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EXECUTIVE SUMMARY

What is already happening? 

Seabird breeding populations in the UK increased in size over much of the last century, but since 1999 these 
populations have declined by an average of 7.5%. Breeding success has also declined over the same period.  Some of 
the greatest reductions have occurred in the northern North Sea and Scottish Continental Shelf. 

Climate change is considered to be one of the main drivers of these declines. Warmer winter sea temperatures have 
resulted in major changes in abundance and species composition of plankton in the North Sea that have contributed 
to the reduction in abundance and quality of seabird prey species such as sandeels, with knock-on effects for seabirds.  
Furthermore, there is growing evidence that breeding phenology is changing, with seabirds becoming increasingly 
de-synchronised from their prey.  However, regional variations in the impacts of climate change are apparent, with 
weaker effects on seabird demography in the Irish Sea, Celtic Sea and English Channel.

What could happen?

Models predict that, by 2100, the UK climate will no longer be suitable for great skua and Arctic skua. The same 
models predict that the geographic range of black guillemot, common gull and Arctic tern will shrink so that only 
Shetland, Orkney and the most northerly tips of mainland Scotland will hold breeding colonies. 

Further changes in prey abundance, species composition, energetic quality or synchronisation may have profound 
effects on seabirds.  In addition, an increase in the frequency of extreme weather events could affect breeding habitat 
and create unfavourable foraging conditions, which may lead to increased mortality of adults and chicks. 

Other drivers of seabird populations may interact with climate change. There is concern that climate change may 
increase the effects of disease and pollutants.  Furthermore, impacts of collision and displacement from marine 
renewables may be exacerbated by reductions in prey quantity and quality as a result of climate change.  

1. WHAT IS ALREADY HAPPENING? 

Seabird breeding populations in the UK increased throughout 
much of the last century, with numbers expanding by ca. 55% 
between the late 1960s when coordinated monitoring began 
to the late 1990s when the last complete census was conducted 
(Mitchell et al., 2004). However, numbers had peaked for 
some species, with declines apparent in the last decade of the 
century. Furthermore, these declines have continued by an 
average of 7.5% between 1999 and 2010 (UKMMAS, 2010). 
Changes in breeding numbers have varied greatly amongst 
species over the last decade, with abundance decreasing 
by more than 10% in ten species, increasing by more than 
10% in three species and changing by less than 10% in three 
species (JNCC, 2012; Table 1). Of the ten species showing the 
greatest declines over this period, there are now substantially 
fewer European shag, Arctic skua, herring gull, great black-
backed gull and black-legged kittiwake than in the late 1960s. 

Arctic skua, herring gull and roseate tern are red-listed, due 
to severe declines in their UK breeding population of more 
than 50% during the last 25 years, although the latter has 
experienced an increase over the last decade.

There has been considerable variation in trends in seabird 
numbers across constituent countries of the UK over the last 
decade (Table 1). In Scotland, all species with sufficient data 
with the exception of black guillemot have declined at a faster 
rate than the UK trend. In Wales, some species have fared 
better, notably great cormorant, great black-backed gull, 
black-legged kittiwake, common guillemot and razorbill, 
whilst European shags have declined more rapidly than 
elsewhere. Species have experienced fluctuating fortunes in 
England, although overall declines have been less marked 
than in the UK as a whole with, for example, Arctic tern 
showing substantial increases. In Northern Ireland, herring 
gull has shown an increase that bucked the national trend, 
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but numbers are recovering after a huge decline from almost 
18,000 pairs in the mid 1980s to just 700 in the late 1990s.

Climate change is believed to be one of the primary causes 
of these declines (Wanless and Harris, 2012). Most of 
the waters around the UK have been warming since the 
1980s, and recent studies have demonstrated links between 
breeding success or adult survival and climate (Thompson 
and Ollason, 2001; Frederiksen et al., 2004b; Grosbois 
and Thompson, 2005; Votier et al., 2005, 2008; Harris et 
al., 2005a; Grosbois et al., 2009; Lewis et al., 2009). In the 
North Sea, average winter sea-surface temperature (SST) 
has increased by approximately 1°C since the early 1980s. 
The over-winter survival of adult black-legged kittiwakes 
breeding in eastern Scotland is lower following winters with 
higher SST, and breeding success one year later is reduced 
(Frederiksen, 2004b, 2007b). Sea temperature rise has led to 
a change in species composition and biomass of the North 
Sea plankton community (Beaugrand et al., 2003), and 
warmer sea temperatures are associated with a reduction in 
the recruitment of the lesser sandeel Ammodytes marinus 
(Arnott and Ruxton, 2002), the principal prey of most 
seabird species in the region. In accordance with this, several 
studies have shown that the link between climate and seabird 
performance is mediated via changes in prey availability 
(so-called bottom-up effects; Rindorf et al., 2000; Oro and 
Furness, 2002; Frederiksen et al., 2006; Parsons et al., 2008; 
Daunt et al., 2008). However, as evidenced by the contrasting 
demographic trends across the UK (Table 1; Cook et al., 2011), 
regional variation in the effects of climate change on seabirds 
is apparent. In particular, there is growing evidence that the 
climate impacts recorded in the North Sea are not replicated 
elsewhere. The effect of winter SST on black-legged kittiwake 
breeding success outlined above is not apparent throughout 
the UK (Frederiksen et al., 2007a) and analyses of the Irish 
Sea, the Celtic Sea and the English Channel have found only 
weak climate effects on seabird demography (Lauria et al., 
2012, 2013). 

The mechanisms underlying this regional variation are poorly 
understood. Sandeel distribution in UK waters is patchy, with 
distinct spawning aggregations resulting from the availability 
of sandy sediments and the sedentary behaviour of adult 
sandeels (Proctor et al., 1998; Pedersen et al., 1999; Wright 
et al., 2000). The varying fortunes of these distinct sandeel 
stocks may have led to the observed geographical variation in 
seabird breeding success (Frederiksen et al., 2005). However, 
the effects of climate on clupeids and gadoids may also be 
important since they form an important component of seabird 
diet in many parts of the region (Bull et al., 2004; Swann et 
al., 2008). Moreover, a recent analysis of common guillemot 
diet has shown that sandeels are increasingly being replaced 
by clupeids (principally sprat Sprattus sprattus) along the east 
coast of the UK (Anderson et al., 2013), in line with recent 
increases in sprat abundance (Alvarez-Fernandez et al., 
2012; Heath et al., 2012a). Exploring the effects of multiple 
prey species on seabird performance is therefore important 
in understanding regional variation in climate impacts. A 
recent study developed a multi-species functional response 
of common guillemots on the Isle of May National Nature 

% change in abundance 1999-2011
Species UK Scotland England Wales Northern 

Ireland

Northern Fulmar -39% -41% -12%
Manx Shearwater
European 
Storm-petrel
Leach’s 
Storm-petrel

nb nb nb

Northern Gannet nb
Great Cormorant -14% -10% 27%
European Shag -15% -18% -4% -26%
Great Skua nb nb nb
Arctic Skua -62% -62% nb nb nb
Black-legged 
Kittiwake

-47% -58% -29% -10%

Mew Gull -38%
Black-headed Gull 53% 79%
Lesser 
black-backed Gull

-30% -20%

Herring Gull -31% -50% 29%
Great 
black-backed Gull

-43% -57% 36%

Sandwich tern 7% -37% -22%
Roseate Tern 61%
Common Tern -14% -46% 6% -6%
Arctic Tern -14% -81% 53%
Little tern -5% -8% nb
Common 
Guillemot

11% -36% 69%

Razorbill 7% -22% 63%
Black Guillemot 13%
Atlantic Puffin

Table 1: Change in breeding numbers of seabird species at 
colonies in the UK during 1999-2011. Red = declines of 

>10%, Green = increases of >10%; Yellow =  change of 10% 
or less; grey indicates no robust analysis was possible due 

to inadequate data; nb = not breeding. Data source: JNCC 
(2012).

Reserve (NNR), south-east Scotland, and showed that they 
were more sensitive to changes in the abundance of sprat 
than sandeels (Smout et al., 2013). However, such analyses 
require high quality diet data which are only available from 
a small number of species and locations (Anderson et al., 
2013).

One important mechanism whereby climate change may 
drive bottom-up effects on seabirds is temporal mismatching 
between peak energy demands in the breeding season and 
availability of prey. There is growing evidence that seabird 
breeding phenology is changing, with laying dates getting 
later in several species, though a trend for earlier breeding 
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has also been recorded (Frederiksen et al., 2004a; Wanless 
et al., 2008, 2009; Votier et al., 2009; Burthe et al., 2012). 
Phenological changes can disrupt ecosystem functioning 
by de-synchronising species’ interactions, known as trophic 
mismatch. In the North Sea, significant changes in the timing 
of key life history events have resulted in changes in the 
length, and therefore energy value, of sandeels (Wanless et al., 
2004; Frederiksen et al., 2011). The birds have not kept pace 
with these changes and as a result, are now relying on prey of 
lower calorific value during the chick rearing period when 
energy demands are highest (Burthe et al., 2012). Continued 
warming may further alter the phenology of seabirds and 
their prey, resulting in more pronounced trophic mismatch.

Seabirds may also be affected by climate directly, in particular 
during extreme weather (Jenouvrier, 2013). An analysis of 
European shags on the Isle of May NNR has revealed that very 
poor adult survival occurs during sustained periods of strong 
onshore winds and high rainfall in late winter (Frederiksen 
et al., 2008a). Extreme weather events may also be important 
during the breeding season when high winds and rainfall 
can result in widespread breeding failure (Aebischer, 1993; 
Mallory et al., 2009). Vulnerability to extreme weather is an 
understudied but potentially important mechanism whereby 
climate can affect seabirds, since many climate models are 
predicting an increase in frequency of such events (Solomon, 
2007, Rahmstorf and Coumou, 2011). 

Climate change impacts may interact with other drivers of 
seabird populations. For, instance, in the Northern North 
Sea off south-east Scotland a sandeel fishery that operated 
in the 1990s significantly depressed sandeel populations 
(Greenstreet et al., 2006; Heath et al., 2012b), with associated 
changes in adult survival and breeding success of black-
legged kittiwakes at adjacent colonies compared with years 
prior to the fishery opening and after it closed (Frederiksen 
et al., 2004b, 2008b; Daunt et al., 2008). Since 2000 there has 
been a ban on sandeel fishing off eastern Scotland and north-
east England. If fishing is resumed to levels that significantly 
reduce local sandeel stock size, it could exacerbate reductions 
in breeding success and survival caused by increases in sea 
surface temperature as a result of climate change (Frederiksen 
et al., 2004b, 2007b).

For many years, some seabird species have benefited from 
fisheries through food provided at sea by discharging offal 
and discarding undersize fish. The abundance of scavenging 
species (e.g. great skua, northern fulmar) may have been 
elevated above levels that naturally occurring food sources 
could sustain (Tasker and Furness, 1996). The introduction 
of measures to conserve fish stocks has consequently reduced 
the amount of discards, as has the decline of some commercial 
fisheries. It is conceivable that the reduction in food provided 
by the fishing industry may have contributed to a population 
downturn of fulmars and other offshore surface-feeders 
since the mid-1990s (Reeves and Furness, 2002; JNCC, 
2009). Another consequence of fewer discards is that great 
skuas have had to rely increasingly on other food sources, 
including the predation of other seabirds (Votier et al., 2004). 
Future changes to the Common Fisheries Policy in European 
waters which will lead to further reductions or elimination of 

discards is likely to put more pressure on scavenging species 
(Bicknell et al., 2013). It remains uncertain whether natural 
food sources are sufficient to enable scavenging species to 
meet their energetic needs in future (Votier et al., 2010, 2013). 

Charting Progress 2 (UKMMAS, 2010) identified the 
following additional pressures on UK Seabird populations: 

• Introduction of non-indigenous species: introductions 
of non-native mammals to islands have had major negative 
impacts on the resident colonies of ground-nesting seabirds 
(Craik, 1997, 1998; Mitchell and Ratcliffe, 2007; Ratcliffe et 
al. 2008). Mammals such as brown rat (Rattus norvegicus) 
and American mink (Mustela vison) predate on seabird eggs, 
chicks and in some cases, adult birds. Predation by mammals 
has caused the extinction of some colonies of ground-nesting 
seabirds such as terns, gulls, storm-petrels, Manx shearwater 
and Atlantic puffin. Other colonies have been substantially 
depleted, with seabirds confined to breeding in places that 
are inaccessible to predators. 

• Visual disturbance: activities associated with the 
construction and operation of offshore renewable energy 
developments and with leisure and recreation can create 
visual disturbance to seabirds that may lead to the loss of 
habitat available for foraging or breeding. These impacts are 
currently localised and considered to be low across the UK 
as a whole. However, offshore renewable energy is expanding 
rapidly and these effects may become more important in 
future. 

• Removal of non-target species: species such as northern 
fulmars and auks are caught by long-line and other fisheries 
in UK waters (Dunn and Steel, 2001). Quantitative data on 
seabird bycatch are currently lacking for most areas of the NE 
Atlantic (ICES, 2008, 2011). The European Commission have 
recently published a European-wide National Plan of Action 
that will encourage Member States and Regional Fisheries 
Management Organisations to reduce incidental catches of 
seabirds in fishing gears (COM, 2012). 

• Contamination by non-hazardous substances: large 
numbers of seabirds from UK colonies have been killed by 
contamination from oil spills from ships in recent decades, 
with detectable effects on winter survival in some cases 
(Votier et al., 2005). 

• Marine litter: marine litter is ingested by northern fulmars 
and other surface feeding seabirds (van Franeker et al., 2005). 
As a consequence, non degradable plastics accumulate in 
large quantities in their stomachs. However, it is unclear what 
effect this ingested litter has on the birds’ health and long-
term survival. 

Continued research on seabird ecology is needed to 
understand the impacts of climate change and other drivers 
on populations. There has been a significant expansion in 
research into at-sea distributions of UK seabirds using GPS 
tracking of breeding birds in summer (Guilford et al., 2008; 
Hamer et al., 2009; Harris et al., 2012; RSPB, 2013) and GLS 
tracking of seabirds in winter (Guilford et al., 2009; Harris et 
al., 2010; Fort et al., 2012). Furthermore, there is a growing 
recognition of the importance of seasonal interactions, 
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whereby events or processes that affect an individual 
in one season also affect its performance in subsequent 
seasons (Bogdanova et al., 2011). Development of analytical 
approaches to quantify habitat association and preference 
are also a source of active research (Wakefield et al., 2009; 
Guilford et al., 2009; Fauchald et al., 2011; Embling et al., 2012; 
Tancell et al., 2013; Dean et al., 2013). These advancements 
in empirical data collection and analysis will improve our 
understanding of the mechanisms underpinning effects 
of climate change on seabird productivity and survival. 
However, some key knowledge gaps remain that are not 
easily filled, notably the diet of seabirds throughout the year 
and functional responses to variation in the abundance of 
multiple prey species.

2. WHAT COULD HAPPEN? 

Most seabird species in the UK are at the southern limit 
of their range. As a result, we may see changes in species’ 
ranges due to climate change, with associated changes in 
overall population size. By the end of the 21st century, great 
skua and Arctic skua may no longer breed in the UK and 
the range of black guillemot, common gull and Arctic tern 
shrink to such an extent that only Shetland and the most 
northerly tips of mainland Scotland will hold breeding 
colonies. Many other species may shift their distribution 
north, no longer breeding in south-eastern England. These 
predictions are based on modelling by Huntley et al. (2007) 
who described the ‘climate envelope’ that each species 
currently occupies in Europe and predicted how the shape 
of this envelope, and hence the breeding range of the birds, 
would change by the last 30 years of the 21st century. The 
climate envelope was a composite of measures of a) winter 
cold, b) overall warmth or growing season, and c) available 
moisture. These predictions seem plausible given that these 
species, particularly the skuas, are confined to colder parts 
of the northern hemisphere (Furness 1988). The predicted 
extinction of great skuas is of particular concern since the 
UK holds 60% of the world breeding population (Furness 
and Ratcliffe, 2004). Huntley et al. (2007) also predicted that 
Leach’s storm-petrel would no longer be breeding in the UK 
by the end of the 21st century. This is unlikely to result from 
direct effects of a warmer climate, since they breed in warmer 
climes than currently experienced in the UK. The current 
distribution in the Scottish Continental Shelf is positively 
correlated with the proximity to deep oceanic water where 
they feed on plankton concentrated by upwellings and ocean 
currents (Mitchell, 2004). Thus, future changes in the number 
and distribution of Leach’s storm-petrel breeding in the UK 
are likely to result from indirect, bottom-up effects of climate 
on their planktonic food resources.

Warming of waters in the North Sea has led to substantial 
changes in species composition and abundance at lower 
trophic levels (Beaugrand et al., 2008; Kirby and Beaugrand, 
2009; Luczak et al., 2012; Frederiksen et al., 2013), with 
detrimental effects on sandeels (van Deurs et al., 2009). These 
changes are linked to northward shifts of favoured copepod 
prey of sandeels, associated with critical thermal boundaries, 
altering habitat suitability for seabirds (Beaugrand et al., 
2008; Reyondeau and Beaugrand, 2011; Frederiksen et al., 

2013). Effects of climate on these bottom-up processes are 
set to intensify as warming continues. Trophic mismatch 
may also increase, with the potential for detrimental impacts 
on seabirds (Burthe et al., 2012). Any repetition of the very 
low energy values recorded in North Sea sandeels and sprat 
preyed on by seabirds in 2004 (Wanless et al., 2005) could 
also have dramatic consequences. However, it is not clear 
whether warming will have a similar impact in other regions 
around the UK where climate effects are weaker, such as in 
the Irish Sea, Celtic Sea and English Channel (Lauria et al., 
2012, 2013). Emerging prey species may be critical to the 
future wellbeing of seabirds, but to be an effective alternative 
to current prey such as sandeels and sprats, they will have 
to fulfil important criteria of abundance, availability and 
quality. This was not the case for the snake pipefish Entelurus 
aequoreus which increased dramatically in UK waters in 
the mid 2000s, before the population crashed (Kirby et al., 
2006; Harris et al., 2007, 2008). Furthermore, an outcome 
of climate change that is of increasing concern is ocean 
acidification, whose consequences may be felt right up the 
food chain to forage fish and associated top predators (Heath 
et al., 2012a). Finally, recent increases in jellyfish, which have 
been linked to overfishing and climate change, have been 
observed around the world including in UK waters (Purcell 
et al., 2007; Brotz et al., 2012). They may impact on seabirds 
since they are in direct competition with lesser sandeels 
and other forage fish for planktonic food such as copepods, 
while also being predators of fish larvae. In summary, if sea 
temperatures continue to rise as predicted, it is likely that 
seabirds such as black-legged kittiwakes that feed on small 
shoaling fish will experience poor breeding seasons and 
lower survival with increasing frequency in some parts of the 
UK (Frederiksen et al., 2004b). 

Future climate change is also likely to have direct impacts 
on breeding seabirds through sea-level rise, particularly 
in the southern North Sea where ground-nesting seabirds 
such as terns, and in particular the little tern, tend to nest 
just above the high water mark. Habitat loss to sea-level 
rise may be mitigated by nesting habitat creation further up 
the shore. Extreme weather events may also become more 
important since most climate models predict an increase in 
their frequency in the future (Solomon, 2007; Rahmstorf and 
Coumou, 2011). 

Other drivers of seabird populations are also expected to 
interact with climate change in complex ways. The previously 
demonstrated additive effect of fisheries and sea temperatures 
(Frederiksen et al., 2004b, 2007b) is unlikely to be maintained 
at higher sea-surface temperatures, where climate effects are 
predicted to override fishery effects. Evidence is emerging of 
the importance of parasites on seabirds (Duneau et al., 2008; 
Reed et al., 2008, 2012; Burthe et al., 2013). There is widespread 
concern that climate change may interact with disease, 
since increasing temperatures can alter host susceptibility, 
pathogen survival and disease transmission rates (Lafferty, 
2009). Furthermore, the effects of pollutants, which can have 
a deleterious impact on seabirds (Thompson and Hamer, 
2000), may be exacerbated by climate change and disease. 
Finally, a potential driver of immediate and future relevance 
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is the impact of marine renewables on seabirds. A huge 
expansion in marine renewable developments is planned in 
the coming years to meet ambitious renewable energy targets. 
Seabirds may be affected by these developments through a 
range of mechanisms, notably collision and displacement 
(Grecian et al., 2010). These effects may be additive to 
climate change, or may interact with climate if, for example, 
the latter results in seabird range shifts, changing the spatial 
overlap with fixed developments. Breeding birds may be 
particularly vulnerable because, as central place foragers, 
they are constrained to obtain food within a certain distance 
from the breeding colony (Masden et al., 2010b; Langton 
et al., 2011), and developments are proposed in areas that 
lie within breeding seabird foraging ranges (Harris et al., 
2012). Cumulative and in-combination effects must also be 
considered when quantifying interactions between marine 
renewables and climate (Masden et al., 2010a). 

Efforts to forecast change under future climate scenarios (e.g. 
Huntley et al., 2007; Frederiksen et al., 2013), together with 
research into species’ adaptation potential through processes 
such as phenotypic plasticity (Reed et al., 2009; Grémillet and 
Charmantier, 2010; Lewis et al., 2012), will be particularly 
useful in determining likely impacts. However, the current 
evidence suggests that many UK seabirds face an uncertain 
future because predicted changes in climate, and potential 
interactions with other drivers, indicate that conditions will 
become more challenging.

3. KNOWLEDGE GAPS 

a. Indirect effects of climate: In the short-term, we need 
to better understand the nature of the interactions between 
climate, plankton and seabird prey species, in order to 
predict the likely magnitude of future impacts on seabirds. A 
particular priority is information on lesser sandeel population 
dynamics that provide the link between many UK seabird 
species and lower trophic levels. It is unclear why sandeel 
recruitment is negatively correlated with SST. We therefore 
need a better understanding of the nature of the relationship 
between sandeel populations and food availability, 
predation, fisheries and density dependent factors. However, 
research should also focus on other important seabird prey, 
notably clupeids and gadoids. Furthermore, it is becoming 
increasingly apparent that top predators such as seabirds not 
only require prey of sufficient abundance and quality, but 
that it is available at the right time to coincide with their peak 
energy demands. An understanding of the importance of 
climate-mediated trophic mismatch is an important priority 
for future research.

b. Scale dependence in climate effects: Many UK seabird 
species winter in the seas around the UK, but others migrate 
to distant foraging grounds across a vast area from the North 
Atlantic to the Southern Ocean. Most mortality of breeding 
adults takes place at this time, and survival rate of adults is 
the principal determinant of seabird population size. Thus, it 
is important to incorporate an understanding of the spatio-
temporal scale of climate effects that may include factors 
occurring at global scales at different times of the year, and 
carry over effects between seasons.

c. Interactions between climate effects and other human 
impacts: if we are to continue to exploit our seas whilst 
maintaining them as ‘Healthy and biologically diverse’ 
(cf. The UK Marine Strategy’s vision of our seas), we need 
to better understand how potential drivers such as marine 
renewables, pollutants and disease impact on seabirds and 
the rest of the marine ecosystem in a changing climate. Such 
evidence is vital if we are to successfully implement the EC 
Marine Strategy Framework Directive and achieve its goal 
of Good Environmental Status in Europe’s seas by 2020 (see 
Cefas, 2011).

There is strong consensus that these represent important 
knowledge gaps (Lewison et al., 2012).

4. SOCIO-ECONOMIC IMPACTS 

Seabirds provide an important source of income for some 
local economies, because seabirds have a wide appeal to 
people. Spectacular ‘seabird cities’ and enigmatic species 
like the Atlantic puffin draw large numbers of visitors to UK 
seabird colonies.

5. CONFIDENCE ASSESSMENT 

What is already happening? 

X

X

What could happen? 

The level of confidence hasn’t changed since the 2010 
card (Mitchell and Daunt, 2010). The evidence for what is 
currently happening is moderate since aspects of the ecology 
of seabirds are comparatively well understood. Consensus on 
the key drivers of seabirds is also moderate. In contrast, there 
is little firm evidence about what will happen in the future, 
because of the uncertainty surrounding climate change 
projections and of impacts on seabirds. It is unclear how 
climate will interact with current and emerging drivers such 
as fisheries, pollutants, marine renewables and disease. As a 
result, consensus on future change is low.
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