Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Expression of Fluorotyrosine Containing GFP Escherichia coli
3.3. Fluorescence Measurements
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Niu, W.; Guo, J. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Mol. Biosyst. 2013, 9, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.W. Biochemical and physical properties of green fluorescent protein. Methods Biochem. Anal. 2006, 47, 39–65. [Google Scholar] [PubMed]
- Cotton, G.J.; Muir, T.W. Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. Chem. Biol. 2000, 7, 253–261. [Google Scholar] [CrossRef]
- Pollok, B.; Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 1999, 9, 57–60. [Google Scholar] [CrossRef]
- Roberto, F.; Barnes, J.; Bruhn, D. Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta 2002, 58, 181–188. [Google Scholar] [CrossRef]
- Bjornberg, O.; Ostergaard, H.; Winther, J. Measuring intracellular redox conditions using GFP-based sensors. Antioxid. Redox Signal. 2006, 8, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Raliski, B.K.; Howard, C.A.; Young, D.D. Site-specific protein immobilization using unnatural amino acids. Bioconjugate Chem. 2014, 25, 1916–1920. [Google Scholar] [CrossRef] [PubMed]
- Craggs, T. Green fluorescent protein: Structure, folding and chromophore maturation. Chem. Soc. Rev. 2009, 38, 2865–2875. [Google Scholar] [CrossRef] [PubMed]
- Pakhomov, A.; Martynov, V. GFP family: Structural insights into spectral tuning. Chem. Biol. 2008, 15, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Jockush, S.; Turro, N.; Schultz, P. Synthetase polyspecificity as a tool to modulate protein function. Bioorg. Med. Chem. Lett. 2011, 21, 7502–7504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Smith, B.A.; Wang, L.; Brock, A.; Cho, C.; Schultz, P.G. A new strategy for the site-specific modification of proteins in vivo. Biochemistry 2003, 42, 6735–6746. [Google Scholar] [CrossRef] [PubMed]
- Young, T.S.; Schultz, P.G. Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon. J. Biol. Chem. 2010, 285, 11039–11044. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Mack, A.V.; Tsao, M.L.; Mills, J.H.; Lee, H.S.; Choe, H.; Farzan, M.; Schultz, P.G.; Smider, V.V. Protein evolution with an expanded genetic code. Proc. Natl. Acad. Sci. USA 2008, 105, 17688–17693. [Google Scholar] [CrossRef] [PubMed]
- Chin, J.W.; Santoro, S.W.; Martin, A.B.; King, D.S.; Wang, L.; Schultz, P.G. Addition of p-azido-l-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 2002, 124, 9026–9027. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Ed. Engl. 2004, 44, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Ormö, M.; Cubitt, A.B.; Kallio, K.; Gross, L.A. Crystal structure of the Aequorea victoria green fluorescent protein. Science 1996, 273, 1392–1395. [Google Scholar] [CrossRef] [PubMed]
- Pond, M.P.; Wenke, B.B.; Preimesberger, M.R.; Rice, S.L.; Lecomte, J.T. 3-Fluorotyrosine as a complementary probe of hemoglobin structure and dynamics: A (19)F-NMR study of Synechococcus sp. PCC 7002 GlbN. Chem. Biodivers. 2012, 9, 1703–1717. [Google Scholar] [CrossRef] [PubMed]
- Votchitseva, Y.; Efremenko, E.; Varfolomeyev, S. Insertion of an unnatural amino acid into the protein structure: Preparation and properties of 3-fluorotyrosine-containing organophosphate hydrolase. Russ. Chem. Bull. 2006, 55, 369–374. [Google Scholar] [CrossRef]
- Ren, X.; Björnstedt, M.; Shen, B.; Ericson, M.L.; Holmgren, A. Mutagenesis of structural half-cystine residues in human thioredoxin and effects on the regulation of activity by selenodiglutathione. Biochemistry 1993, 32, 9701–9708. [Google Scholar] [CrossRef] [PubMed]
- Seyedsayamdost, M.R.; Yee, C.S.; Stubbe, J. Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation. Nat. Protoc. 2007, 2, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, B.; Marionni, S.; Young, D.; Liu, J.; Wang, Y.; Di Salvo, M.L.; Deiters, A.; Cropp, T.A. Site-Specific Incorporation of Fluorotyrosines into Proteins in Escherichia coli by Photochemical Disguise. Biochemistry 2010, 49, 1557–1559. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Deiters, A.; Cropp, T.A.; King, D.; Schultz, P.G. A genetically encoded photocaged amino acid. J. Am. Chem. Soc. 2004, 126, 14306–14307. [Google Scholar] [CrossRef] [PubMed]
- Minnihan, E.C.; Young, D.D.; Schultz, P.G.; Stubbe, J. Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 2011, 133, 15942–15945. [Google Scholar] [CrossRef] [PubMed]
- Young, D.; Young, T.; Jahnz, M.; Ahmad, I.; Spraggon, G.; Schultz, P.G. An Evolved Aminoacyl-tRNA Synthetase with Atypical Polysubstrate Specificity. Biochemistry 2011, 50, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the GFP mutants are available from the authors. |
Tyrosine Derivative | pKa |
---|---|
Y | 10 |
3-F1Y | 8.4 |
3,5-F2Y | 6.8 |
2,3-F2Y | 7.6 |
2,3,5-F3Y | 6.1 |
2,3,6-F3Y | 6.6 |
2,3,5,6-F4Y | 5.2 |
GFP | λmax,abs (nm) | ε (cm−1 M−1) | λmax,em a (nm) |
---|---|---|---|
Y | 483 | 61,700 | 507 |
3,5-F2Y | 478 | 31,400 | 511 |
2,3-F2Y | 473 | 27,000 | 506 |
2,3,5-F3Y | 478 | 59,900 | 512 |
2,3,6-F3Y | 465 | 26,800 | 491 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, J.K.; Tran, H.-A.; Vipani, M.; Gianturco, S.; Bhasin, K.; Russell, B.L.; Harbron, E.J.; Young, D.D. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids. Molecules 2017, 22, 1194. https://doi.org/10.3390/molecules22071194
Villa JK, Tran H-A, Vipani M, Gianturco S, Bhasin K, Russell BL, Harbron EJ, Young DD. Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids. Molecules. 2017; 22(7):1194. https://doi.org/10.3390/molecules22071194
Chicago/Turabian StyleVilla, Jordan K., Hong-Anh Tran, Megha Vipani, Stephanie Gianturco, Konark Bhasin, Brent L. Russell, Elizabeth J. Harbron, and Douglas D. Young. 2017. "Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids" Molecules 22, no. 7: 1194. https://doi.org/10.3390/molecules22071194
APA StyleVilla, J. K., Tran, H. -A., Vipani, M., Gianturco, S., Bhasin, K., Russell, B. L., Harbron, E. J., & Young, D. D. (2017). Fluorescence Modulation of Green Fluorescent Protein Using Fluorinated Unnatural Amino Acids. Molecules, 22(7), 1194. https://doi.org/10.3390/molecules22071194