Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis
Abstract
:1. Introduction
2. Interleukin Signature and Immune Cell Involvement
2.1. TNFα
2.2. IL-1
2.3. IL-6, IL-17, and IL-23
2.4. IL-10
2.5. IL-21
3. Genetic Background
3.1. HLA Haplotypes and JIA Subtypes, an Overview
3.2. A Genome-Wide Study Approach for Non-HLA Genes Related to JIA
3.3. Monogenic Forms of JIA
3.4. Environmental Factors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravelli, A.; Martini, A. Juvenile Idiopathic Arthritis. Lancet 2007, 369, 767–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thierry, S.; Fautrel, B.; Lemelle, I.; Guillemin, F. Prevalence and Incidence of Juvenile Idiopathic Arthritis: A Systematic Review. Jt. Bone Spine 2014, 81, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Ravelli, A.; Avcin, T.; Beresford, M.W.; Burgos-Vargas, R.; Cuttica, R.; Ilowite, N.T.; Khubchandani, R.; Laxer, R.M.; Lovell, D.J.; et al. Toward New Classification Criteria for Juvenile Idiopathic Arthritis: First Steps, Pediatric Rheumatology International Trials Organization International Consensus. J. Rheumatol. 2019, 46, 190–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.-M.; et al. International League of Associations for Rheumatology Classification of Juvenile Idiopathic Arthritis: Second Revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar]
- Prakken, B.; Albani, S.; Martini, A. Juvenile Idiopathic Arthritis. Lancet 2011, 377, 2138–2149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulati, R.; Kavadichanda, G.C.; Mariaselvam, C.M.; Kumar, G.; Negi, V.S. Association of HLA-G, HLA-E and HLA-B*27 with Susceptibility and Clinical Phenotype of Enthesitis Related Arthritis (ERA). Hum. Immunol. 2021, 82, 615–620. [Google Scholar] [CrossRef]
- Zaripova, L.N.; Midgley, A.; Christmas, S.E.; Beresford, M.W.; Baildam, E.M.; Oldershaw, R.A. Juvenile Idiopathic Arthritis: From Aetiopathogenesis to Therapeutic Approaches. Pediatr. Rheumatol. Online J. 2021, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Martini, A. It Is Time to Rethink Juvenile Idiopathic Arthritis Classification and Nomenclature. Ann. Rheum. Dis. 2012, 71, 1437–1439. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gong, W.; Liu, L.; Yan, R.; Wang, S.; Yuan, Z. Integrative Analysis of Transcriptome-Wide Association Study and Gene-Based Association Analysis Identifies In Silico Candidate Genes Associated with Juvenile Idiopathic Arthritis. Int. J. Mol. Sci. 2022, 23, 13555. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Berthold, E.; Arve-Butler, S.; Gullstrand, B.; Mossberg, A.; Kahn, F.; Bengtsson, A.A.; Månsson, B.; Kahn, R. Children with Oligoarticular Juvenile Idiopathic Arthritis Have Skewed Synovial Monocyte Polarization Pattern with Functional Impairment—A Distinct Inflammatory Pattern for Oligoarticular Juvenile Arthritis. Arthritis Res. Ther. 2020, 22, 186. [Google Scholar] [CrossRef] [PubMed]
- Arve-Butler, S.; Schmidt, T.; Mossberg, A.; Berthold, E.; Gullstrand, B.; Bengtsson, A.A.; Kahn, F.; Kahn, R. Synovial Fluid Neutrophils in Oligoarticular Juvenile Idiopathic Arthritis Have an Altered Phenotype and Impaired Effector Functions. Arthritis Res. Ther. 2021, 23, 109. [Google Scholar] [CrossRef] [PubMed]
- Martini, A. Systemic Juvenile Idiopathic Arthritis. Autoimmun. Rev. 2012, 12, 56–59. [Google Scholar] [CrossRef]
- Vastert, S.J.; Kuis, W.; Grom, A.A. Systemic JIA: New Developments in the Understanding of the Pathophysiology and Therapy. Best Pract. Res. Clin. Rheumatol. 2009, 23, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jager, W.; Hoppenreijs, E.P.A.H.; Wulffraat, N.M.; Wedderburn, L.R.; Kuis, W.; Prakken, B.J. Blood and Synovial Fluid Cytokine Signatures in Patients with Juvenile Idiopathic Arthritis: A Cross-Sectional Study. Ann. Rheum. Dis. 2007, 66, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, M.; Kang, M.; He, F.; Xiao, Z.; Liu, Z.; Yao, H.; Wu, J. Plasma Interleukin-37 Is Increased and Inhibits the Production of Inflammatory Cytokines in Peripheral Blood Mononuclear Cells in Systemic Juvenile Idiopathic Arthritis Patients. J. Transl. Med. 2018, 16, 277. [Google Scholar] [CrossRef] [PubMed]
- Hersh, A.O.; Prahalad, S. Immunogenetics of Juvenile Idiopathic Arthritis: A Comprehensive Review. J. Autoimmun. 2015, 64, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, J.E.; Hinks, A.; Thomson, W. The Genetics of Juvenile Idiopathic Arthritis: Current Understanding and Future Prospects. Rheumatology 2014, 53, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Mahmud, S.A.; Binstadt, B.A. Autoantibodies in the Pathogenesis, Diagnosis, and Prognosis of Juvenile Idiopathic Arthritis. Front. Immunol. 2018, 9, 3168. [Google Scholar] [CrossRef] [Green Version]
- de Silvestri, A.; Capittini, C.; Poddighe, D.; Marseglia, G.L.; Mascaretti, L.; Bevilacqua, E.; Scotti, V.; Rebuffi, C.; Pasi, A.; Martinetti, M.; et al. HLA-DRB1 Alleles and Juvenile Idiopathic Arthritis: Diagnostic Clues Emerging from a Meta-Analysis. Autoimmun. Rev. 2017, 16, 1230–1236. [Google Scholar] [CrossRef]
- Hollenbach, J.A.; Thompson, S.D.; Bugawan, T.L.; Ryan, M.; Sudman, M.; Marion, M.; Langefeld, C.D.; Thomson, G.; Erlich, H.A.; Glass, D.N. Juvenile Idiopathic Arthritis and HLA Class I and Class II Interactions and Age-at-Onset Effects. Arthritis Rheum. 2010, 62, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Vehe, R.K.; Begovich, A.B.; Nepom, B.S. HLA Susceptibility Genes in Rheumatoid Factor Positive Juvenile Rheumatoid Arthritis. J. Rheumatol. Suppl. 1990, 26, 11–15. [Google Scholar] [PubMed]
- Woo, P. Cytokines and Juvenile Idiopathic Arthritis. Curr. Rheumatol. Rep. 2002, 4, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H.; Panayi, G.S. Cytokine Pathways and Joint Inflammation in Rheumatoid Arthritis. N. Engl. J. Med. 2001, 344, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Wojdas, M.; Dąbkowska, K.; Winsz-Szczotka, K. Alterations of Extracellular Matrix Components in the Course of Juvenile Idiopathic Arthritis. Metabolites 2021, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Stagi, S.; Cavalli, L.; Signorini, C.; Bertini, F.; Cerinic, M.; Brandi, M.; Falcini, F. Bone Mass and Quality in Patients with Juvenile Idiopathic Arthritis: Longitudinal Evaluation of Bone-Mass Determinants by Using Dual-Energy X-ray Absorptiometry, Peripheral Quantitative Computed Tomography, and Quantitative Ultrasonography. Arthritis Res. Ther. 2014, 16, R83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annunziato, F.; Cosmi, L.; Liotta, F.; Maggi, E.; Romagnani, S. Defining the Human T Helper 17 Cell Phenotype. Trends Immunol. 2012, 33, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Maggi, L.; Mazzoni, A.; Cimaz, R.; Liotta, F.; Annunziato, F.; Cosmi, L. Th17 and Th1 Lymphocytes in Oligoarticular Juvenile Idiopathic Arthritis. Front. Immunol. 2019, 10, 450. [Google Scholar] [CrossRef] [Green Version]
- Patrick, A.E.; Shoaff, K.; Esmond, T.; Patrick, D.M.; Flaherty, D.K.; Graham, T.B.; Crooke, P.S.; Thompson, S.; Aune, T.M. Increased Development of Th1, Th17, and Th1.17 Cells Under T1 Polarizing Conditions in Juvenile Idiopathic Arthritis. Front. Immunol. 2022, 13, 848168. [Google Scholar] [CrossRef]
- Romagnani, S. Lymphokine Production by Human T Cells in Disease States. Annu. Rev. Immunol. 1994, 12, 227–257. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Kolls, J.K.; Zheng, Y. The Biological Functions of T Helper 17 Cell Effector Cytokines in Inflammation. Immunity 2008, 28, 454–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggi, L.; Cosmi, L.; Simonini, G.; Annunziato, F.; Cimaz, R. T Cell Subpopulations in Juvenile Idiopathic Arthritis and Their Modifications after Biotherapies. Autoimmun. Rev. 2016, 15, 1141–1144. [Google Scholar] [CrossRef]
- Cosmi, L.; Cimaz, R.; Maggi, L.; Santarlasci, V.; Capone, M.; Borriello, F.; Frosali, F.; Querci, V.; Simonini, G.; Barra, G.; et al. Evidence of the Transient Nature of the Th17 Phenotype of CD4+CD161+ T Cells in the Synovial Fluid of Patients with Juvenile Idiopathic Arthritis. Arthritis Rheum. 2011, 63, 2504–2515. [Google Scholar] [CrossRef] [PubMed]
- Nistala, K.; Adams, S.; Cambrook, H.; Ursu, S.; Olivito, B.; de Jager, W.; Evans, J.G.; Cimaz, R.; Bajaj-Elliott, M.; Wedderburn, L.R. Th17 Plasticity in Human Autoimmune Arthritis Is Driven by the Inflammatory Environment. Proc. Natl. Acad. Sci. USA 2010, 107, 14751–14756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nistala, K.; Moncrieffe, H.; Newton, K.R.; Varsani, H.; Hunter, P.; Wedderburn, L.R. Interleukin-17–Producing T Cells Are Enriched in the Joints of Children with Arthritis, but Have a Reciprocal Relationship to Regulatory T Cell Numbers. Arthritis Rheum 2008, 58, 875–887. [Google Scholar] [CrossRef]
- Correll, C.K.; Binstadt, B.A. Advances in the Pathogenesis and Treatment of Systemic Juvenile Idiopathic Arthritis. Pediatr. Res. 2014, 75, 176–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Ogawa, E.; Sato, Y.; Minagawa, A.; Okuyama, R. Pathogenesis of Psoriasis and Development of Treatment. J. Dermatol. 2018, 45, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Ritchlin, C.T.; Colbert, R.A.; Gladman, D.D. Psoriatic Arthritis. N. Engl. J. Med. 2017, 376, 957–970. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, M.; Fearon, U.; Sweeney, C.M.; Basdeo, S.A.; Fletcher, J.M.; Murphy, C.C.; Canavan, M. The Pathogenic Role of Dendritic Cells in Non-Infectious Anterior Uveitis. Exp. Eye Res. 2018, 173, 121–128. [Google Scholar] [CrossRef]
- Leal, I.; Rodrigues, F.B.; Sousa, D.C.; Duarte, G.S.; Romão, V.C.; Marques-Neves, C.; Costa, J.; Fonseca, J.E. Anti-TNF Drugs for Chronic Uveitis in Adults—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Med. 2019, 6, 104. [Google Scholar] [CrossRef] [Green Version]
- Forrester, J.V.; Kuffova, L.; Dick, A.D. Autoimmunity, Autoinflammation, and Infection in Uveitis. Am. J. Ophthalmol. 2018, 189, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.M.; Zhang, X.; Sampson, R.D.; Ehrenstein, M.R.; Nguyen, D.X.; Chaudhry, M.; Mein, C.; Mahmud, N.; Galatowicz, G.; Tomkins-Netzer, O.; et al. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-Bet and TIGIT. Front. Immunol. 2018, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Scardapane, A.; Ferrante, R.; Nozzi, M.; Savino, A.; Antonucci, I.; Dadorante, V.; Balsamo, M.; Stuppia, L.; Chiarelli, F.; Breda, L. TNF-α Gene Polymorphisms and Juvenile Idiopathic Arthritis: Influence on Disease Outcome and Therapeutic Response. Semin. Arthritis Rheum. 2015, 45, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lovell, D.J.; Reiff, A.; Jones, O.Y.; Schneider, R.; Nocton, J.; Stein, L.D.; Gedalia, A.; Ilowite, N.T.; Wallace, C.A.; Whitmore, J.B.; et al. Long-Term Safety and Efficacy of Etanercept in Children with Polyarticular-Course Juvenile Rheumatoid Arthritis. Arthritis Rheum. 2006, 54, 1987–1994. [Google Scholar] [CrossRef]
- Cimaz, R.; Maioli, G.; Calabrese, G. Current and Emerging Biologics for the Treatment of Juvenile Idiopathic Arthritis. Expert Opin. Biol. Ther. 2020, 20, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Panaccione, R.; Gordon, K.B.; McIlraith, M.J.; Lacerda, A.P.M. Adalimumab: Long-Term Safety in 23 458 Patients from Global Clinical Trials in Rheumatoid Arthritis, Juvenile Idiopathic Arthritis, Ankylosing Spondylitis, Psoriatic Arthritis, Psoriasis and Crohn’s Disease. Ann. Rheum. Dis. 2013, 72, 517–524. [Google Scholar] [CrossRef]
- Murdaca, G.; Negrini, S.; Magnani, O.; Penza, E.; Pellecchio, M.; Gulli, R.; Mandich, P.; Puppo, F. Update upon Efficacy and Safety of Etanercept for the Treatment of Spondyloarthritis and Juvenile Idiopathic Arthritis. Mod. Rheumatol. 2018, 28, 417–431. [Google Scholar] [CrossRef]
- Dinarello, C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) Pathway. Sci. Signal. 2010, 3, cm1. [Google Scholar] [CrossRef]
- Pascual, V.; Allantaz, F.; Arce, E.; Punaro, M.; Banchereau, J. Role of Interleukin-1 (IL-1) in the Pathogenesis of Systemic Onset Juvenile Idiopathic Arthritis and Clinical Response to IL-1 Blockade. J. Exp. Med. 2005, 201, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Hunter, C.A.; Jones, S.A. IL-6 as a Keystone Cytokine in Health and Disease. Nat. Immunol. 2015, 16, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Szymańska-Kałuża, J.; Cebula-Obrzut, B.; Smolewski, P.; Stanczyk, J.; Smolewska, E. Imbalance of Th17 and T-Regulatory Cells in Peripheral Blood and Synovial Fluid in Treatment Naïve Children with Juvenile Idiopathic Arthritis. Cent. Eur. J. Immunol. 2014, 39, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Akioka, S. Interleukin-6 in Juvenile Idiopathic Arthritis. Mod. Rheumatol. 2019, 29, 275–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Benedetti, F.; Massa, M.; Robbioni, P.; Ravelli, A.; Burgio, G.R.; Martini, A. Correlation of Serum Interleukin-6 Levels with Joint Involvement and Thrombocytosis in Systemic Juvenile Rheumatoid Arthritis. Arthritis Rheum. 1991, 34, 1158–1163. [Google Scholar] [CrossRef] [PubMed]
- Pesenacker, A.M.; Bending, D.; Ursu, S.; Wu, Q.; Nistala, K.; Wedderburn, L.R. CD161 Defines the Subset of FoxP3+ T Cells Capable of Producing Proinflammatory Cytokines. Blood 2013, 121, 2647–2658. [Google Scholar] [CrossRef] [Green Version]
- Put, K.; Vandenhaute, J.; Avau, A.; van Nieuwenhuijze, A.; Brisse, E.; Dierckx, T.; Rutgeerts, O.; Garcia-Perez, J.E.; Toelen, J.; Waer, M.; et al. Inflammatory Gene Expression Profile and Defective Interferon-γ and Granzyme K in Natural Killer Cells From Systemic Juvenile Idiopathic Arthritis Patients. Arthritis Rheumatol. 2017, 69, 213–224. [Google Scholar] [CrossRef]
- Bleil, J.; Maier, R.; Syrbe, U.; Sieper, J.; Appel, H. In Situ Analysis of Interleukin-6 Expression at Different Sites of Zygapophyseal Joints from Patients with Ankylosing Spondylitis in Comparison to Controls. Scand. J. Rheumatol. 2015, 44, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Layh-Schmitt, G.; Colbert, R.A. The Interleukin-23/Interleukin-17 Axis in Spondyloarthritis. Curr. Opin. Rheumatol. 2008, 20, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Yago, T.; Nanke, Y.; Kawamoto, M.; Kobashigawa, T.; Yamanaka, H.; Kotake, S. IL-23 and Th17 Disease in Inflammatory Arthritis. J. Clin. Med. 2017, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Yu, D.; Wang, X.; Luo, C.; Chen, Y.; Lei, W.; Wang, C.; Ge, Y.; Xue, W.; Tian, Q.; et al. Anti-Inflammatory Effects of Interleukin-23 Receptor Cytokine-Binding Homology Region Rebalance T Cell Distribution in Rodent Collagen-Induced Arthritis. Oncotarget 2016, 7, 31800–31813. [Google Scholar] [CrossRef] [Green Version]
- Stockinger, B.; Omenetti, S. The Dichotomous Nature of T Helper 17 Cells. Nat. Rev. Immunol. 2017, 17, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Painter, S.L.; Fanslow, W.C.; Ulrich, D.; Macduff, B.M.; Spriggs, M.K.; Armitage, R.J. Human IL-17: A Novel Cytokine Derived from T Cells. J. Immunol. 1995, 155, 5483–5486. [Google Scholar] [CrossRef]
- Ogura, H.; Murakami, M.; Okuyama, Y.; Tsuruoka, M.; Kitabayashi, C.; Kanamoto, M.; Nishihara, M.; Iwakura, Y.; Hirano, T. Interleukin-17 Promotes Autoimmunity by Triggering a Positive-Feedback Loop via Interleukin-6 Induction. Immunity 2008, 29, 628–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veldhoen, M. Interleukin 17 Is a Chief Orchestrator of Immunity. Nat. Immunol. 2017, 18, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, I.D.; Griffin, P.; Michel, J.J.; Yano, H.; Gaffen, S.L.; Mueller, R.G.; Dvergsten, J.A.; Piganelli, J.D.; Rosenkranz, M.E.; Kietz, D.A.; et al. T Cell Receptor-Independent, CD31/IL-17A-Driven Inflammatory Axis Shapes Synovitis in Juvenile Idiopathic Arthritis. Front. Immunol. 2018, 9, 1802. [Google Scholar] [CrossRef]
- Agarwal, S.; Misra, R.; Aggarwal, A. Interleukin 17 Levels Are Increased in Juvenile Idiopathic Arthritis Synovial Fluid and Induce Synovial Fibroblasts to Produce Proinflammatory Cytokines and Matrix Metalloproteinases. J. Rheumatol. 2008, 35, 515–519. [Google Scholar] [PubMed]
- Paroli, M.; Spadea, L.; Caccavale, R.; Spadea, L.; Paroli, M.P.; Nante, N. The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. Medicina 2022, 58, 1552. [Google Scholar] [CrossRef]
- Neumann, C.; Scheffold, A.; Rutz, S. Functions and Regulation of T Cell-Derived Interleukin-10. Semin. Immunol. 2019, 44, 101344. [Google Scholar] [CrossRef]
- Wei, H.; Li, B.; Sun, A.; Guo, F. Interleukin-10 Family Cytokines Immunobiology and Structure. Adv. Exp. Med. Biol. 2019, 1172, 79–96. [Google Scholar]
- Peng, Y.; Liu, X.; Duan, Z.; Duan, J.; Zhou, Y. The Association of Serum IL-10 Levels with the Disease Activity in Systemic-Onset Juvenile Idiopathic Arthritis Patients. Mediat. Inflamm. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Chi, H.; Hu, Q.; Ye, J.; Liu, H.; Cheng, X.; Shi, H.; Zhou, Z.; Teng, J.; et al. Elevated Serum Levels of Interleukin-10 in Adult-Onset Still’s Disease Are Associated with Disease Activity. Clin. Rheumatol. 2019, 38, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Feist, E.; Mitrovic, S.; Fautrel, B. Mechanisms, Biomarkers and Targets for Adult-Onset Still’s Disease. Nat. Rev. Rheumatol. 2018, 14, 603–618. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulou, K.; Georgin-Lavialle, S. Systemic Juvenile Onset Idiopathic Arthritis and Adult Onset Still Disease. Rev. Med. Suisse 2018, 14, 372–377. [Google Scholar]
- Fischer, J.; Dirks, J.; Haase, G.; Holl-Wieden, A.; Hofmann, C.; Girschick, H.; Morbach, H. IL-21+ CD4+ T Helper Cells Co-Expressing IFN-γ and TNF-α Accumulate in the Joints of Antinuclear Antibody Positive Patients with Juvenile Idiopathic Arthritis. Clin. Immunol. 2020, 217, 108484. [Google Scholar] [CrossRef] [PubMed]
- Crotty, S. Follicular Helper CD4 T Cells (T FH). Annu. Rev. Immunol. 2011, 29, 621–663. [Google Scholar] [CrossRef]
- Prahalad, S.; Glass, D.N. A Comprehensive Review of the Genetics of Juvenile Idiopathic Arthritis. Pediatr. Rheumatol. 2008, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Prahalad, S. Genetic Analysis of Juvenile Rheumatoid Arthritis: Approaches to Complex Traits. Curr. Probl. Pediatr. Adolesc. Health Care 2006, 36, 83–90. [Google Scholar] [CrossRef]
- Prahalad, S.; O’brien, E.; Fraser, A.M.; Kerber, R.A.; Mineau, G.P.; Pratt, D.; Donaldson, D.; Bamshad, M.J.; Bohnsack, J. Familial Aggregation of Juvenile Idiopathic Arthritis. Arthritis Rheum. 2004, 50, 4022–4027. [Google Scholar] [CrossRef]
- Moroldo, M.B.; Tague, B.L.; Shear, E.S.; Glass, D.N.; Giannini, E.H. Juvenile Rheumatoid Arthritis in Affected Sibpairs. Arthritis Rheum. 1997, 40, 1962–1966. [Google Scholar] [CrossRef]
- Prahalad, S.; McCracken, C.E.; Ponder, L.A.; Angeles-Han, S.T.; Rouster Stevens, K.A.; Vogler, L.B.; Langefeld, C.D.; Thompson, S.D. Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry Investigators Familial Autoimmunity in the Childhood Arthritis and Rheumatology Research Alliance Registry. Pediatr. Rheumatol. Online. J. 2016, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Ombrello, M.J.; Arthur, V.L.; Remmers, E.F.; Hinks, A.; Tachmazidou, I.; Grom, A.A.; Foell, D.; Martini, A.; Gattorno, M.; Özen, S.; et al. Genetic Architecture Distinguishes Systemic Juvenile Idiopathic Arthritis from Other Forms of Juvenile Idiopathic Arthritis: Clinical and Therapeutic Implications. Ann. Rheum. Dis. 2017, 76, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Nikopensius, T.; Niibo, P.; Haller, T.; Jagomägi, T.; Voog-Oras, Ü.; Tõnisson, N.; Metspalu, A.; Saag, M.; Pruunsild, C. Association Analysis of Juvenile Idiopathic Arthritis Genetic Susceptibility Factors in Estonian Patients. Clin. Rheumatol. 2021, 40, 4157–4165. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, L.A.; Marion, M.C.; Sudman, M.; Comeau, M.E.; Becker, M.L.; Bohnsack, J.F.; Fingerlin, T.E.; Griffin, T.A.; Haas, J.P.; Lovell, D.J.; et al. Genome-Wide Association Meta-Analysis Reveals Novel Juvenile Idiopathic Arthritis Susceptibility Loci. Arthritis Rheumatol. 2017, 69, 2222–2232. [Google Scholar] [CrossRef]
- Hou, X.; Qu, H.; Zhang, S.; Qi, X.; Hakonarson, H.; Xia, Q.; Li, J. The Multi-Omics Architecture of Juvenile Idiopathic Arthritis. Cells 2020, 9, 2301. [Google Scholar] [CrossRef] [PubMed]
- Hinks, A.; Bowes, J.; Cobb, J.; Ainsworth, H.C.; Marion, M.C.; Comeau, M.E.; Sudman, M.; Han, B.; Becker, M.L.; Bohnsack, J.F.; et al. Fine-Mapping the MHC Locus in Juvenile Idiopathic Arthritis (JIA) Reveals Genetic Heterogeneity Corresponding to Distinct Adult Inflammatory Arthritic Diseases. Ann. Rheum. Dis. 2017, 76, 765–772. [Google Scholar] [CrossRef] [Green Version]
- Raychaudhuri, S.; Sandor, C.; Stahl, E.A.; Freudenberg, J.; Lee, H.-S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; et al. Five Amino Acids in Three HLA Proteins Explain Most of the Association between MHC and Seropositive Rheumatoid Arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef]
- Hinks, A.; Cobb, J.; Marion, M.C.; Prahalad, S.; Sudman, M.; Bowes, J.; Martin, P.; Comeau, M.E.; Sajuthi, S.; Andrews, R.; et al. Dense Genotyping of Immune-Related Disease Regions Identifies 14 New Susceptibility Loci for Juvenile Idiopathic Arthritis. Nat. Genet. 2013, 45, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Thomson, W.; Barrett, J.H.; Donn, R.; Pepper, L.; Kennedy, L.J.; Ollier, W.E.R.; Silman, A.J.S.; Woo, P.; Southwood, T. British Paediatric Rheumatology Study Group Juvenile Idiopathic Arthritis Classified by the ILAR Criteria: HLA Associations in UK Patients. Rheumatol. (Oxf.) 2002, 41, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Date, Y.; Seki, N.; Kamizono, S.; Higuchi, T.; Hirata, T.; Miyata, K.; Ohkuni, M.; Tatsuzawa, O.; Yokota, S.; Joo, K.; et al. Identification of a Genetic Risk Factor for Systemic Juvenile Rheumatoid Arthritis in the 5’-Flanking Region of the TNFalpha Gene and HLA Genes. Arthritis Rheum. 1999, 42, 2577–2582. [Google Scholar] [CrossRef]
- Nigrovic, P.A.; Martínez-Bonet, M.; Thompson, S.D. Implications of Juvenile Idiopathic Arthritis Genetic Risk Variants for Disease Pathogenesis and Classification. Curr. Opin. Rheumatol. 2019, 31, 401–410. [Google Scholar] [CrossRef]
- Bottini, N.; Peterson, E.J. Tyrosine Phosphatase PTPN22: Multifunctional Regulator of Immune Signaling, Development, and Disease. Annu. Rev. Immunol. 2014, 32, 83–119. [Google Scholar] [CrossRef]
- Brownlie, R.J.; Miosge, L.A.; Vassilakos, D.; Svensson, L.M.; Cope, A.; Zamoyska, R. Lack of the Phosphatase PTPN22 Increases Adhesion of Murine Regulatory T Cells to Improve Their Immunosuppressive Function. Sci. Signal. 2012, 5, ra87. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, K.; Martin, F.; Huang, G.; Tumas, D.; Diehl, L.; Chan, A.C. PEST Domain-Enriched Tyrosine Phosphatase (PEP) Regulation of Effector/Memory T Cells. Science 2004, 303, 685–689. [Google Scholar] [CrossRef]
- Begovich, A.B.; Carlton, V.E.H.; Honigberg, L.A.; Schrodi, S.J.; Chokkalingam, A.P.; Alexander, H.C.; Ardlie, K.G.; Huang, Q.; Smith, A.M.; Spoerke, J.M.; et al. A Missense Single-Nucleotide Polymorphism in a Gene Encoding a Protein Tyrosine Phosphatase (PTPN22) Is Associated with Rheumatoid Arthritis. Am. J. Hum. Genet. 2004, 75, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Onengut-Gumuscu, S.; Ewens, K.G.; Spielman, R.S.; Concannon, P. A Functional Polymorphism (1858C/T) in the PTPN22 Gene Is Linked and Associated with Type I Diabetes in Multiplex Families. Genes. Immun. 2004, 5, 678–680. [Google Scholar] [CrossRef]
- Wellcome Trust Case Control Consortium. Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3,000 Shared Controls. Nature 2007, 447, 661–678. [Google Scholar] [CrossRef] [Green Version]
- Kyogoku, C.; Langefeld, C.D.; Ortmann, W.A.; Lee, A.; Selby, S.; Carlton, V.E.H.; Chang, M.; Ramos, P.; Baechler, E.C.; Batliwalla, F.M.; et al. Genetic Association of the R620W Polymorphism of Protein Tyrosine Phosphatase PTPN22 with Human SLE. Am. J. Hum. Genet. 2004, 75, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Hinks, A.; Barton, A.; John, S.; Bruce, I.; Hawkins, C.; Griffiths, C.E.M.; Donn, R.; Thomson, W.; Silman, A.; Worthington, J. Association between the PTPN22 Gene and Rheumatoid Arthritis and Juvenile Idiopathic Arthritis in a UK Population: Further Support That PTPN22 Is an Autoimmunity Gene. Arthritis Rheum. 2005, 52, 1694–1699. [Google Scholar] [CrossRef]
- Viken, M.K.; Amundsen, S.S.; Kvien, T.K.; Boberg, K.M.; Gilboe, I.M.; Lilleby, V.; Sollid, L.M.; Førre, O.T.; Thorsby, E.; Smerdel, A.; et al. Association Analysis of the 1858C>T Polymorphism in the PTPN22 Gene in Juvenile Idiopathic Arthritis and Other Autoimmune Diseases. Genes Immun. 2005, 6, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Ibrahim, S.; Petersen, F.; Yu, X. Meta-Analysis Reveals an Association of PTPN22 C1858T with Autoimmune Diseases, Which Depends on the Localization of the Affected Tissue. Genes Immun. 2012, 13, 641–652. [Google Scholar] [CrossRef]
- Thompson, S.D.; Sudman, M.; Ramos, P.S.; Marion, M.C.; Ryan, M.; Tsoras, M.; Weiler, T.; Wagner, M.; Keddache, M.; Haas, J.P.; et al. The Susceptibility Loci Juvenile Idiopathic Arthritis Shares with Other Autoimmune Diseases Extend to PTPN2, COG6, and ANGPT1. Arthritis Rheum. 2010, 62, 3265–3276. [Google Scholar] [CrossRef] [PubMed]
- López-Isac, E.; Smith, S.L.; Marion, M.C.; Wood, A.; Sudman, M.; Yarwood, A.; Shi, C.; Gaddi, V.P.; Martin, P.; Prahalad, S.; et al. Combined Genetic Analysis of Juvenile Idiopathic Arthritis Clinical Subtypes Identifies Novel Risk Loci, Target Genes and Key Regulatory Mechanisms. Ann. Rheum. Dis. 2021, 80, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, B.P.; Humburg, P.; Makino, S.; Naranbhai, V.; Wong, D.; Lau, E.; Jostins, L.; Plant, K.; Andrews, R.; McGee, C.; et al. Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression. Science 2014, 343, 1246949. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Li, J.; Zhao, S.D.; Bradfield, J.P.; Mentch, F.D.; Maggadottir, S.M.; Hou, C.; Abrams, D.J.; Chang, D.; Gao, F.; et al. Meta-Analysis of Shared Genetic Architecture across Ten Pediatric Autoimmune Diseases. Nat. Med. 2015, 21, 1018–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthur, V.L.; Shuldiner, E.; Remmers, E.F.; Hinks, A.; Grom, A.A.; Foell, D.; Martini, A.; Gattorno, M.; Özen, S.; Prahalad, S.; et al. IL1RN Variation Influences Both Disease Susceptibility and Response to Recombinant Human Interleukin-1 Receptor Antagonist Therapy in Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2018, 70, 1319–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prahalad, S.; Conneely, K.N.; Jiang, Y.; Sudman, M.; Wallace, C.A.; Brown, M.R.; Ponder, L.A.; Rohani-Pichavant, M.; Zwick, M.E.; Cutler, D.J.; et al. Susceptibility to Childhood-Onset Rheumatoid Arthritis: Investigation of a Weighted Genetic Risk Score That Integrates Cumulative Effects of Variants at Five Genetic Loci. Arthritis Rheum. 2013, 65, 1663–1667. [Google Scholar] [CrossRef]
- Cader, M.Z.; Boroviak, K.; Zhang, Q.; Assadi, G.; Kempster, S.L.; Sewell, G.W.; Saveljeva, S.; Ashcroft, J.W.; Clare, S.; Mukhopadhyay, S.; et al. C13orf31 (FAMIN) Is a Central Regulator of Immunometabolic Function. Nat. Immunol. 2016, 17, 1046–1056. [Google Scholar] [CrossRef] [Green Version]
- Karacan, I.; Uğurlu, S.; Şahin, S.; Everest, E.; Kasapçopur, Ö.; Tolun, A.; Özdoğan, H.; Turanli, E.T. LACC1 Gene Defects in Familial Form of Juvenile Arthritis. J. Rheumatol. 2018, 45, 726–728. [Google Scholar] [CrossRef] [Green Version]
- Rabionet, R.; Remesal, A.; Mensa-Vilaró, A.; Murías, S.; Alcobendas, R.; González-Roca, E.; Ruiz-Ortiz, E.; Antón, J.; Iglesias, E.; Modesto, C.; et al. Biallelic Loss-of-Function LACC1/FAMIN Mutations Presenting as Rheumatoid Factor-Negative Polyarticular Juvenile Idiopathic Arthritis. Sci. Rep. 2019, 9, 4579. [Google Scholar] [CrossRef] [Green Version]
- Kallinich, T.; Thorwarth, A.; von Stuckrad, S.-L.; Rösen-Wolff, A.; Luksch, H.; Hundsdoerfer, P.; Minden, K.; Krawitz, P. Juvenile Arthritis Caused by a Novel FAMIN (LACC1) Mutation in Two Children with Systemic and Extended Oligoarticular Course. Pediatr. Rheumatol. Online J. 2016, 14, 63. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, A.; Hedl, M.; Yan, J.; Abraham, C. Human LACC1 Increases Innate Receptor-Induced Responses and a LACC1 Disease-Risk Variant Modulates These Outcomes. Nat. Commun. 2017, 8, 15614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Herrera, G.; Tampella, G.; Pan-Hammarström, Q.; Herholz, P.; Trujillo-Vargas, C.M.; Phadwal, K.; Simon, A.K.; Moutschen, M.; Etzioni, A.; Mory, A.; et al. Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity. Am. J. Hum. Genet. 2012, 90, 986–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, B.; Fritz, J.M.; Su, H.C.; Uzel, G.; Jordan, M.B.; Lenardo, M.J. CHAI and LATAIE: New Genetic Diseases of CTLA-4 Checkpoint Insufficiency. Blood 2016, 128, 1037–1042. [Google Scholar] [CrossRef]
- Semo Oz, R.; Tesher, M.S. Arthritis in Children with LRBA Deficiency–Case Report and Literature Review. Pediatr. Rheumatol. 2019, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Schlenner, S.; Pasciuto, E.; Lagou, V.; Burton, O.; Prezzemolo, T.; Junius, S.; Roca, C.P.; Seillet, C.; Louis, C.; Dooley, J.; et al. NFIL3 Mutations Alter Immune Homeostasis and Sensitise for Arthritis Pathology. Ann. Rheum. Dis. 2019, 78, 342–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazen, M.M.; Woodward, A.L.; Hofmann, I.; Degar, B.A.; Grom, A.; Filipovich, A.H.; Binstadt, B.A. Mutations of the Hemophagocytic Lymphohistiocytosis–Associated GeneUNC13D in a Patient with Systemic Juvenile Idiopathic Arthritis. Arthritis Rheum. 2008, 58, 567–570. [Google Scholar] [CrossRef]
- Zhang, K.; Biroschak, J.; Glass, D.N.; Thompson, S.D.; Finkel, T.; Passo, M.H.; Binstadt, B.A.; Filipovich, A.; Grom, A.A. Macrophage Activation Syndrome in Patients with Systemic Juvenile Idiopathic Arthritis Is Associated with MUNC13-4 Polymorphisms. Arthritis Rheum. 2008, 58, 2892–2896. [Google Scholar] [CrossRef] [Green Version]
- Schulert, G.S.; Zhang, M.; Husami, A.; Fall, N.; Brunner, H.; Zhang, K.; Cron, R.Q.; Grom, A.A. Brief Report: Novel UNC13D Intronic Variant Disrupting an NF-ΚB Enhancer in a Patient With Recurrent Macrophage Activation Syndrome and Systemic Juvenile Idiopathic Arthritis. Arthritis Rheumatol. 2018, 70, 963–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horton, D.B.; Shenoi, S. Review of Environmental Factors and Juvenile Idiopathic Arthritis. Open Access Rheumatol. 2019, 11, 253–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennet, T.; Borsig, L. Breastfed at Tiffany’s. Trends Biochem. Sci. 2016, 41, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Hyrich, K.L.; Baildam, E.; Pickford, H.; Chieng, A.; Davidson, J.E.; Foster, H.; Gardner-Medwin, J.; Wedderburn, L.R.; Thomson, W. Influence of Past Breast Feeding on Pattern and Severity of Presentation of Juvenile Idiopathic Arthritis. Arch. Dis. Child 2016, 101, 348–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, R.G.; Cochran, K.M.; Smith, P.B.; Edson, B.S.; Schulman, J.; Lee, H.C.; Govindaswami, B.; Pantoja, A.; Hardy, D.; Curran, J.; et al. Effect of Catheter Dwell Time on Risk of Central Line–Associated Bloodstream Infection in Infants. Pediatrics 2015, 136, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Arvonen, M.; Virta, L.J.; Pokka, T.; Kröger, L.; Vähäsalo, P. Repeated Exposure to Antibiotics in Infancy: A Predisposing Factor for Juvenile Idiopathic Arthritis or a Sign of This Group’s Greater Susceptibility to Infections? J. Rheumatol. 2015, 42, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Klareskog, L.; Padyukov, L.; Alfredsson, L. Smoking as a Trigger for Inflammatory Rheumatic Diseases. Curr. Opin. Rheumatol. 2007, 19, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Zeft, A.S.; Prahalad, S.; Lefevre, S.; Clifford, B.; McNally, B.; Bohnsack, J.F.; Pope, C.A. Juvenile Idiopathic Arthritis and Exposure to Fine Particulate Air Pollution. Clin. Exp. Rheumatol. 2009, 27, 877–884. [Google Scholar] [PubMed]
- Zeft, A.S.; Prahalad, S.; Schneider, R.; Dedeoglu, F.; Weiss, P.F.; Grom, A.A.; Mix, C.; Pope Rd, C.A. Systemic Onset Juvenile Idiopathic Arthritis and Exposure to Fine Particulate Air Pollution. Clin. Exp. Rheumatol. 2016, 34, 946–952. [Google Scholar]
- Shenoi, S.; Shaffer, M.L.; Wallace, C.A. Environmental Risk Factors and Early-Life Exposures in Juvenile Idiopathic Arthritis: A Case-Control Study. Arthritis Care Res. 2016, 68, 1186–1194. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.A.; Scurrah, K.J.; Li, Y.R.; Ponsonby, A.-L.; Chavez, R.A.; Pezic, A.; Dwyer, T.; Akikusa, J.D.; Allen, R.C.; Becker, M.L.; et al. Epistasis amongst PTPN2 and Genes of the Vitamin D Pathway Contributes to Risk of Juvenile Idiopathic Arthritis. J. Steroid Biochem. Mol. Biol. 2015, 145, 113–120. [Google Scholar] [CrossRef]
- Chiaroni-Clarke, R.C.; Munro, J.E.; Pezic, A.; Cobb, J.E.; Akikusa, J.D.; Allen, R.C.; Dwyer, T.; Ponsonby, A.; Ellis, J.A. Association of Increased Sun Exposure Over the Life-course with a Reduced Risk of Juvenile Idiopathic Arthritis. Photochem. Photobiol. 2019, 95, 867–873. [Google Scholar] [CrossRef]
- Radon, K.; Windstetter, D.; Poluda, D.; Häfner, R.; Thomas, S.; Michels, H.; von Mutius, E. Exposure to Animals and Risk of Oligoarticular Juvenile Idiopathic Arthritis: A Multicenter Case-Control Study. BMC Musculoskelet. Disord. 2010, 11, 73. [Google Scholar] [CrossRef]
sJIA | oJIA | RF − pJIA | RF + pJIA | ErA | PsA | |
---|---|---|---|---|---|---|
Gender predominance | F = M | F | F | F | M | F = M |
Arthritis presentation | Wrists, knees, and ankles are the joints commonly involved. Chronic pattern in 30–50% with slow development. | Number of joints affected: ≤4 Type of joints affected: large Asymmetric | Number of joints affected: ≥5 Type of joints affected: small and large | Number of joints affected: ≥5 Type of joints affected: small Erosive, aggressive symmetric polyarthritis | Lower limb joints are generally more affected Axial involvement | Type of joints affected: small and large Asymmetric |
Systemic features | Fever, lymphadenopathy, evanescent rash, serositis, hepatosplenomegaly, MAS | 30% uveitis | 10% uveitis | 10% uveitis Rheumatoid nodules | Acute anterior uveitis, enthesitis, gut inflammation | Psoriasis, dactylitis, onycholysis, nail pitting, uveitis (10–15%) |
Adult counterpart | Adult-onset Still’s disease (AOSD) | - | RF − Rheumatoid arthritis | RF + Rheumatoid arthritis | Spondylo-arthropathies | Psoriatic arthritis |
Type of disease | Autoinflammatory | Autoimmune | Autoimmune | Autoimmune | Autoimmune | Early onset—autoimmune, late onset—autoinflammatory |
Biomarkers | Increased CRP, ferritin, platelets | 70% ANA+ | 40% ANA+ | RF+, ACPA+, ANA+ 40% | 45–85% ANA+ | 50% ANA+ |
HLA genetic pre-disposition | HLA-DRB1*11 HLA-DBR1*04 HLA-DQA1*05 | HLA-DRB1*08 HLA-DRB1*01 HLA-DRB1*11 HLA-DRB1*13, HLA-DPB1*02, HLA-DQB1*04 | HLA DRB1*08 HLA-DPB1*03 | HLA-DRB1*01 HLA-DRB1*04, HLA-DAQ1*03 HLA-DQB1*03 HLA-DRB1*08 | HLA-B*27 | HLA-DAQ1*0401 HLA-DRB1*08 HLA-DQB1*0402 Less frequently HLA-B*27 |
Immune system | Innate immune response | Adaptive immune system | Adaptive immune system | Adaptive immune system | Adaptive immune system | Early onset—adaptive immune system, late onset—innate immune response |
Effector cells | Monocytes, macrophages, neutrophils | CD4+ and CD8+ T cells, neutrophils, T follicular helper | CD4+, CD8+ T cells, T follicular helper | CD4+ CD8+ T cells, T follicular helper | γδT cells, TH17 cells | TH1 and Th17 cell subsets, macrophages, and activated dendritic cells |
Pathogenesis | Abnormal activation of phagocytes leads to hypersecretion of proinflammatory cytokines | Disrupted imbalance between inflammatory Th1/Th17 and Treg cells | Imbalance between inflammatory Th1/Th17 and Treg cells | Imbalance between inflammatory Th1/Th17 and Treg cells | HLA-B27 involved in presentation of arthritogenic peptide caused T cell activation | Autoinflammatory activation at the synovial–entheseal complex. Autoimmune processes in extra-articular tissues |
Cytokines | IL-1, IL6, IL-18, IL-37, IL-10 | TNFα, IL-17, IFNγ, IL-6, IL-21 | TNFα, IL-17, IFNγ, IL-6, IL-33, IL-21 | TNFα, IL-6, IL-17, IL-23, IL-21 | TNFα, IL-17, IL-23 | TNFα, IL-17, IL-23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Bella, S.; Rinaldi, M.; Di Ludovico, A.; Di Donato, G.; Di Donato, G.; Salpietro, V.; Chiarelli, F.; Breda, L. Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. Int. J. Mol. Sci. 2023, 24, 1846. https://doi.org/10.3390/ijms24031846
La Bella S, Rinaldi M, Di Ludovico A, Di Donato G, Di Donato G, Salpietro V, Chiarelli F, Breda L. Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. International Journal of Molecular Sciences. 2023; 24(3):1846. https://doi.org/10.3390/ijms24031846
Chicago/Turabian StyleLa Bella, Saverio, Marta Rinaldi, Armando Di Ludovico, Giulia Di Donato, Giulio Di Donato, Vincenzo Salpietro, Francesco Chiarelli, and Luciana Breda. 2023. "Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis" International Journal of Molecular Sciences 24, no. 3: 1846. https://doi.org/10.3390/ijms24031846
APA StyleLa Bella, S., Rinaldi, M., Di Ludovico, A., Di Donato, G., Di Donato, G., Salpietro, V., Chiarelli, F., & Breda, L. (2023). Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. International Journal of Molecular Sciences, 24(3), 1846. https://doi.org/10.3390/ijms24031846