∞P

(
ρt0+k+1

ρt0 > 2
√

k

)
= 1 for all t0 ∈ N (A.5)

and thus limt→∞ ρt = ∞.
By the central limit theorem for the binomial distribution (e.g., see Billingsley, 19

if p is the probability of a random event,k is the number of independent draws, andX is
the random variable that counts the occurrence of the event, then

X − kp√
kp(1− p)

∼ N(0,1) ask → ∞ (A.6)

whereN(0,1) is the standard normal distribution with distribution function

Φ(Y) = 1√
2π

Y∫
−∞

exp

{
− s2

2

}
ds. (A.7)

It is convenient to takek = 24K for some integerK > 0. Suppose that the random eve
is ρt+1/ρt � 224

. By (8) the probabilityp of this event is greater than 1/4; then we have

P

({
#t :

ρt+1

ρt
� 224

}
< 24K−2

)
= Φ

(
24K−2 − 24Kp√

24Kp(1− p)

)
→ 0 asK → ∞. (A.8)

By (9), the probabilityp of the random eventρt+1/ρt ∈ [1/2m+1,1/2m] is less than
1/22m, for m = 1, . . . ,3K/2− 1, and hence

P

({
#t :

ρt+1

ρt
∈
[

1

2m+1
,

1

2m

]}
� 24K+1

22m

)
= Φ

(
24K+1−2m − 24Kp√

24Kp(1− p)

)
→ 1 asK → ∞. (A.9)

Similarly, the probabilityp of the random eventρt+1/ρt ∈ [1/25K/2,1/23K/2] is

p < P

(
ρt+1

ρt
� 1

23K/2

)
<

1

23K

and by (A.6) and (A.7) we have

P

({
#t :

ρt+1

ρt
∈
[

1

25K/2
,

1

23K/2

]}
> 2K+1

)
= 1− Φ

(
2K+1 − 24Kp√

24Kp(1− p)

)
→ 0 asK → ∞. (A.10)

Finally, the probabilityp of the random eventρt+1/ρt � 1/25K/2 is

p = P

(
ρt+1

t
� 1

5K/2

)
>

25K − 1
5K

,

ρ 2 2
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and thus

P

({
#t :

ρt+1

ρt
<

1

25K/2

}
= 0

)
= P

({
#t :

ρt+1

ρt
� 1

25K/2

}
> 24K − 1

)
= 1− Φ

(
24K(1− p) − 1√

24Kp(1− p)

)
→ 1 asK → ∞. (A.11)

Equation (A.8) says that asK → ∞, for almost all pathsρ0, ρ1, . . . , ρ24K
the num-

ber of indicest ∈ {1,2, . . . ,24K } for which ρt+1/ρt � 224
is at least 24K−2. Clearly,

since k = 24K , the number of indicest for which ρt+1/ρt ∈ [1/2,1] is at most 24K .
As K → ∞, by (A.9) the number of indicest for which ρt+1/ρt ∈ [1/2m+1,1/2m],
m = 1,2, . . . ,3K/2−1, is at most 24K+1−2m, and by Eq. (A.10) the number of indicest for
which ρt+1/ρt ∈ [1/25K/2,1/23K/2] is at most 2K+1. Finally, by Eq. (A.11), asK → ∞
the number of indicest for which ρt+1/ρt < 1/25K/2 is zero. Then we can estimate th
for a sufficiently largeK :

ρt0+24K+1

ρt0 �
t0+24K∏
t=t0

ρt+1

ρt

�
(
224

)24K−2

2−24K
3K/2−1∏

m=1

(
1

2m+1

)24K+1−2m(
1

25K/2

)2K+1

. (A.12)

To evaluate the product on the right-hand side of (A.12) we first use logarithms to c
the product into a sum:

ln

( 3K/2−1∏
m=1

(
1

2m+1

)24K+1−2m
)

= 24K+1

( 3K/2−1∑
m=1

2−2m(−m − 1)

)
ln 2

> −24K+1

( ∞∑
m=1

m + 1

22m

)
ln 2� −24K+1 ln 2 (A.13)

where the second inequality follows from
∞∑

m=1

m + 1

22m
<

∞∑
m=1

2m

22m
=

∞∑
m=0

1

2m
− 1= 1.

Using inequality (A.13) in Eq. (A.12) gives:

ρt0+24K+1

ρt0 �
(
224

)24K−2

2−24K

2−24K+1(
2−5K/2)2K+1 = 224K+2

2−(3)24K

2−(5K)2K

= 2−(5K)2K

224K = 222K(22K−5K2−K) > 222K = 2
√

24K
.

This is exactly what we claimed in (A.5). Hence the lemma follows.�
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Proof of Theorem 3. Denote withad(t), with d(t) > t , the first action profile differen
from at in a path of the stochastic process described in Definition 2, and withP(ad(t) ∈
S ⊂ A | at = a) the probability thatad(t) belongs to the setS given thata = at (i.e.,a is the
status quo at timet). Define the distanceρ∗(a) of a pointa = (a1, a2) ∈ [−2,2] × [−2,2]
from the origin(0,0) by

ρ∗(a) = max
{|a1|, |a2|

}
. (A.14)

By lettingρt = ρ∗(at ) andρt+1 = ρ∗(ad(t)), we can define a new process that keeps t
of the evolution of the distanceρ∗. Let A(r) = {a ∈ A: ρ∗(a) = r}, A−(r) = {a ∈ A:
ρ∗(a) � r} andA+(r) = {a ∈ A: ρ∗(a) � r}. DefineλA(r) as the Lebesgue (or uniform
probability measure overA(r); then we have

P
(
ρt+1 � s | ρt = r

) =
∫

A(r)

P
(
ad(t) ∈ A−(s) | at = a

)
dλA(r),

P
(
ρt+1 � s | ρt = r

) =
∫

A(r)

P
(
ad(t) ∈ A+(s) | at = a

)
dλA(r).

Let V = {a: ρ∗(a) < εV } be a small neighborhood of the point(0,0). To prove our
claim about nonconvergence we need to show that almost all paths starting inV leaveV ;
that is, there isT for which aT /∈ V . To establish this we will show that the probabil
law of the process governing the evolution of the distanceρ∗ satisfies the inequalities i
Lemma 5.

First note that we can takeεV > 0 small enough so that in the neighborhoodV around
(0,0) the game has linear best-reply functions. Second, recall that ifa is the prevailing
strategy profile, then the strategies that improve player 1’s payoff are the strategies b
ing to the intervalI1(a) with endpointsa1 and−2β1a2−a1, while the strategies improvin
player 2’s payoff are the ones in the intervalI2(a) with endpointsa2 and 2β2a1 − a2.

We will begin by showing that inV we haveP(ρt+1 � 224
r | ρt = r) > 1/4 for all r

with εV � r > 0 and hence Eq. (8) holds. Supposeρt = r , or equivalentlyat ∈ A(r). Let
AV (r) = {a ∈ A(r): |a1| = r} be the vertical sides of the squareA(r) in R

2 (see Fig. 2)
andλAV (r) be the Lebesgue (or uniform) probability measure overA

(r)
V . Observe that

P
(
ρt+1 � 224

r | ρt = r
)
� 1

2

∫
AV (r)

P
(
ad(t) ∈ A+(224

r
) ∣∣ at = a

)
dλAV (r).

We will show that forβ2 > 224 + 1+ β1 it is P(ad(t) ∈ A+(224
r) | at ∈ AV (r)) > 1/2 and

henceP(ρt+1 � 224
r | ρt = r) > 1/4. Forβ2 > 224 + 1+ β1 we have

P
(
ad(t) ∈ A+(224

r
) ∣∣ at ∈ AV (r)

)
>

2β2r − at
2 − 224

r

2β r − 2at · 2β2r − 2at
2

2β r − 2at + |2β at + 2r|
2 2 2 2 1 2
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Fig. 2. The setA(r) = {a ∈ A: ρ(a) = r}.

where the first term is the probability thata
d(t)
2 > 224

r given that player 2 is the first t
move, and the second term is the probability that player 2 is the first to move. It fo
thatP(ad(t) ∈ A+(224

r) | at ∈ AV (r)) > 1/2 provided that

2
(
2β2r − at

2 − 224
r
)
> 2β2r − 2at

2 + ∣∣2β1a
t
2 + 2r

∣∣, or

β2r > 224
r + ∣∣β1a

t
2 + r

∣∣
which holds ifβ2 > 224 + 1+ β1. This completes the proof that inV Eq. (8) holds.

It remains to show that Eq. (9) also holds inV . Takeat ∈ A(r), so thatρt = r . We need
to show thatP(ρt+1 � εr | ρt = r) < ε2 for all εV � r > 0 and all 1� ε > 0. The only
way the distance from the origin can decrease rapidly, that isρt+1 � εr , is if |at

i | � εr for

somei = 1,2, and playerj 	= i moves toad(t)
j with |ad(t)

j | � |at
i |. Let (see Fig. 2)

A1
ε(r) = {

a ∈ A(r): 0� at
1 � εr andat

2 = r
}
,

A2
ε(r) = {

a ∈ A(r): at
1 = r and 0� at

2 � εr
}
,

A3
ε(r) = {

a ∈ A(r): at
1 = r and − εr � at

2 � 0
}
,

A4
ε(r) = {

a ∈ A(r): 0� at
1 � εr andat

2 = −r
}
,

A5
ε(r) = {

a ∈ A(r): −εr � at
1 � 0 andat

2 = −r
}
,

A6
ε(r) = {

a ∈ A(r): at
1 = −r and − εr � at

2 � 0
}
,

A7
ε(r) = {

a ∈ A(r): at
1 = −r and 0� at

2 � εr
}
,

A8
ε(r) = {

a ∈ A(r): −εr � at � 0 andat = r
}
.
1 2
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Let λAi
ε(r) be the uniform probability measure overAi

ε(r); and observe that

P
(
ρt+1 � εr | ρt = r

) = ε

8

8∑
i=1

∫
Ai

ε(r)

P
(
ad(t) ∈ A−(εr) | at = a

)
dλAi

ε(r). (A.15)

There are four different cases. (1) If eithera ∈ A1
ε(r) or a ∈ A5

ε(r), then we have

P
(
ad(t) ∈ A−(εr) | at = a

)
� 2εr

(r + εr) + (2|at
1| + 2β1r)

<
2ε

1+ 2β1
; (A.16)

(2) If eithera ∈ A2
ε(r) or a ∈ A6

ε(r), then we have

P
(
ad(t) ∈ A−(εr) | at = a

)
� 2εr

|2β2r − 2|at
2|| + (2r + 2β1|at

2|)
< ε; (A.17)

(3) If eithera ∈ A3
ε(r) or a ∈ A7

ε(r), then we have

P
(
ad(t) ∈ A−(εr) | at = a

)
� 2εr

(2β2r + 2|at
2|) + r + εr

<
2ε

1+ 2β2
; (A.18)

Finally, (4) if eithera ∈ A4
ε(r) or a ∈ A8

ε(r), then we have

P
(
ad(t) ∈ A−(εr) | at = a

)
� 2εr

(2β2|at
1| + 2r) + 2|β1r − |at

1||
< ε. (A.19)

Adding up the left-hand sides of Eqs. (A.16) and (A.18) we obtain

2ε

1+ 2β1
+ 2ε

1+ 2β2
< 2ε for β2 >

1

4β1
.

Thus, for a sufficiently largeβ2 Eq. (A.15) implies thatP(ρt+1 � εr | ρt = r) < ε2. This
completes the proof that Eq. (8) holds inV .

Applying Lemma 5 to the stochastic process governing the evolution of the dis
of the state of the system from the origin, we see that for any(0,0) 	= at ∈ V and for
a sufficiently largek, an+k /∈ V . Hence we cannot have(0,0) = a∗ = limt→∞ at . This
concludes the proof. �
Proof of Lemma 6. Without loss of generality we can assume thatC1 � C2. Also, since
we only need to prove that (a) and (b) in the lemma hold for almost all(C1,C2) ∈ C, we
can assume thatC1 	= C2 andC1,C2 	= 0. Therefore, there are three distinct cases we h
to consider. All cases must satisfyC1 + C2 < 1.

(1) 0< C1 < C2 < 1, or, equivalently 0< β1 < β2 < ∞.
(2) C1 < 0< C2 < 1, or, equivalently−∞ < β1 < 0 < β2 < ∞.
(3) C1 < C2 < 0, or, equivalently−∞ < β1 < β2 < 0.

Recall that 1/β1 is the slope of the best-reply function of the first player andβ2 is the
slope of the best-reply function of the second player in thea1–a2 plane. The lemma say
that, starting from any pointa0, and for any givenθ ∈ (−1,1), it is possible to construc
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a sequence of single-player improvements that reaches some point on the straig
x1 + x2 = θ(a0

1 + a0
2).

Case 1. When 0< C1 < C2, conditionC1 + C2 < 1 is equivalent to 1/β1 > β2; that is,
the slope in thea1 − a2 plane of player 1’s best-reply function is greater than the slop
the best-reply function of player 2. Consider the functionγ defined by

γ (a) = 1

β1
a2

1 + 1

β2
a2

2 − 2a1a2.

For anyc > 0, the setE = {a ∈ R
2: γ (a) = c} is an ellipse centered at the origin. Denote

E+ andE− the intersections ofE with the region that lies between the best-reply functi
in the first and third quadrant, respectively. Clearly,E+ andE− are symmetric with respec
to the origin. Moreover, the slope of the ellipse in thea1−a2 plane is zero for the two point
on the best-reply function of player 1, and it is infinity for the two points on the best-r
function of player 2 (see Fig. 3). The symmetry of the ellipse, the slope of player 1’s
reply function being greater than the slope of player 2’s best-reply function, and the
of the ellipse being zero or infinity at the intersections with the best-reply functions i
that starting from anya ∈ E+ we can define two finite sequences{a0, a1, a2, . . . , aT2} and
{b0, b1, b2, . . . , bT1} of points on the ellipseE with the following properties:

(1) a0 = b0 = (a1, a2) ∈ E+, aT2 ∈ E−, andbT1 ∈ E−;
(2) {a1, a2, . . . , aT2} = {(2β1a2 − a1, a2), (2β1a2 − a1,2β2(2β1a2 − a1) − a2), . . . , aT2}

and{b1, b2, . . . , bT1} = {(a1,2β2a1 − a2), (2β1(2β2a1 − a2) − a1,2β2a1 − a2), . . . ,

bT1};
(3) ah /∈ E+ ∪ E− for h = 1, . . . , T2 − 1 andbh /∈ E+ ∪ E− for h = 1, . . . , T1 − 1.

Fig. 3. The ellipseE = {a ∈ R
2: γ (a) = c}.
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Each step in the sequences consists of a payoff neutral change by one of the two
Players take turns changing action; in the sequence{a0, a1, a2, . . . , aT2} player 1 is the firs
to change action, in the other sequence the first to change action is player 2.

By letting ϕ1(a) = aT1 andϕ2(a) = aT2 we can define two continuous maps fromE+
into E−. Consider a smooth parameterizationf+ : [0,1] → E+ of the arcE+ of the ellipse
E and note that by lettingf− = −f+ we obtain a smooth parametrization of the arcE−,
f− : [0,1] → E−. We are now ready to define two continuous mapsΦh : [0,1] × {1,2} →
[0,1] × {1,2}, h = 1,2 with

Φh(t, i) = (
f −1−

(
ϕi

(
f+(t)

))
, j (i, t, h)

)
for anyt ∈ [0,1], i = 1,2 andh = 1,2,

where, for allt ∈ [0,1], j (i, t, h) is defined as follows:

j (i, t, h) =
{

h if ϕ1(−ϕi(f+(t))) = −f+(t),

3− h if ϕ1(−ϕi(f+(t))) 	= −f+(t) andϕ2(−ϕi(f+(t))) = −f+(t).

(A.20)

Note that the symmetry of the ellipse (see Fig. 3), implies that one of the two conditio
Eq. (A.20) must be true. In fact, it is only when−ϕi(f+(t)) coincides with an endpoint o
the arcE+ that the functionsϕ1 andϕ2 take on the same values (in this case we setj = 1).

Continuity of the mapsf+, ϕ1 andϕ2 implies thatΦh is also continuous. We now argu
thatΦh is a homeomorphism, that is, a continuous bijection. First, we show that the m
onto; that is, given any point(τ, j) ∈ [0,1] × {1,2} we can find(t, i) ∈ [0,1] × {1,2} such
thatΦh(t, i) = (τ, j). To see this, lett = f −1+ (ϕ−1

j (f−(τ )) and note that eitherΦh(t,1) =
(τ, j), or Φh(t,2) = (τ, j). ThatΦh is 1-to-1 follows fromf−, f+ andϕi being 1-to-1. In
fact, the mapΦh is of classC2.

Consider the set[0,1] × {1,2}; by identifying, or gluing together, the point(0,1) with
(0,2) and the point(1,1) with (1,2) we can view the set[0,1]×{1,2} as a circleS1 and the
mapΦh as a homeomorphism fromS1 to S1. Let s1, s2, s3 be three points on the circleS1
and suppose that as we move clockwise on the circle starting froms1 we encounter firs
s2 and thens3. We say that the mapΦh is orientation preservingif as we move clockwise
on the circle starting fromΦh(s1) we encounter firstΦh(s2) and thenΦh(s3). The map
Φh is orientation reversingif as we move clockwise on the circle starting fromΦh(s1) we
encounter firstΦh(s3) and thenΦh(s2). Since it is a homeomorphism,Φh must be eithe
orientation preserving, or orientation reversing. In fact, ifΦ1 is orientation preserving
thenΦ2 is orientation reversing and vice versa. In the reminder of the proof we wil
the orientation preserving map and denote it simply asΦ.

Recall that the covering space of a circleS1 is the real line; that is, we can find
homeomorphismh : [0,1) → S1 with limx→1 h(x) = h(0) and then define the mapH :
R → S1 by letting H(x + z) = h(x) for all x ∈ [0,1) and all integersz ∈ Z. The lift
of the orientation preserving mapΦ is the functionΦ̃ :R → R defined byΦ̃(x + z) =
h−1(Φ(H(x + z))) for all x ∈ [0,1) and all integersz ∈ Z. (We could add any integerq
to Φ̃; the lift of Φ is uniquely defined up to the addition of an integer.) LetΦ̃n = Φ̃ ◦ Φ̃n−1

and define the following limit:

r(Φ,x) = lim
1(

Φ̃n(x) − x
)

for x ∈ R.

n→∞ n
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This definition was proposed by Poincare; he showed that this limit exists and is ind
dent ofx (e.g., see Milnor, 1999) (if we added an integer to the lift then the limit wo
only be unique up to addition of an integer); that is,r(Φ,x) = r(Φ) for all x ∈ R. We call
r(Φ) the rotational number of the mapΦ. Except for a zero measure set of cases, the r
tional number ofΦ is irrational. In fact for fixedβ1 there are only countably many choic
of β2 that yield a rational rotational number.

A rotation byα is a maprα :S1 → S1 whose lift r̃α :R → R is r̃α(x) = x + α. Let
rn
α = rα ◦ rn−1

α . If α is an irrational number, then for allt ∈ S1 the set of points in
the infinite sequencerα(t), r2

α(t), r3
α(t), . . . is dense inS1. A theorem by Denjoy (1932

implies that aC2 homeomorphismΦ with an irrational rotation numberr(Φ) = α is con-
jugate to a rotation byα; that is, there exists a homeomorphismg :S1 → S1 such that
Φ = g−1 ◦ rα ◦ g. This implies that for allt ∈ S1 the set of points in the infinite sequen
Φ(t),Φ2(t),Φ3(t), . . . is dense inS1, whereΦn = Φ ◦ Φn−1. As a consequence, give
anya0 ∈ R

2 and anyε > 0, we can find a finite sequencea0, a1, . . . , am of payoff neutral
single-player moves froma0 to am where|am + a0| < ε; that is, the pointsa0 andam are
almost symmetric with respect to the origin(0,0). By continuity and quasi-concavity o
the players’ payoffs, given anyδ > 0, we can then find a finite sequence of single-pla
improvementsa0, â1, . . . , âm such that|âh − ah| < δ for all h = 1, . . . ,m; that is, the fi-
nite sequence of single-player improvements can be chosen to be as close as de
the sequence of payoff neutral single-player moves. By choosingδ = ε − |am + a0| we
obtain that|âm + a0| < ε; that is, we can construct a finite sequence of single-player
provements from any pointa0 to a point arbitrarily close to−a0. Think of this sequenc
as a sequence of horizontal and vertical steps, forθ ∈ (−1,1) at least one of this step
must cross the linex1 + x2 = θ(a0

1 + a0
2), say it crosses ata∗ in the step fromah to ah+1.

Quasi-concavity of the payoff functions then implies that the sequencea0, a1, . . . , ah, a∗
is a finite sequence of single-player improvements. To conclude the proof, we only n
show that ifθ = 0 we can reach the origin. This simply follows from the fact that there
be a first step, let say fromak to ak+1, when the sequence froma0 to a point arbitrarily
close to−a0 must cross one of the axis. Letbk+1 be the point on the intersection of lin
segment with endpointsak , ak+1 and one of the axis. Again, quasi-concavity of the p
off functions implies thata0, a1, . . . , ak, bk+1, (0,0) is a finite sequence of single-play
improvements. This concludes the proof of this case.

Case 2. If we graph the best-reply functions in thea1 − a2 plane, the line correspond
ing to the best-reply function of player 1 passes through the second and fourth qu
whereas that of player 2 goes through the first and third quadrant. It is sufficient to
that from any starting pointa0 it is possible to construct a sequence of single-player
provements that spirals away from the equilibrium(0,0), since this implies that such
sequence crosses the region between the linesx1+x2 = a0

1 +a0
2 andx1+x2 = −(a0

1 +a0
2).

Then, there is another sequence that reaches a point on any linex1 + x2 = θ(a0
1 + a0

2), with
−1 < θ < 1. There is no loss of generality in choosing a starting pointa0 = (a0

1, β2a
0
1)

on the best reply of player 2 (it is always possible to reach such a point with
nite sequence of single-player improvements). Let 0< µ < 1 and consider the sequen
a0, a1, a2, a3, a4, . . . where
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Fig. 4. A sequence of single-player improvements.

(1) a1
1 = µ(2β1a

0
2 − a0

1) + (1− µ)a0
2, and a1

2 = a0
2 = a0

1β2,

(2) a2
1 = a1

1 and a2
2 = µ(2β2a

1
1 − a1

2) + (1− µ)a1
1,

(3) a3
1 = µ(2β1a

2
2 − a2

1) + (1− µ)a2
2 and a3

2 = a2
2,

(4) a4
1 = a3

1 and a4
2 = β2a

3
1.

This is a sequence of single-player improvements, since each time a player m
changes action in the direction of his best reply by an amount less than twice the d
between its current action and his best reply, see Fig. 4. Forµ sufficiently close to 1,a4,
which is on player 2’s best-reply function, is further away from(0,0) thana0. To see this
note that limµ→1 |a3

1| = [2β1β2(2β1β2 − 2) + (2β1β2 − 1)2]|a0
1| > |a0

1|. By iterating this
construction we can obtain a sequence with any finite number of steps, spiraling awa
the origin.

Finally, from any starting pointa0 the equilibrium(0,0) can be reached by two singl
player improvements; first a player moves to one of the axis and then the other move
the axis to(0,0).

Case 3. Change the choice variable of player 2 froma2 to −a2. More precisely, le
x1 = a1, x2 = −a2, andαi = −βi for i = 1,2, and view the gameg as one in which playeri
choosesxi . The best-reply functions in this game areB1(x2) = α1x2 andB2(x1) = α2x1.
Since we now have 0< α2 < α1, we are in the same situation as in Case 1, modulo a
mutation of player 1 with player 2, and we can use its proof. (Note that after the ch
of variable: (i) the numbers corresponding toC1 andC2 areα1/(1+ α1) andα2/(1+ α2);
(ii) 0 < α2/(1 + α2) < α1/(1 + α1) < 1; (iii) α1/(1 + α1) + α2/(1 + α2) < 1). This con-
cludes the proof. �



290 M. Dindoš, C. Mezzetti / Games and Economic Behavior 54 (2006) 261–292

im-

game
s that
er the
to the
ve

g
y
gen-

imated

s

by

ve-
o
at

r

Proof of Theorem 5. First note that by Lemma 3 a finite number of single-player
provements are sufficient to move then players from an arbitrary starting pointa0 to a ball
of any given radiusr > 0 around an isolated Nash equilibriuma∗. We now proceed by
induction. We know from Theorem 4 that every transversal, 2-person, aggregative
has the weak FIP. More precisely, the proof in Friedman and Mezzetti (2000) show
from any small neighborhood of a Nash equilibrium that is asymptotically stable und
dynamics defined by (7) there is a finite, single-player, improvement path leading
equilibrium. Suppose that almost all transversal,(n − 1)-person, aggregative games ha
this property. We will show then that the property must also hold forn-person games.

Consider a transversal,n-person, aggregative gameg. By Lemma 3, from any startin
pointa0, we will reach a pointar that lies in a neighborhoodVr around an asymptoticall
stable Nash equilibriuma∗. By changing coordinates we can assume, without loss of
erality, that the Nash equilibriuma∗ is at the origin:a∗ = (0, . . . ,0). Sincer is arbitrary, we
can choose it small enough so that the players’ payoff functions are closely approx
by quadratic functions. This implies that the best-reply functions are of the form

Bi(Σ−i ) � βiΣ−i (A.21)

which in turn implies that

dUi(a)

dai

= Di(ai,Σ) � γi

(
βiΣ − (1+ βi)ai

)
whereγi is a constant. Then, by Eq. (6), theMi functions are

Mi(Σ) = CiΣ, whereCi = βi

1+ βi

. (A.22)

Quasi-concavity ofUi (condition (4)) impliesγi > 0, while condition (5) require
γi(1 + βi) > 0. Hence we haveβi > −1 and 1− Ci = 1/(1 + βi) > 0, or, equivalently,
Ci < 1. Furthermore, sincea∗ is asymptotically stable under the dynamics defined
Eq. (7), it must be

∑n
i=1 Ci � 1.

We need to show that fromar there is a finite sequence of single-player impro
ments leading to(0, . . . ,0). Note that

∑n
i=1 Ci � 1 implies that there are at least tw

playersi and j such thatCi + Cj � 1; without loss of generality, we will assume th
Cn−1 + Cn � 1. Furthermore, since transversality of the gameg implies βn−1βn 	= 1,
or equivalentlyCn−1 + Cn 	= 1, it must beCn−1 + Cn < 1. Define a new gamẽg =
〈{1,2, . . . , n − 1}, Ãi , Ũi〉 with (n − 1) players as follows. The firstn − 2 players are
as in gameg; that is, fori = 1,2, . . . , n − 2 the strategy sets arẽAi = Ai and the payoff
functions arẽUi(ã) = φi(ãi ,

∑n−1
j=1 ãj ), whereφi is i ’s payoff function ing. Player(n−1)

in g̃ has the strategy set̃An−1 = An−1 + An, and his payoff function is:

Ũn−1(ã) � µ̃n−1 −
(

Cn−1 + Cn

1− Cn−1 − Cn

n−2∑
j=1

ãj − ãn−1

)2

whereµ̃n−1 is a constant. Letting̃Σ−(n−1) = ∑n−2
j=1 ãj , the best-reply function of playe

(n − 1) in g̃ is given by:

B̃n−1
(
Σ̃−(n−1)

) = Cn−1 + Cn
Σ̃−(n−1).
1− Cn−1 − Cn
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Let ãr be the strategy profile iñg corresponding toar in g: ãr = (ãr
1, . . . , ã

r
n−2, ã

r
n−1) =

(ar
1, . . . , a

r
n−2, a

r
n−1 + ar

n). Note that ãr is in a small neighborhood of the(n − 1)-
dimensional zero vector, which is a Nash equilibrium of the gameg̃. Hence, by the in
duction hypothesis, there is a finite sequenceS̃ of single-player improvements iñg starting
at ãr and leading to(ã∗

1, . . . , ã∗
n−1) = (0, . . . ,0). Observe that each step in this seque

in which the improving player isi < n − 1 also corresponds to an improvement for pla
i in gameg. Next, consider a step, say from̃a to b̃ = ã \ b̃n−1, in the sequencẽS in which
the improving player iñg is (n − 1). Let ãn−1 = a0

n−1 + a0
n. We will show that we can find

a finite sequenceS in g going from(ã1, . . . , ãn−2, a
0
n−1, a

0
n) to (ã1, . . . , ãn−2, a

T
n−1, a

T
n ),

whereaT
n−1 + aT

n = b̃n−1, in which at each step either player(n − 1) or playern improves
her payoff.

First, note that the payoff of player(n − 1) in gameg̃ must have improved in movin
from ã to b̃; that is,b̃n−1 must be closer to player(n− 1)’s best replỹBn−1(Σ̃−(n−1)) than
ãn−1. This implies that

b̃n−1 = λãn−1 + (1− λ)
(
2B̃n−1

(
Σ̃−(n−1)

)− ãn−1
)

= λ
(
a0
n−1 + a0

n

)+ (1− λ)

(
2

Cn−1 + Cn

1− Cn−1 − Cn

Σ̃−(n−1) − (
a0
n−1 + a0

n

))
= (2λ − 1)

(
a0
n−1 + a0

n

)+ 2(1− λ)
Cn−1 + Cn

1− Cn−1 − Cn

Σ̃−(n−1) (A.23)

for someλ ∈ (0,1), where 2̃Bn−1(Σ̃−(n−1)) − ãn−1 is the point on the line going throug
ãn−1 andB̃n−1(Σ̃−(n−1)) whose distance from̃Bn−1(Σ̃−(n−1)) is the same as̃an−1. Next,

consider the 2-person gameˆ̂g = 〈{n − 1, n},Xn−1 × Xn, {Un−1,Un}〉 derived fromg by
forcing playersi = 1, . . . , n − 2 to play actions̃ai and by changing then − 1 andn coor-
dinate as follows:

xn−1 = an−1 − Cn−1Σ̃−(n−1)

1− Cn−1 − Cn

; xn = an − CnΣ̃−(n−1)

1− Cn−1 − Cn

. (A.24)

The strategy spaces in̂̂g areXi = Ai −CiΣ̃−(n−1)/(1−Cn−1 −Cn). Using (A.21), (A.22)

and (A.24), simple algebra shows that the best reply and theMi functions in ˆ̂g are:

Bi(xj ) = Ci

1− Ci

xj i, j = n − 1, n, i 	= j,

Mi(xn−1 + xn) = Ci(xn−1 + xn) i, j = n − 1, n, i 	= j.

Let x0
n−1 andx0

n be the actions corresponding toa0
n−1 anda0

n under the new coordinate

and letỹn−1 correspond tõbn−1. By Eqs. (A.23) and (A.24),

ỹn−1 = b̃n−1 − Cn−1 + Cn

1− Cn−1 − Cn

Σ̃−(n−1) = (2λ − 1)
(
x0
n−1 + x0

n

)
.

Since (2λ − 1) ∈ (−1,1), Lemma 6 implies that for almost all gamesˆ̂g there exists a
finite sequencê̂S of single-player improvements from(x0

n−1, x
0
n) to (xT

n−1, x
T
n ), where

xT
n−1 + xT

n = (2λ − 1)(x0
n−1 + x0

n). This sequence corresponds to a sequenceS in gameg

going from(ã1, . . . , ãn−2, a
0 , a0

n) to (ã1, . . . , ãn−2, a
T , aT

n ), whereaT +aT
n = b̃n−1.
n−1 n−1 n−1
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The profile (ã∗
1, . . . , ã∗

n−1) in g̃ corresponds to the profile(0, . . . ,0, an−1, an), with
an−1 + an = 0, in g. Thus, combining the sequences̃S and S we obtain a finite se
quence of single-player improvements in the gameg going from ar to some profile
(0, . . . ,0, an−1, an), where the projection(an−1, an) of this profile on the last two coor
dinates is in a small neighborhood of(0,0). Since(0,0) is a Nash equilibrium of the
2-person gamêg derived fromg by forcing playersi = 1, . . . , n − 2 to play actionai = 0,
we know from Theorem 4 that there is a finite sequenceŜ of single-player improvement
in ĝ leading to(0,0). Each step of the sequenceŜ corresponds to an improvement by eith
player(n−1) or playern in gameg and thus there is a finite sequence of single-player
provements ing going from(0, . . . ,0, an−1, an) to the Nash equilibrium(0, . . . ,0). This
concludes the proof. �
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