A Hybrid Cryptosystem Incorporating a New Algorithm for Improved Entropy
Abstract
:1. Introduction
2. Mathematical Background of HAICDHBC
2.1. Pi Number
2.2. Blockchain and Hash Functions
2.3. ElGamal Cryptosystem and the Diffie–Hellman Protocol
2.4. Entropy
2.5. Correlation Coefficient
2.6. Discrete Fourier Transform
2.7. Goodness-of-Fit Test
2.8. NPCR, UACI, and AC Parameters
2.9. Homogeneity, Contrast, and Energy
2.10. The Median Filter
3. Development of New Elements
3.1. Algorithm to Enhance Entropy
- 1.
- First iteration. The frequency has an associated difference . When this difference is greater than zero, one is added to the frequency ; otherwise, the frequency remains unchanged. This strategy continues for until .
- 2.
- Consecutive iterations. The process restarts with the first frequency, which might have been modified in the previous iteration. Therefore, the difference d is recalculated, and is modified according to the result. The process is executed in the same manner as before for all frequencies, while updating . This iterative process continues until the sum of the added pixels equals n × 512, which is equivalent to the number of pixels in the added rows.
3.2. Algorithm for Constructing Permutations
3.3. Similarity Parameter
4. Encryption Procedure
4.1. Asymmetric Cryptosystem
- 1.
- The sender generates two constants, denoted as and , each being a 512-bit string . If the representation of the constants is shorter than 512 bits, the sender pads zeros to the left to ensure that the length remains at 512 bits.
- 2.
- is computed using the formula for . It is important to note that the initial 64 values are designated for transmitting , while the subsequent 64 values are intended for sending .
- 3.
- The constants are transmitted via the following process: The 512-bit string corresponding to is segmented into one-byte blocks, resulting in 64 blocks. Each block is associated with an integer ranging from 0 to 255. If the i-th byte has a value of zero, the SHA-512 algorithm is applied once to , SHA-512(). Conversely, if the value of falls within the range of , the SHA-512 algorithm is iteratively applied times to the string , yielding a 512-bit string, which is public.
- 4.
- The receiver computes and sequentially applies the SHA-512 algorithm to each , given that they possess knowledge of . Consequently, the receiver can determine the values of and retrieve the constants and .
4.2. Symmetric Cryptosystem
- 1.
- First Round. The process commences with an XOR operation between the original image pixels and the first round key. The resulting chain is then segmented into one-byte blocks. Subsequently, substitution is implemented following the procedure established by the Advanced Encryption Standard (AES). This process utilizes the first of the fourteen dynamic substitution boxes.
- 2.
- Rounds two to fourteen. The same process is replicated, involving the byte chain from the previous round and the corresponding round key. The resulting string is then processed through the appropriate box, following the protocol established in the previous step. During round fourteen, three operations are performed: the XOR operation using the fourteen round-key, passing the result through the fourteenth box. In the third step, an XOR operation is executed between the chain emerging from the boxes and the fifteen round-key. This final result is considered the initial stage of image encryption.
- Substitution box. Each substitution box is a permutation of 256 values ranging from 00 to ff in a hexadecimal system. The sender constructs the fifteen boxes used in the encryption process through the following steps. First, compute by considering the bits to the right of the decimal point. This bit string is then divided into one-byte blocks. Taking the first byte, representing an integer , calculate = 256. For , where the byte to the right of the decimal point is , compute = . Once values are available for , apply the procedure in Section 3.2, which results in the first substitution box. For the box, where , shifts of bytes are made to the right of the decimal point, and then the same process is applied as before.
- Permutation. The permutation P, applied at the end of the process, is constructed in the following way. The sender computes the product , and the bits to the right of the decimal point are then divided into bytes. Here, the calculation of the constant involves pixels 0, 1, and 2. This string of three pixels has an associated integer of 24 bits denoted as , and let l be the number of pixels in the enlarged image. Therefore, = l. To obtain the other constants, shifts of one pixel to the right are made. For instance, in the case of , pixels 1, 2, and 3 are considered. Then, for the i-th coefficient, pixels , and are considered, resulting in the integer . Hence, = , where .
- Round keys. Round keys are 512 × 512 byte-size pixels. The first round key is calculated as follows: from the product , the first (512 × 512) × 24 bits to the right of the decimal point are taken. The reason for multiplying by 24 is the color images, where pixel representation is 24 bits (three bytes). Note that in the case of a 256-grayscale image, it is only multiplied by eight. This string is then divided into bytes and subsequently passed through the first substitution box, similarly to the AES procedure [52]. The chain that results from this process is denoted as . In general, to generate the i-th round key , we proceed as follows: a shift of bits is made to the right of the decimal point from , with . Afterward, the corresponding substitution box is applied, following the same rule as before. Note that for the round key , box fourteen is used.
4.3. Second Stage
4.4. Images for Testing
5. Damaged Encrypted Images with Noise
5.1. Additive and Multiplicative Noises
5.2. Occlusion Noise
5.3. Chi-Square Noise
6. Results
6.1. Entropy and Correlation
6.2. Differential Attack
6.3. Energy, Contrast, and Homogeneity
6.4. The Goodness-of-Fit Test and Discrete Fourier Transform
6.5. Black and White Images
6.6. Attack on Encrypted Images with Noise
7. Results Analysis and Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Avalanche Criteria |
AES | Advanced Encryption Standard |
DFT | Discrete Fourier Transform |
HAICDHBC | Hybrid Information Encryption Algorithm using the Diffie–Hellman Protocol and Blockchain |
NPCR | Number of Pixels Change Rate |
SP | Similarity Parameter |
UACI | Unified Average Changing Intensity |
References
- Shang, W.; Yu, Z. A new media content trusted dissemination architecture based on AV-blockchain and ChinaDRM. Intell. Converg. Netw. 2023, 4, 142–157. [Google Scholar] [CrossRef]
- Ahmed, A.; Nanne, M.F.; Gueye, B. The effectiveness of a hybrid Diffie-Hellman-RSA-AES model. In Proceedings of the 2022 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 25–27 January 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Alohali, M.A.; Aljebreen, M.; Al-Mutiri, F.; Othman, M.; Motwakel, A.; Alsaid, M.I.; Alneil, A.A.; Osman, A.E. Blockchain-Driven Image Encryption Process with Arithmetic Optimization Algorithm for Security in Emerging Virtual Environments. Sustainability 2023, 15, 5133. [Google Scholar] [CrossRef]
- Flores-Carapia, R.; Silva-García, V.M.; Cardona-López, M.A. A Dynamic Hybrid Cryptosystem Using Chaos and Diffie-Hellman Protocol: An Image Encryption Application. Appl. Sci. 2023, 13, 7168. [Google Scholar] [CrossRef]
- Zhang, Q. An Overview and Analysis of Hybrid Encryption: The Combination of Symmetric Encryption and Asymmetric Encryption. In Proceedings of the 2nd International Conference on Computing and Data Science (CDS), Stanford, CA, USA, 28–29 January 2021; pp. 616–622. [Google Scholar] [CrossRef]
- Ahmad, A.; AbuHour, Y.; Younisse, R.; Alslman, Y.; Alnagi, E.; Abu Al-Haija, Q. MID-Crypt: A Cryptographic Algorithm for Advanced Medical Images Protection. J. Sens. Actuat. Netw. 2022, 11, 24. [Google Scholar] [CrossRef]
- Josodipuro, M.J.; Saputra, K.V.I.; Lukas, S. Statistical Analysis of Pollard’s Rho Attack on Elliptic Curve Cryptography. In Proceedings of the 1st International Conference on Technology Innovation and Its Applications (ICTIIA), Tangerang, Indonesia, 23 September 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Das, M.; Chakraborty, R. Statistical Cryptanalysis of ElGamal Cryptosystem for measuring security in disruptive technology. In Proceedings of the Second International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 8 September 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Malviya, A.K.; Tiwari, N.; Chawla, M. Quantum cryptanalytic attacks of symmetric ciphers: A review. Comput. Electr. Eng. 2022, 101, 108122. [Google Scholar] [CrossRef]
- Burek, E.; Wroński, M. Quantum Annealing and Algebraic Attack on Speck Cipher. In Proceedings of the Computational Science, ICCS 2022, London, UK, 21–23 June 2022; pp. 143–149. [Google Scholar] [CrossRef]
- Zodpe, H.; Shaikh, A. A Survey on Various Cryptanalytic Attacks on the AES Algorithm. Int. J. Next-Gener. Comput. 2021, 12, 115–123. [Google Scholar]
- Parida, P.; Pradhan, C.; Alzubi, J.A.; Javadpour, A.; Gheisari, M.; Liu, Y.; Lee, C.C. Elliptic curve cryptographic image encryption using Henon map and Hopfield chaotic neural network. Multimed. Tools Appl. 2023, 82, 33637–33662. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Liu, D.; Wang, X. A Multiple-Medical-Image Encryption Method Based on SHA-256 and DNA Encoding. Entropy 2023, 25, 898. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Teng, L.; Zhang, Y.; Si, R.; Liu, P. Mutil-medical image encryption by a new spatiotemporal chaos model and DNA new computing for information security. Expert Syst. Appl. 2024, 235, 121090. [Google Scholar] [CrossRef]
- Gao, X.; Sun, B.; Cao, Y.; Banerjee, S.; Mou, J. A color image encryption algorithm based on hyperchaotic map and DNA mutation. Chin. Phys. B 2023, 32, 030501. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, J.; Ni, H.; Huang, T. Image adaptive encryption algorithm using a novel 2D chaotic system. Nonlinear Dyn. 2023, 111, 10629–10652. [Google Scholar] [CrossRef]
- Qobbi, Y.; Abid, A.; Jarjar, M.; El Kaddouhi, S.; Jarjar, A.; Benazzi, A. Adaptation of a genetic operator and a dynamic S-box for chaotic encryption of medical and color images. Sci. Afr. 2023, 19, e01551. [Google Scholar] [CrossRef]
- Mansoor, S.; Parah, S.A. HAIE: A hybrid adaptive image encryption algorithm using Chaos and DNA computing. Multimed. Tools Appl. 2023, 82, 28769–28796. [Google Scholar] [CrossRef]
- Iqbal, N.; Hussain, I.; Khan, M.A.; Abbas, S.; Yousaf, S. An efficient image cipher based on the 1D scrambled image and 2D logistic chaotic map. Multimed. Tools Appl. 2023, 82, 40345–40373. [Google Scholar] [CrossRef]
- Du, S.; Ye, G. IWT and RSA based asymmetric image encryption algorithm. Alex. Eng. J. 2023, 66, 979–991. [Google Scholar] [CrossRef]
- Hu, Y.; Nan, L. Image encryption algorithm based on 1D-SFACF with cross-cyclic shift and adaptive diffusion. Phys. Scr. 2023, 98, 55209. [Google Scholar] [CrossRef]
- Trujillo-Toledo, D.; López-Bonilla, O.; García-Guerrero, E.; Esqueda-Elizondo, J.; Cárdenas-Valdez, J.; Tamayo-Pérez, U.; Aguirre-Castro, O.; Inzunza-González, E. Real-time medical image encryption for H-IoT applications using improved sequences from chaotic maps. Integration 2023, 90, 131–145. [Google Scholar] [CrossRef]
- Kumar, A.; Dua, M. A GRU and chaos-based novel image encryption approach for transport images. Multimed. Tools Appl. 2023, 82, 18381–18408. [Google Scholar] [CrossRef]
- Song, W.; Fu, C.; Zheng, Y.; Zhang, Y.; Chen, J.; Wang, P. Batch image encryption using cross image permutation and diffusion. J. Inf. Secur. Appl. 2024, 80, 103686. [Google Scholar] [CrossRef]
- Song, W.; Fu, C.; Zheng, Y.; Tie, M.; Liu, J.; Chen, J. A parallel image encryption algorithm using intra bitplane scrambling. Math. Comput. Simul. 2023, 204, 71–88. [Google Scholar] [CrossRef]
- General de la Nación, A. Manual de digitalización de documentos. BoletíN Del Arch. Gen. NacióN 2022, 9, 41–117. [Google Scholar]
- Ahmad, I.; Choi, W.; Shin, S. Comprehensive Analysis of Compressible Perceptual Encryption Methods–Compression and Encryption Perspectives. Sensors 2023, 23, 4057. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Thangadurai, R. Pillars of Transcendental Number Theory, 1st ed.; Springer: Singapore, 2020; p. 25. [Google Scholar]
- Wang, H.; Wen, J.; Liu, J.; Zhang, H. ACKE: Asymmetric Computing Key Exchange Protocol for IoT Environments. IEEE Internet Things J. 2023, 10, 18273–18281. [Google Scholar] [CrossRef]
- Levina, A.; Plotnikov, A.; Ashmarov, E. New Method of Hash Functions Analysis. In Proceedings of the 2023 12th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 6–10 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Stinson, D.R.; Patterson, M. Cryptography: Theory and Practice, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 278–295. [Google Scholar]
- Silva-García, V.; Flores-Carapia, R.; González-Ramírez, M. Temas Selectos de Criptografía, 1st ed.; Alfaomega: Mexico City, Mexico, 2023; pp. 103–112. [Google Scholar]
- Ishmukhametov, S.T.; Mubarakov, B.G.; Rubtsova, R.G. On the Number of Witnesses in the Miller–Rabin Primality Test. Symmetry 2020, 12, 890. [Google Scholar] [CrossRef]
- Feutrill, A.; Roughan, M. A Review of Shannon and Differential Entropy Rate Estimation. Entropy 2021, 23, 1046. [Google Scholar] [CrossRef]
- Fang, P.; Liu, H.; Wu, C.; Liu, M. A survey of image encryption algorithms based on chaotic system. Visual Comput. 2023, 39, 1975–2003. [Google Scholar] [CrossRef]
- Wen, H.; Kang, S.; Wu, Z.; Lin, Y.; Huang, Y. Dynamic rna coding color image cipher based on chain feedback structure. Mathematics 2023, 11, 3133. [Google Scholar] [CrossRef]
- Alhumyani, H. Dual Image Cryptosystem Using Henon Map and Discrete Fourier Transform. Intell. Autom. Soft Comput. 2023, 36, 2933. [Google Scholar] [CrossRef]
- Almaraz-Luengo, E.; Alaña-Olivares, B.; García-Villalba, L.J.; Hernández-Castro, J. Further analysis of the statistical independence of the NIST SP 800-22 randomness tests. Appl. Math. Comput. 2023, 459, 128222. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, J.; Lin, L. Hypothesis testing for populations of networks. Commun. Stat.-Theory Methods 2023, 52, 3661–3684. [Google Scholar] [CrossRef]
- Heumann, C.; Shalabh, M.S. Introduction to Statistics and Data Analysis, 1st ed.; Springer: Cham, Switzerland, 2016; pp. 219–265. [Google Scholar]
- del Barrio, E.; Sanz, A.G.; Loubes, J.M.; Niles-Weed, J. An Improved Central Limit Theorem and Fast Convergence Rates for Entropic Transportation Costs. SIAM J. Math. Data Sci. 2023, 5, 639–669. [Google Scholar] [CrossRef]
- Abd-El-Atty, B.; El-Affendi, M.A.; Chelloug, S.A.; Abd El-Latif, A.A. Double Medical Image Cryptosystem Based on Quantum Walk. IEEE Access 2023, 11, 69164–69176. [Google Scholar] [CrossRef]
- Mir, U.H.; Lone, P.N.; Singh, D.; Mishra, D.C. A public and private key image encryption by modified approach of Vigener cipher and the chaotic maps. Imaging Sci. J. 2023, 71, 82–96. [Google Scholar] [CrossRef]
- Geng, S.; Li, J.; Zhang, X.; Wang, Y. An Image Encryption Algorithm Based on Improved Hilbert Curve Scrambling and Dynamic DNA Coding. Entropy 2023, 25, 1178. [Google Scholar] [CrossRef] [PubMed]
- Khafaga, D.S.; Alhammad, S.M.; Magdi, A.; ElKomy, O.; Lashin, N.A.; Hosny, K.M. Securing Transmitted Color Images Using Zero Watermarking and Advanced Encryption Standard on Raspberry Pi. Comput. Syst. Sci. Eng. 2023, 47, 1967–1986. [Google Scholar] [CrossRef]
- Sun, S. A New Image Encryption Scheme Based on 6D Hyperchaotic System and Random Signal Insertion. IEEE Access 2023, 11, 66009–66016. [Google Scholar] [CrossRef]
- Balasamy, K.; Shamia, D. Feature Extraction-based Medical Image Watermarking Using Fuzzy-based Median Filter. IETE J. Res. 2023, 69, 83–91. [Google Scholar] [CrossRef]
- Eder, C.; Pfister, G.; Popescu, A. Standard bases over Euclidean domains. J. Symb. Comput. 2021, 102, 21–36. [Google Scholar] [CrossRef]
- Silva-García, V.M.; Flores-Carapia, R.; Rentería-Márquez, C.; Luna-Benoso, B.; Chimal-Eguía, J.C. Image cipher applications using the elliptical curve and chaos. Int. J. Appl. Math. Comput. Sci. 2020, 30, 377–391. [Google Scholar] [CrossRef]
- Yuan, S.; Han, Y.; Liu, X.; Li, Z.; Bing, P.; Zhou, X. Optical encryption for multi-user based on computational ghost imaging with Hadamard modulation. Optik 2023, 273, 170500. [Google Scholar] [CrossRef]
- Ma, X.; Wang, C. Hyper-chaotic image encryption system based on N+ 2 ring Joseph algorithm and reversible cellular automata. Multimed. Tools Appl. 2023, 82, 38967–38992. [Google Scholar] [CrossRef]
- Menezes, A.; Stebila, D. The Advanced Encryption Standard: 20 Years Later. IEEE Secur. Priv. 2021, 19, 98–102. [Google Scholar] [CrossRef]
- Rekha, K.S.; Amali, M.J.; Swathy, M.; Raghini, M.; Darshini, B.P. A steganography embedding method based on CDF-DWT technique for data hiding application using Elgamal algorithm. Biomed. Signal Process. Control 2023, 80, 104212. [Google Scholar] [CrossRef]
- Adeniji, O.D.; Akinola, O.E.; Adesina, A.O.; Afolabi, O. Text encryption with advanced encryption standard (AES) for near field communication (NFC) using Huffman compression. In Proceedings of the 5th International Conference on Applied Informatics, ICAI 2022, Arequipa, Peru, 27–29 October 2022; pp. 158–170. [Google Scholar] [CrossRef]
- Singh, K.N.; Singh, A.K. Towards Integrating Image Encryption with Compression: A Survey. ACM Trans. Multimedia Comput. Commun. Appl. 2022, 18, 89. [Google Scholar] [CrossRef]
- Egorov, V.; Kryzhanovsky, B. Density Function of Weighted Sum of Chi-Square Variables with Trigonometric Weights. Opt. Mem. Neural Netw. 2023, 32, 14–19. [Google Scholar] [CrossRef]
- Beaver, C. Adventures in Cryptology: Exploration-Worthy Project Topics. PRIMUS 2024, 34, 13–31. [Google Scholar] [CrossRef]
- Grassi, L.; Manterola Ayala, I.; Hovd, M.N.; Øygarden, M.; Raddum, H.; Wang, Q. Cryptanalysis of symmetric primitives over rings and a key recovery attack on Rubato. In Proceedings of the 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, 20–24 August 2023; pp. 305–339. [Google Scholar] [CrossRef]
- Wen, J.; Xu, X.; Sun, K.; Jiang, Z.; Wang, X. Triple-image bit-level encryption algorithm based on double cross 2D hyperchaotic map. Nonlinear Dyn. 2023, 111, 6813–6838. [Google Scholar] [CrossRef]
- Rahul, B.; Kuppusamy, K.; Senthilrajan, A. Bio-Metric Based Colour-Image-Encryption using Multi-Chaotic Dynamical Systems and SHA-256 Hash Algorithm. Inf. Secur. J. 2023, 1–25. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Di, X.; Li, B. Design of cross-plane colour image encryption based on a new 2D chaotic map and combination of ECIES framework. Nonlinear Dyn. 2023, 111, 2917–2942. [Google Scholar] [CrossRef]
- Aldin, S.S.A.B.; Aykaç, M.; Aldin, N.B. Quad-color image encryption based on Chaos and Fibonacci Q-matrix. Multimed. Tools Appl. 2023, 83, 7827–7846. [Google Scholar] [CrossRef]
- Daoui, A.; Yamni, M.; Chelloug, S.A.; Wani, M.A.; El-Latif, A.A.A. Efficient Image Encryption Scheme Using Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing. Mathematics 2023, 11, 1589. [Google Scholar] [CrossRef]
- Syed, D.; Al-Ghushami, A.H.; Zainab, A.; Alkul, O.; Abdulhamid, S.M.; Yusuf, S.; Abozaid, F.; Alobaidly, A.; Almarri, A. On the Pivotal Role of Digital Signatures: A Review of Conception, Mensuration, and Applications. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 19–21 July 2023; pp. 1–6. [Google Scholar] [CrossRef]
Chain Length | Percent of Zeros (%) | Percent of Ones (%) |
---|---|---|
75.000000 | 25.000000 | |
51.074219 | 48.925781 | |
49.935913 | 50.064087 | |
50.023270 | 49.976730 | |
49.990329 | 50.009671 | |
49.999331 | 50.000669 | |
50.000190 | 49.999810 | |
50.000034 | 49.999966 |
Variable | Hexadecimal Value |
---|---|
C74A52C90C7095EC92B727D85CE31218 C3863BF9000DFDA1C3E0A284F3E7A700 4E793365586ACFAA79DC99FB627BF8CD 1E49A56863EBDAAD5701E025363D607 | |
B0C1B9F894F6AC59082D91B8697E0689 6CD0C921161B445703B67B0F1AD3C5B1 858DDB6903723FB20FFA6608D8B3E656 AA003767762E010D1C769C876FB603A9 | |
k | FF0 |
89104ED0230E59E3F4BB9575AFD05227B51EA7 EA635698ED6CFFE8A67E1BF72D96E128354BD A521E302B128C29B4E41B7381CDA8EC89E0BD AC049FFD8EA7865A7E5697E496EBC4DDCBE1 28ECD23A817BDCDE53684B479ACF1FCFABC C0416496FF978E82610BA253B11483D612D032E E24F44D6C3E1D70944E2F3CECD77C3AFEA411 | |
2B62FB6FDE4EF4204BA91E06AA5B4E076BCC9 4A382C5B926F5DBC89F5E432DBC34A5565E15 D88E8956CF414B3DBBECC9DA928E3F92BD99 9DA7864B87ED884A5B309635DA0D6F00503B2 69192BE1FB84C504A067228E65B67E1C2C491 43C68F179BDC50DDCB4E7C378C43C0482501 FE6AFE00C8A91320D2963639A09D335796DD | |
9FECC2EC3057B87D5902733EDDC02F9A0687 525015F0EDFA99BABB65DFC8BBECB8E2B150 0767A267048E5CA01EB0EC87C14825BCBB3C2 01A67CFB616580308B09D5EF8FDBFF25397CA 0013BCBB3959DEEC18710531B26DAB9DE7468 DBD04DB76A213D8C39E8B18346B130D2A28C 44A2BB31A8C4CE7CE7A75E51A06F2A2F45239 | |
37550E7CBF9338DAE5484461E73B56DC95F21 F4D43E9B3120B04C6F6450B345E73A63F597B3 922CD2D1F271B6B4773F6EB684FE938D8EF8E 6F3F39A7CE95D2DBAFCB104F1A1F2779B1F6 F34B5331AC7BD6B61902AED70C6C475AB79A 0412A36D13ADB900A6A7299B7B31D176E070F 670E7804754D5114459AAED3BF6765C5E5F426 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 7.9999999 | 7.9999981 | 7.9999982 |
Barbara | 7.9999997 | 7.9999946 | 8.0 |
Lena | 7.9999997 | 7.9999990 | 7.9999970 |
Baboon | 7.9999998 | 7.9999991 | 7.9999996 |
Peppers | 7.9999999 | 8.0 | 8.0 |
Donkey | 8.0 | 7.9999997 | 7.9999997 |
Direction | Image | Red | Green | Blue |
---|---|---|---|---|
Horizontal | Sor Juana | 0.00205 | 0.00700 | 0.00169 |
Barbara | 0.00219 | −0.00311 | 0.00600 | |
Lena | −0.00768 | 0.00460 | 0.00370 | |
Baboon | −0.00216 | −0.00419 | −0.00804 | |
Peppers | 0.00286 | 0.00025 | 0.00214 | |
Donkey | 0.00102 | 0.00481 | −0.00031 | |
Vertical | Sor Juana | −0.00072 | 0.00126 | 0.00548 |
Barbara | −0.00177 | −0.00149 | 0.00275 | |
Lena | −0.00640 | −0.00325 | −0.00220 | |
Baboon | 0.00046 | −0.00011 | −0.00131 | |
Peppers | 0.00131 | −0.00308 | −0.00054 | |
Donkey | 0.00267 | 0.00418 | −0.00568 | |
Diagonal | Sor Juana | −0.00549 | −0.00340 | −0.00191 |
Barbara | 0.00058 | −0.00321 | −0.00909 | |
Lena | 0.00590 | 0.00520 | 0.00388 | |
Baboon | −0.00366 | 0.00543 | 0.00136 | |
Peppers | 0.00655 | −0.00379 | −0.00315 | |
Donkey | 0.00158 | 0.00658 | −0.00678 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 99.63 | 99.59 | 99.61 |
Barbara | 99.62 | 99.62 | 99.60 |
Lena | 99.59 | 99.62 | 99.60 |
Baboon | 99.60 | 99.61 | 99.61 |
Peppers | 99.60 | 99.62 | 99.58 |
Donkey | 99.61 | 99.63 | 99.62 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 33.47 | 33.38 | 33.46 |
Barbara | 33.44 | 33.54 | 33.47 |
Lena | 33.49 | 33.48 | 33.49 |
Baboon | 33.38 | 33.52 | 33.46 |
Peppers | 33.44 | 33.52 | 33.48 |
Donkey | 33.34 | 33.50 | 33.51 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 50.03 | 49.97 | 49.98 |
Barbara | 50.00 | 49.98 | 49.96 |
Lena | 49.96 | 49.99 | 50.01 |
Baboon | 49.95 | 50.00 | 50.02 |
Peppers | 49.97 | 50.00 | 49.97 |
Donkey | 49.96 | 50.00 | 50.01 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 0.01563 | 0.01563 | 0.01563 |
Barbara | 0.01563 | 0.01563 | 0.01563 |
Lena | 0.01563 | 0.01563 | 0.01563 |
Baboon | 0.01563 | 0.01563 | 0.01563 |
Peppers | 0.01563 | 0.01563 | 0.01563 |
Donkey | 0.01563 | 0.01563 | 0.01563 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 10.43 | 10.47 | 10.48 |
Barbara | 10.49 | 10.52 | 10.53 |
Lena | 10.47 | 10.50 | 10.53 |
Baboon | 10.53 | 10.46 | 10.49 |
Peppers | 10.50 | 10.51 | 10.49 |
Donkey | 10.50 | 10.51 | 10.49 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 0.390 | 0.391 | 0.390 |
Barbara | 0.389 | 0.389 | 0.389 |
Lena | 0.389 | 0.389 | 0.388 |
Baboon | 0.388 | 0.389 | 0.389 |
Peppers | 0.389 | 0.389 | 0.389 |
Donkey | 0.389 | 0.389 | 0.388 |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 0.3/✓ | 1.2/✓ | 0.1/✓ |
Barbara | 0.3/✓ | 0.2/✓ | 0.9/✓ |
Lena | 1.6/✓ | 0.0/✓ | 0.0/✓ |
Baboon | 0.0/✓ | 0.5/✓ | 0.1/✓ |
Peppers | 0.0/✓ | 0.0/✓ | 0.2/✓ |
Donkey | 0.0/✓ | 0.0/✓ | 0.0/✓ |
Image | Red | Green | Blue |
---|---|---|---|
Sor Juana | 0.470/✓ | 0.287/✓ | 0.392/✓ |
Barbara | 0.148/✓ | 0.933/✓ | 0.571/✓ |
Lena | 0.306/✓ | 0.423/✓ | 0.465/✓ |
Baboon | 0.284/✓ | 0.815/✓ | 0.704/✓ |
Peppers | 0.945/✓ | 0.988/✓ | 0.418/✓ |
Donkey | 0.153/✓ | 0.883/✓ | 0.331/✓ |
Parameter | Image | Red | Green | Blue |
---|---|---|---|---|
Entropy | Black | 7.9999993 | 7.9999997 | 7.9999994 |
White | 7.9999995 | 8.0 | 7.9999992 | |
Horizontal Correlation | Black | 0.00279 | −0.00160 | 0.00703 |
White | 0.00663 | −0.00243 | 0.00041 | |
Vertical Correlation | Black | −0.00357 | 0.00699 | −0.00295 |
White | 0.00069 | 0.00361 | 0.00032 | |
Diagonal Correlation | Black | −0.00242 | 0.00087 | −0.00511 |
White | 0.00583 | 0.00066 | 0.00644 |
Color | Image | 20% | 30% | 40% | 50% |
---|---|---|---|---|---|
Red | Sor Juana | 72.69 | 58.16 | 43.53 | 29.27 |
Barbara | 82.70 | 73.86 | 64.14 | 55.96 | |
Lena | 79.70 | 70.80 | 60.24 | 50.69 | |
Baboon | 82.81 | 74.09 | 64.42 | 55.70 | |
Peppers | 83.19 | 74.79 | 65.89 | 57.41 | |
Donkey | 72.47 | 58.63 | 46.16 | 31.72 | |
Green | Sor Juana | 72.70 | 58.08 | 43.57 | 29.30 |
Barbara | 82.81 | 73.82 | 64.14 | 55.80 | |
Lena | 81.16 | 72.86 | 63.24 | 54.37 | |
Baboon | 83.56 | 75.26 | 66.10 | 57.84 | |
Peppers | 80.26 | 70.29 | 59.69 | 49.71 | |
Donkey | 72.13 | 58.16 | 45.83 | 31.00 | |
Blue | Sor Juana | 72.54 | 58.16 | 43.53 | 28.97 |
Barbara | 82.72 | 73.83 | 64.17 | 55.83 | |
Lena | 83.07 | 75.58 | 66.78 | 58.57 | |
Baboon | 82.14 | 73.13 | 63.07 | 54.09 | |
Peppers | 79.77 | 69.51 | 58.74 | 48.86 | |
Donkey | 72.58 | 58.64 | 46.04 | 31.84 |
Color | Image | Occlusion | Additive | Multiplicative | Chi-Square |
---|---|---|---|---|---|
Red | Sor Juana | 58.65 | 57.62 | 58.26 | 57.10 |
Barbara | 81.12 | 81.43 | 81.66 | 81.24 | |
Lena | 82.63 | 82.35 | 83.52 | 82.91 | |
Baboon | 76.45 | 76.61 | 76.80 | 76.33 | |
Peppers | 88.39 | 88.28 | 88.69 | 88.26 | |
Donkey | 61.76 | 61.53 | 63.16 | 60.85 | |
Green | Sor Juana | 58.32 | 57.52 | 58.08 | 57.29 |
Barbara | 81.17 | 81.48 | 81.71 | 81.28 | |
Lena | 84.24 | 84.20 | 84.99 | 84.39 | |
Baboon | 76.90 | 76.99 | 77.23 | 76.81 | |
Peppers | 81.72 | 81.61 | 82.28 | 81.53 | |
Donkey | 61.09 | 61.00 | 62.66 | 59.85 | |
Blue | Sor Juana | 58.45 | 57.44 | 58.19 | 57.10 |
Barbara | 81.18 | 81.48 | 81.63 | 81.39 | |
Lena | 87.76 | 87.82 | 88.30 | 87.90 | |
Baboon | 73.99 | 74.21 | 74.43 | 73.96 | |
Peppers | 80.98 | 80.57 | 81.47 | 80.76 | |
Donkey | 61.72 | 61.51 | 63.23 | 60.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-García, V.M.; Flores-Carapia, R.; Cardona-López, M.A. A Hybrid Cryptosystem Incorporating a New Algorithm for Improved Entropy. Entropy 2024, 26, 154. https://doi.org/10.3390/e26020154
Silva-García VM, Flores-Carapia R, Cardona-López MA. A Hybrid Cryptosystem Incorporating a New Algorithm for Improved Entropy. Entropy. 2024; 26(2):154. https://doi.org/10.3390/e26020154
Chicago/Turabian StyleSilva-García, Víctor Manuel, Rolando Flores-Carapia, and Manuel Alejandro Cardona-López. 2024. "A Hybrid Cryptosystem Incorporating a New Algorithm for Improved Entropy" Entropy 26, no. 2: 154. https://doi.org/10.3390/e26020154
APA StyleSilva-García, V. M., Flores-Carapia, R., & Cardona-López, M. A. (2024). A Hybrid Cryptosystem Incorporating a New Algorithm for Improved Entropy. Entropy, 26(2), 154. https://doi.org/10.3390/e26020154