Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation
Abstract
:1. Introduction
2. Survey Methodology
3. How Development Stages Define the Microbiome of Potato
4. The role of Soil Structure and Moisture in Rhizosphere Microbiome Development
5. Impact of Bacterial and Fungal Pathogens on Potato Microbiome
6. Relationship between the Potato Microbial Community and Pests
7. Potato Microbiome Modulation
Microbial Mixture Components | Effect after Inoculation | NCBI BioProject | Reference |
---|---|---|---|
Rhizophagus irregularis, Funneliformis mosseae, Claroideoglumus etunicatum | increase both the yield and nutritional quality of potatoes | n/a | [111] |
Enterobacter cloacae, Bacillus thuringiensis, and Pseudomonas pseudoalcaligenes | increase biomass, yield and P nutrient uptake in potato plant | n/a | [113] |
Nine Pseudomonas strains | dual mixture provided stronger protection against Phytophthora infestans than the single strains | n/a | [112] |
Streptomyces sp. TP199 and Streptomyces sp. A2R31 | applied strains possess antagonistic activity in vitro against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum | n/a | [126] |
Pseudomonas fluorescens strain LBUM223 | LBUM223 capable of controling PCS while not disturbing autochthonous microbiome | PRJNA436092 | [17] |
Pseudomonas fluorescens | metabolite biosynthesis correlates with antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans | PRJEB34261 | [120] |
Bacillus subtilis strain znjdf1 and Trichoderma harzianum strain znlkhc1 | applied strains suppress PCS and increase tuber yield | PRJNA512875 | [121] |
Bacillus subtilis strain Bv17 | Bacillus subtilis strain Bv17 treatment was able to decrease diseases of potato and improve the quality and quantity of yield | n/a | [122] |
Streptomyces (various) | non-pathogenic Streptomyces reduce the population of pathogenic Streptomyces due to niche overlap | PRJNA477767 | [88] |
Streptomyces strain (Str272) | Streptomyces strain Str272 has antagonistic activity against PCS | PRJEB40435 | [87] |
Phages PSG11, WC4 and CX5 | plant health was enhanced after phage application, probably due to pathogen elimination and shifts in the microbiome composition | PRJNA867554 | [81] |
8. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devaux, A.; Goffart, J.P.; Petsakos, A.; Kromann, P.; Gatto, M.; Okello, J.; Suarez, V.; Hareau, G. Global food security, contributions from sustainable potato agri-food systems. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Springer: Cham, Switzerland, 2019; ISBN 9783030286835. [Google Scholar] [CrossRef]
- Biessy, A.; Filion, M. Biological control of potato common scab by plant-beneficial bacteria. Biol. Control 2022, 165, 104808. [Google Scholar] [CrossRef]
- Yuen, J. Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Secur. 2021, 13, 247–253. [Google Scholar] [CrossRef]
- Price, J.A.; Coyne, D.; Blok, V.C.; Jones, J.T. Potato cyst nematodes Globodera rostochiensis and G. pallida. Mol. Plant Pathol. 2021, 22, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Alyokhin, A.; Udalov, M.; Benkovskaya, G. The Colorado Potato Beetle. In Insect Pests of Potato; Academic Press: Cambridge, MA, USA, 2012; pp. 11–29. [Google Scholar] [CrossRef]
- Adhikari, A.; Oli, D.; Pokhrel, A.; Dhungana, B.; Paudel, B.; Pandit, S.; Bigyan, G.C.; Dhakal, A. A review on the biology and management of potato tuber moth. Agriculture 2022, 68, 97–109. [Google Scholar] [CrossRef]
- Xu, Y.; Gray, S.M. Aphids and their transmitted potato viruses: A continuous challenges in potato crops. J. Integr. Agric. 2020, 19, 367–375. [Google Scholar] [CrossRef]
- Alves, F.M.; Rocha Gonring, A.H.; Zanuncio, J.C.; de Sena Fernandes, M.E.; Plata-Rueda, A.; Fernandes, F.L. Economic damage levels and treatment thresholds for leafminer insects in Solanum tuberosum crops. Crop. Prot. 2017, 100, 81–86. [Google Scholar] [CrossRef]
- Buchholz, F.; Antonielli, L.; Kostić, T.; Sessitsch, A.; Mitter, B. The bacterial community in potato is recruited from soil and partly inherited across generations. PLoS ONE 2019, 14, e0223691. [Google Scholar] [CrossRef] [PubMed]
- Bora, S.S.; Hazarika, D.J.; Churaman, A.; Naorem, R.S.; Dasgupta, A.; Chakrabarty, R.; Kalita, H.; Barooah, M. Common scab disease-induced changes in geocaulosphere microbiome assemblages and functional processes in landrace potato (Solanum tuberosum var. Rongpuria) of Assam, India. Arch. Microbiol. 2023, 205, 44. [Google Scholar] [CrossRef]
- Rizaludin, M.S.; Stopnisek, N.; Raaijmakers, J.M.; Garbeva, P. The chemistry of stress: Understanding the ‘cry for help’ of plant roots. Metabolites 2021, 11, 357. [Google Scholar] [CrossRef]
- Lyu, D.; Smith, D.L. The root signals in rhizospheric inter-organismal communications. Front. Plant Sci. 2022, 13, 1064058. [Google Scholar] [CrossRef]
- Santoyo, G. How plants recruit their microbiome? New insights into beneficial interactions. J. Adv. Res. 2022, 40, 45–58. [Google Scholar] [CrossRef]
- Bai, Y.; Müller, D.B.; Srinivas, G.; Garrido-Oter, R.; Potthoff, E.; Rott, M.; Dombrowski, N.; Münch, P.C.; Spaepen, S.; Remus-Emsermann, M.; et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015, 528, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Su, G.; Li, M.; Wang, B.; Lin, R.; Yang, Y.; Wei, T.; Zhou, B.; Gao, Z. Distribution of Bacterial Endophytes in the Non-lesion Tissues of Potato and Their Response to Potato Common Scab. Front. Microbiol. 2021, 12, 616013. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, T.; Parent, S.É.; Hogue, R. Using a soil bacterial species balance index to estimate potato crop productivity. PLoS ONE 2019, 14, e0214089. [Google Scholar] [CrossRef] [PubMed]
- Roquigny, R.; Novinscak, A.; Léger, G.; Marcoux, N.; Joly, D.L.; Filion, M. Deciphering the rhizosphere and geocaulosphere microbiomes of potato following inoculation with the biocontrol agent Pseudomonas fluorescens strain LBUM223. Phytobiomes J. 2018, 2, 92–99. [Google Scholar] [CrossRef]
- Voulgari, G.; Schmalenberger, A. Bacterial communities in the potato tuberosphere share similarities with bulk soil and rhizosphere communities, yet possess distinct features. Res. Sq. 2023, 1–23. [Google Scholar] [CrossRef]
- Akosah, Y.; Lutfullin, M.; Lutfullina, G.; Pudova, D.; Shagimardanova, E.; Vologin, S.; Gogoleva, N.; Stasevski, Z.; Sharipova, M.; Mardanova, A. The potato rhizoplane actively recruits Fusarium taxa during flowering. Rhizosphere 2021, 20, 100449. [Google Scholar] [CrossRef]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the Core Microbiota Be Functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef]
- Pfeiffer, S.; Mitter, B.; Oswald, A.; Schloter-Hai, B.; Schloter, M.; Declerck, S.; Sessitsch, A. Rhizosphere microbiomes of potato cultivated in the high andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol. Ecol. 2017, 93, fiw242. [Google Scholar] [CrossRef]
- Klasek, D.S.; Crants, D.J.; Abbas, D.T.; Ashley, D.K.A.; Bolton, D.M.; Celovsky, M.M.; Gudmestead, D.N.; Hao, D.J.; Caballero, D.J.I.; Jahn, D.C.; et al. Potato soil core microbiomes are regionally variable across the continental US. Phytobiomes J. 2023. [Google Scholar] [CrossRef]
- Custer, G.; van Diepen, L.; Stump, W. An Examination of Fungal and Bacterial Assemblages in Bulk and Rhizosphere Soils under Solanum tuberosum in Southeastern Wyoming, USA. Appl. Microbiol. 2021, 1, 162–176. [Google Scholar] [CrossRef]
- Gu, S.; Xiong, X.; Tan, L.; Deng, Y.; Du, X.; Yang, X.; Hu, Q. Soil microbial community assembly and stability are associated with potato (Solanum tuberosum L.) fitness under continuous cropping regime. Front. Plant Sci. 2022, 13, 1000045. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Toju, H.; Tanabe, A.S.; Sato, H. Network hubs in root-associated fungal metacommunities. Microbiome 2018, 6, 116. [Google Scholar] [CrossRef] [PubMed]
- Roman-reyna, V.; Pinili, D.; Borjaa, F.N.; Quibod, I.; Groen, S.C.; Mulyaningsih, E.S.; Rachmat, A.; Slamet-Loedin, I.H.; Alexandrov, N.; Mauleon, R.; et al. The Rice Leaf Microbiome Has a Conserved Community Structure Controlled by Complex Host-Microbe Interactions. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Malacrinò, A.; Mosca, S.; Li Destri Nicosia, M.G.; Agosteo, G.E.; Schena, L. Plant Genotype Shapes the Bacterial Microbiome of Fruits, Leaves, and Soil in Olive Plants. Plants 2022, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Gera Hol, W.H.; de Boer, W.; de Hollander, M.; Kuramae, E.E.; Meisner, A.; van der Putten, W.H. Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Front. Plant Sci. 2015, 6, 485. [Google Scholar] [CrossRef]
- Babalola, O.O.; Fadiji, A.E.; Enagbonma, B.J.; Alori, E.T.; Ayilara, M.S.; Ayangbenro, A.S. The Nexus between Plant and Plant Microbiome: Revelation of the Networking Strategies. Front. Microbiol. 2020, 11, 548037. [Google Scholar] [CrossRef] [PubMed]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 2017, 25, 217–228. [Google Scholar] [CrossRef]
- Tan, L.; Zeng, W.-A.; Xiao, Y.; Li, P.; Gu, S.; Wu, S.; Zhai, Z.; Feng, K.; Deng, Y.; Hu, Q. Fungi-Bacteria Associations in Wilt Diseased Rhizosphere and Endosphere by Interdomain Ecological Network Analysis. Front. Microbiol. 2021, 12, 722626. [Google Scholar] [CrossRef]
- Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V.; Jeffery, L.D. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Anand, G.; Gaur, R.; Yadav, D. Plant–microbiome interactions for sustainable agriculture: A review. Physiol. Mol. Biol. Plants 2021, 27, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chen, J.; Wang, T.; Gao, C.; Li, Z.; Guo, L.; Xu, J.; Cheng, Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. Front. Plant Sci. 2021, 12, 621276. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Ashley, K. Irreplaceable role of amendment-based strategies to enhance soil health and disease suppression in potato production. Microorganisms 2021, 9, 1660. [Google Scholar] [CrossRef] [PubMed]
- Djaman, K.; Koudahe, K.; Koubodana, H.D.; Saibou, A.; Essah, S. Tillage Practices in Potato (Solanum tuberosum L.) Production: A Review. Am. J. Potato Res. 2022, 99, 1–12. [Google Scholar] [CrossRef]
- Contreras-Liza, S.E. Microbiome and Sustainability in Potato Crop Production. In The Potato Crop: Management, Production, and Food Security; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2021; pp. 191–212. ISBN 9781685072032. [Google Scholar]
- Waheed, A.; Li, C.; Muhammad, M.; Ahmad, M.; Khan, K.A.; Ghramh, H.A.; Wang, Z.; Zhang, D. Sustainable Potato Growth under Straw Mulching Practices. Sustainability 2023, 15, 10442. [Google Scholar] [CrossRef]
- Kopecky, J.; Rapoport, D.; Sarikhani, E.; Stovicek, A.; Patrmanova, T.; Sagova-Mareckova, M. Micronutrients and soil microorganisms in the suppression of potato common scab. Agronomy 2021, 11, 383. [Google Scholar] [CrossRef]
- Zhang, Y.; Trivedi, P.; Xu, J.; Caroline Roper, M.; Wang, N. The Citrus Microbiome: From Structure and Function to Microbiome Engineering and Beyond. Phytobiomes J. 2021, 5, 249–262. [Google Scholar] [CrossRef]
- Whitehead, S.R.; Wisniewski, M.E.; Droby, S.; Abdelfattah, A.; Freilich, S.; Mazzola, M. The Apple Microbiome: Structure, Function, and Manipulation for Improved Plant Health. In The Apple Genome. Compendium of Plant Genomes; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Petrushin, I.S.; Vasilev, I.A.; Markova, Y.A. Drought Tolerance of Legumes: Physiology and the Role of the Microbiome. Curr. Issues Mol. Biol. 2023, 45, 6311–6324. [Google Scholar] [CrossRef]
- Naqqash, T.; Imran, A.; Hameed, S.; Shahid, M.; Majeed, A.; Iqbal, J.; Hanif, M.K.; Ejaz, S.; Malik, K.A. First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci. Rep. 2020, 10, 12893. [Google Scholar] [CrossRef]
- Saini, I.; Kaushik, P.; Al-Huqail, A.A.; Khan, F.; Siddiqui, M.H. Effect of the diverse combinations of useful microbes and chemical fertilizers on important traits of potato. Saudi J. Biol. Sci. 2021, 28, 2641–2648. [Google Scholar] [CrossRef] [PubMed]
- Lone, R.; Shuab, R.; Sharma, V.; Kumar, V.; Mir, R.; Koul, K.K. Effect of arbuscular mycorrhizal fungi on growth and development of potato (Solanum tuberosum) plant. Asian J. Crop. Sci. 2015, 7, 233–243. [Google Scholar] [CrossRef]
- Quiza, L.; St-Arnaud, M.; Yergeau, E. Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front. Plant Sci. 2015, 6, 507. [Google Scholar] [CrossRef] [PubMed]
- Panke-Buisse, K.; Lee, S.; Kao-Kniffin, J. Cultivated Sub-Populations of Soil Microbiomes Retain Early Flowering Plant Trait. Microb. Ecol. 2017, 73, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Shayanthan, A.; Ordoñez, P.A.C.; Oresnik, I.J. The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture. Front. Agron. 2022, 4, 58. [Google Scholar] [CrossRef]
- Jochum, M.D.; McWilliams, K.L.; Pierson, E.A.; Jo, Y.-K. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE 2019, 14, e0225933. [Google Scholar] [CrossRef] [PubMed]
- Mccarty, N.S.; Ledesma-Amaro, R. Synthetic Biology Tools to Engineer Microbial Communities for Biotechnology. Trends Biotechnol. 2019, 37, 181–197. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Vila, J.C.C.; Bender, M.; Li, R.; Mankowski, M.C.; Bassette, M.; Borden, J.; Golfier, S.; Sanchez, P.G.L.; Waymack, R.; et al. Engineering complex communities by directed evolution. Nat. Ecol. Evol. 2021, 5, 1011–1023. [Google Scholar] [CrossRef]
- İnceoğlu, Ö.; van Overbeek, L.S.; Salles, J.F.; van Elsas, J.D. Normal operating range of bacterial communities in soil used for potato cropping. Appl. Environ. Microbiol. 2013, 79, 1160–1170. [Google Scholar] [CrossRef]
- İnceoğlu, Ö.; Salles, J.F.; Van Overbeek, L.; Van Elsas, J.D. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl. Environ. Microbiol. 2010, 76, 3675–3684. [Google Scholar] [CrossRef]
- Marschner, P.; Yang, C.-H.; Lieberei, R.; Crowley, D.E. Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 2001, 33, 1437–1445. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, W.; Yang, Y.; Hu, J.; Bian, C.; Jin, L.; Li, G.; Xiong, X. Rhizosphere microbial diversity and community dynamics during potato cultivation. Eur. J. Soil Biol. 2020, 98, 103176. [Google Scholar] [CrossRef]
- Brimecombe, M.J.; De Leij, F.A.; Lynch, J.M. The effect of root exudates on rhizosphere microbial populations. In The Rhizosphere, Biochemistry and Organic Substances at the Soil–Plant Interface; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- BEN Abdallah, R.A.; Jabnoun-Khİareddİne, H.; Daamİ-Remadİ, M. Variation in the composition of the microbial community in the rhizosphere of potato plants depending on cropping season, cultivar type, and plant development stage. Int. J. Agric. Environ. Food Sci. 2020, 4, 319–333. [Google Scholar] [CrossRef]
- Kastelein, P.; Förch, M.G.; Krijger, M.C.; van der Zouwen, P.S.; van den Berg, W.; van der Wolf, J.M. Systemic colonization of potato plants resulting from potato haulm inoculation with Dickeya solani or Pectobacterium parmentieri. Can. J. Plant Pathol. 2020, 43, 1–15. [Google Scholar] [CrossRef]
- Elhalag, K.; Elbadry, N.; Farag, S.; Hagag, M.; Hussien, A. Etiology of potato soft rot and blackleg diseases complex in Egypt. J. Plant Dis. Prot. 2020, 127, 855–871. [Google Scholar] [CrossRef]
- Delventhal, K.; Busby, P.E.; Frost, K. Tare soil alters the composition of the developing the potato rhizosphere microbiome. Phytobiomes J. 2022, 7, 91–99. [Google Scholar] [CrossRef]
- Buchholz, F.; Junker, R.; Samad, A.; Antonielli, L.; Sarić, N.; Kostić, T.; Sessitsch, A.; Mitter, B. 16S rRNA gene-based microbiome analysis identifies candidate bacterial strains that increase the storage time of potato tubers. Sci. Rep. 2021, 11, 3146. [Google Scholar] [CrossRef] [PubMed]
- Delventhal, K.; Skillman, V.; Li, X.; Busby, P.E.; Frost, K. Characterizing Variation in the Bacterial and Fungal Tare Soil Microbiome of Seed Potato. Phytobiomes J. 2023, 7, 78–90. [Google Scholar] [CrossRef]
- Xu, Y.; Jeanne, T.; Hogue, R.; Shi, Y.; Ziadi, N.; Parent, L.E. Soil bacterial diversity related to soil compaction and aggregates sizes in potato cropping systems. Appl. Soil Ecol. 2021, 168, 104147. [Google Scholar] [CrossRef]
- Sessitsch, A.; Weilharter, A.; Gerzabek, M.H.; Kirchmann, H.; Kandeler, E. Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. Appl. Environ. Microbiol. 2001, 67, 4215–4224. [Google Scholar] [CrossRef]
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Marinari, S.; Radicetti, E.; Petroselli, V.; Allam, M.; Mancinelli, R. Microbial Indices to Assess Soil Health under Different Tillage and Fertilization in Potato (Solanum tuberosum L.) Crop. Agriculture 2022, 12, 415. [Google Scholar] [CrossRef]
- Jensen, L.S.; McQueen, D.J.; Shepherd, T.G. Effects of soil compaction on N-mineralization and microbial-C and -N. I. Field measurements. Soil Tillage Res. 1996, 38, 175–188. [Google Scholar] [CrossRef]
- Grigal, D.F. Effects of extensive forest management on soil productivity. For. Ecol. Manag. 2000, 138, 167–185. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Struik, P.C. Yield levels of potato crops: Recent achievements and future prospects. Field Crop. Res. 2015, 182, 76–85. [Google Scholar] [CrossRef]
- Zarzyńska, K.; Boguszewska-Mańkowska, D.; Nosalewicz, A. Differences in size and architecture of the potato cultivars root system and their tolerance to drought stress. Plant Soil Environ. 2017, 63, 159–164. [Google Scholar] [CrossRef]
- Gumiere, T.; Gumiere, S.J.; Matteau, J.-P.; Constant, P.; Létourneau, G.; Rousseau, A.N. Soil bacterial community associated with high potato production and minimal water use. Front. Environ. Sci. 2019, 6, 161. [Google Scholar] [CrossRef]
- Faist, H.; Trognitz, F.; Antonielli, L.; Symanczik, S.; White, P.J.; Sessitsch, A. Potato root-associated microbiomes adapt to combined water and nutrient limitation and have a plant genotype-specific role for plant stress mitigation. Environ. Microbiome 2023, 18, 18. [Google Scholar] [CrossRef]
- Asaturova, A.; Shternshis, M.; Tsvetkova, V.; Shpatova, T.; Maslennikova, V.; Zhevnova, N.; Homyak, A. Biological control of important fungal diseases of potato and raspberry by two Bacillus velezensis strains. PeerJ 2021, 9, e11578. [Google Scholar] [CrossRef]
- Krechel, A.; Faupel, A.; Hallmann, J.; Ulrich, A.; Berg, G.; Padda, K.P.; Puri, A.; Chanway, C.P.; Wanner, L.A.; Reiter, B.; et al. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can. J. Microbiol. 2002, 48, 772–786. [Google Scholar] [CrossRef]
- Sbai Idrissi, N.; Ouarzane, A.; Elouazni, L.; Hmyene, A.; Elantri, S.; Amine, A. Exploring rhizosphere and potato microbiome as potential antagonist to control blackleg and potato soft rot diseases in Morocco. Egypt. J. Biol. Pest Control. 2021, 31, 41. [Google Scholar] [CrossRef]
- Bai, X.; Li, Q.; Zhang, D.; Zhao, Y.; Zhao, D.; Pan, Y.; Wang, J.; Yang, Z.; Zhu, J. Bacillus velezensis Strain HN-Q-8 Induced Resistance to Alternaria solani and Stimulated Growth of Potato Plant. Biology 2023, 12, 856. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Duffy, B.; Nowak, J.; Clément, C.; Barka, E.A. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl. Environ. Microbiol. 2005, 71, 4951–4959. [Google Scholar] [CrossRef] [PubMed]
- Kurm, V.; Mendes, O.; Gros, J.; Van Der Wolf, J. Potato tuber origin and microbial composition determines resistance against soft rot Pectobacteriaceae. Eur. J. Plant Pathol. 2023, 1–17. [Google Scholar] [CrossRef]
- Charkowski, A.; Sharma, K.; Parker, M.L.; Secor, G.A.; Elphinstone, J. Bacterial Diseases of Potato. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 351–388. ISBN 978-3-030-28682-8. [Google Scholar]
- Mousa, S.; Magdy, M.; Xiong, D.; Nyaruabaa, R.; Rizk, S.M.; Yu, J.; Wei, H. Microbial Profiling of Potato-Associated Rhizosphere Bacteria under Bacteriophage Therapy. Antibiotics 2022, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.K.; Khurana, S.M.P. Major Fungal and Bacterial Diseases of Potato and their Management. In Fruit and Vegetable Diseases; Mukerji, K.G., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 189–231. ISBN 978-0-306-48575-6. [Google Scholar]
- Bugaeva, E.N.; Voronina, M.V.; Vasiliev, D.M.; Lukianova, A.A.; Landyshev, N.N.; Ignatov, A.N.; Miroshnikov, K.A. Use of a Specific Phage Cocktail for Soft Rot Control on Ware Potatoes: A Case Study. Viruses 2021, 13, 1095. [Google Scholar] [CrossRef] [PubMed]
- Hadizadeh, I.; Peivastegan, B.; Hannukkala, A.; Van Der Wolf, J.M.; Nissinen, R.; Pirhonen, M. Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathol. 2019, 68, 297–311. [Google Scholar] [CrossRef]
- Rosenzweig, N.; Steere, L.; Hammerschmidt, R.; Kirk, W. Tuber Soft Rot, Blackleg and Aerial Stem Rot, Extension Bulletin E3335: 1–4.
- Kobayashi, A.; Kobayashi, Y.O.; Someya, N.; Ikeda, S. Community Analysis of Root- and Tuber-Associated Bacteria in Field-Grown Potato Plants Harboring Different Resistance Levels against Common Scab. Microbes Environ. 2015, 30, 301–309. [Google Scholar] [CrossRef]
- Hiltunen, L.H.; Tarvainen, O.; Kelloniemi, J.; Tanskanen, J.; Karhu, J.; Valkonen, J.P.T. Soil bacterial community in potato tuberosphere following repeated applications of a common scab suppressive antagonist. Appl. Soil Ecol. 2021, 167, 104096. [Google Scholar] [CrossRef]
- Shi, W.; Li, M.; Wei, G.; Tian, R.; Li, C.; Wang, B.; Lin, R.; Shi, C.; Chi, X.; Zhou, B.; et al. The occurrence of potato common scab correlates with the community composition and function of the geocaulosphere soil microbiome. Microbiome 2019, 7, 14. [Google Scholar] [CrossRef]
- Rasche, F.; Velvis, H.; Zachow, C.; Berg, G.; Van Elsas, J.D.; Sessitsch, A. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J. Appl. Ecol. 2006, 43, 555–566. [Google Scholar] [CrossRef]
- Mitter, B.; Pfeifer, U.; Schwab, H.; Sessitsch, A.; Reiter, B.; Pfeifer, U.; Schwab, H.; Sessitsch, A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol. 2002, 68, 2261–2268. [Google Scholar] [CrossRef]
- Mao, L.; Chen, Z.; Xu, L.; Zhang, H.; Lin, Y. Rhizosphere microbiota compositional changes reflect potato blackleg disease. Appl. Soil Ecol. 2019, 140, 11–17. [Google Scholar] [CrossRef]
- Mao, L.T.; Lai, L.E.; Lin, G.G.; Xu, L.X.; Chen, Z.G.; Zhu, W.J. Differences in rhizosphere microbiota compositions between healthy and diseased potato (Solanum tuberosum) in china. Appl. Ecol. Environ. Res. 2020, 18, 3683–3691. [Google Scholar] [CrossRef]
- Brown, E.B.; Sykes, G.B. Assessment of the losses caused to potatoes by the potato cyst nematodes, Globodera rostochiensis and G. pallida. Ann. Appl. Biol. 1983, 103, 271–276. [Google Scholar] [CrossRef]
- Howard, M.M.; Kao-Kniffin, J.; Kessler, A. Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores. New Phytol. 2020, 226, 1144–1157. [Google Scholar] [CrossRef]
- Blundell, R.; Schmidt, J.E.; Igwe, A.; Cheung, A.L.; Vannette, R.L.; Gaudin, A.C.M.; Casteel, C.L. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 2020, 6, 483–491. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, L.J.A. Interactions between Plants, Microbes and Insects; Stockholm University: Stockholm, Sweden, 2021. [Google Scholar]
- Rashid, M.H.O.; Chung, Y.R. Induction of Systemic Resistance against Insect Herbivores in Plants by Beneficial Soil Microbes. Front. Plant Sci. 2017, 8, 1816. [Google Scholar] [CrossRef]
- Das, T.; Bhattacharyya, A.; Bhar, A. Linking Phyllosphere and Rhizosphere Microbiome to the Plant–Insect Interplay: The New Dimension of Tripartite Interaction. Physiologia 2023, 3, 129–144. [Google Scholar] [CrossRef]
- Malacrinò, A.; Wang, M.; Caul, S.; Karley, A.J.; Bennett, A.E. Herbivory shapes the rhizosphere bacterial microbiota in potato plants. Environ. Microbiol. Rep. 2021, 13, 805–811. [Google Scholar] [CrossRef]
- Lee, B.; Lee, S.; Ryu, C.-M. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Ann. Bot. 2012, 110, 281–290. [Google Scholar] [CrossRef]
- Yang, J.W.; Yi, H.-S.; Kim, H.; Lee, B.; Lee, S.; Ghim, S.-Y.; Ryu, C.-M. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora: Leaf insects reshuffle root microflora and defences. J. Ecol. 2011, 99, 46–56. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Rolfe, S.A.; Griffiths, J.; Ton, J. Crying out for help with root exudates: Adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 2019, 49, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.D.; Vivanco, J.M.; Manter, D.K. Bacterial Microbiome and Nematode Occurrence in Different Potato Agricultural Soils. Microb. Ecol. 2017, 74, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Qi, G.; Yin, R.; Zhang, H.; Li, C.; Zhao, X. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci. Rep. 2016, 6, 28756. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Kim, K.Y. Antagonistic Potential of Bacillus pumilus L1 Against Root-Knot Nematode, Meloidogyne arenaria. J. Phytopathol. 2016, 164, 29–39. [Google Scholar] [CrossRef]
- Sorokan, A.V.; Ben’kovskaya, G.V.; Maksimov, I.V. The influence of potato endophytes on Leptinotarsa decemlineata endosymbionts promotes mortality of the pest. J. Invertebr. Pathol. 2016, 136, 65–67. [Google Scholar] [CrossRef]
- Hail, D.; Dowd, S.E.; Bextine, B. Identification and Location of Symbionts Associated with Potato Psyllid (Bactericera cockerelli) Lifestages. Environ. Entomol. 2012, 41, 98–107. [Google Scholar] [CrossRef]
- Rossmann, S.; Dees, M.W.; Perminow, J.; Meadow, R.; Brurberg, M.B. Soft Rot Enterobacteriaceae Are Carried by a Large Range of Insect Species in Potato Fields. Appl. Environ. Microbiol. 2018, 84, e00281-18. [Google Scholar] [CrossRef]
- Inbaraj, M.P. Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review. Front. Agron. 2021, 3, 667903. [Google Scholar] [CrossRef]
- Carrara, J.E.; Reddivari, L.; Lehotay, S.J.; Zinati, G.; Heller, W.P. Arbuscular Mycorrhizal Fungi Increase the Yield and Nutritional Quality of Yellow and Purple Fleshed Potatoes (Solanum tuberosum). Am. J. Potato Res. 2023, 100, 210–220. [Google Scholar] [CrossRef]
- De Vrieze, M.; Germanier, F.; Vuille, N.; Weisskopf, L. Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora infestans. Front. Microbiol. 2018, 9, 2573. [Google Scholar] [CrossRef] [PubMed]
- Pantigoso, H.A.; He, Y.; Manter, D.K.; Fonte, S.J.; Vivanco, J.M. Phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato Solanum bulbocastanum enhance growth of modern potato varieties. Bull. Natl. Res. Cent. 2022, 46, 224. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 5th ed.; Kluwer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Khan, M.Z.; Akhtar, M.E.; Mahmood-Ul-Hassan, M.; Mahmood, M.M.; Safdar, M.N. Potato tuber yield and quality as affected by rates and sources of potassium fertilizer. J. Plant Nutr. 2012, 35, 664–677. [Google Scholar] [CrossRef]
- Pramanik, P.; Goswami, A.J.; Ghosh, S.; Kalita, C. An indigenous strain of potassium-solubilizing bacteria Bacillus pseudomycoides enhanced potassium uptake in tea plants by increasing potassium availability in the mica waste-treated soil of North-east India. J. Appl. Microbiol. 2019, 126, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Ahmad, I.; Shahid, M.; Shah, G.M.; Farooq, A.B.U.; Akram, M.; Tabassum, S.A.; Naeem, M.A.; Khalid, U.; Ahmad, S.; et al. Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol. Environ. Saf. 2019, 178, 33–42. [Google Scholar] [CrossRef]
- Kareem, I.; Akinrinde, E.A.; Oladosu, Y.; Eifediyi, E.K.; Abdulmaliq, S.Y.; Alasinrin, S.Y.; Kareem, S.A.; Adekola, O.F. Enhancement of phosphorus uptake, growth and yield of sweet potato (Ipomoea batatas) with phosphorus fertilizers. J. Appl. Sci. Environ. Manag. 2020, 24, 79. [Google Scholar] [CrossRef]
- Mantsebo, C.C.; Mazarura, U.; Goss, M.; Ngadze, E. The epidemiology of Pectobacterium and Dickeya species and the role of calcium in postharvest soft rot infection of potato (Solanum tuberosum) caused by the pathogens: A review. Afr. J. Agric. Res. 2014, 9, 1509–1515. [Google Scholar] [CrossRef]
- Pacheco-Moreno, A.; Stefanato, F.L.; Ford, J.J.; Trippel, C.; Uszkoreit, S.; Ferrafiat, L.; Grenga, L.; Dickens, R.; Kelly, N.; Kingdon, A.D.; et al. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021, 10, e71900. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhuang, L.; Yu, Y.; Liu, J.; Zhang, L.; Gao, Z.; Wu, Y.; Gao, W.; Ding, G.-C.; et al. A Rhizosphere-Derived Consortium of Bacillus subtilis and Trichoderma harzianum Suppresses Common Scab of Potato and Increases Yield. Comput. Struct. Biotechnol. J. 2019, 17, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Kong, Z.-Q.; Zhang, D.-D.; Chen, J.-Y.; Dai, X.-F.; Li, R. Rhizosphere microbiomes of potato cultivated under Bacillus subtilis treatment influence the quality of potato tubers. Int. J. Mol. Sci. 2021, 22, 12065. [Google Scholar] [CrossRef] [PubMed]
- Yarullina, L.; Cherepanova, E.A.; Burkhanova, G.F.; Sorokan, A.V.; Zaikina, E.A.; Tsvetkov, V.O.; Mardanshin, I.S.; Fatkullin, I.Y.; Kalatskaja, J.N.; Yalouskaya, N.A.; et al. Stimulation of the Defense Mechanisms of Potatoes to a Late Blight Causative Agent When Treated with Bacillus subtilis Bacteria and Chitosan Composites with Hydroxycinnamic Acids. Microorganisms 2023, 11, 1993. [Google Scholar] [CrossRef] [PubMed]
- Abd-El-Khair, H.; Abdel-Gaied, T.G.; Mikhail, M.S.; Abdel-Alim, A.I.; El-Nasr, H.I.S. Biological control of Pectobacterium carotovorum subsp. carotovorum, the causal agent of bacterial soft rot in vegetables, in vitro and in vivo tests. Bull. Natl. Res. Cent. 2021, 45, 37. [Google Scholar] [CrossRef]
- Jacquiod, S.; Spor, A.; Wei, S.; Munkager, V.; Bru, D.; Sørensen, S.J.; Salon, C.; Philippot, L.; Blouin, M. Artificial selection of stable rhizosphere microbiota leads to heritable plant phenotype changes. Ecol. Lett. 2022, 25, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Gálvez, N.; Luengo-Uribe, P.; Mancilla, S.; Maurin, A.; Torres, C.; Ruiz, P.; France, A.; Acuña, I.; Urrutia, H. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiol. 2021, 21, 335. [Google Scholar] [CrossRef]
Finding Scope | Description | Reference |
---|---|---|
Core microbiome taxa | The main representatives of the potato core microbiome are Bradyrhizobium, Sphingobium and Microvirga; the most abundant genera in the rhizosphere are Lentzea and Streptomyces | [10,21,22,23] |
Growth stages | Specific bacterial genera were consistently present during the flowering stage of potato plant development | [53,54] |
Soil type influence | The diversity of the soil bacterial community is higher in microaggregates and the silt fraction than in macroaggregates and the sand fraction | [64,65,66] |
Native potato isolates | Streptomyces sp. TP199 and Streptomyces sp. A2R31 could inhibit the growth of Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum | [126] |
Non-pathogenic bacterial strains | The are multiple cases of biocontrol of PCS and other diseases using non-pathogenic bacterial strains of Baccilus, Pseudomonas and Streptomyces as antagonists to pathogenic ones | [17,81,87,121,122] |
Occurrence of nematodes influence on microbiome | Abundance of Bacillus spp., Arthrobacter spp. and Lysobacter spp. in potato soil was negatively correlated with the abundance of P. neglectus and M. chitwoodi due to parasitic nematodes antagonism | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrushin, I.S.; Filinova, N.V.; Gutnik, D.I. Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation. Int. J. Mol. Sci. 2024, 25, 750. https://doi.org/10.3390/ijms25020750
Petrushin IS, Filinova NV, Gutnik DI. Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation. International Journal of Molecular Sciences. 2024; 25(2):750. https://doi.org/10.3390/ijms25020750
Chicago/Turabian StylePetrushin, Ivan S., Nadezhda V. Filinova, and Daria I. Gutnik. 2024. "Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation" International Journal of Molecular Sciences 25, no. 2: 750. https://doi.org/10.3390/ijms25020750
APA StylePetrushin, I. S., Filinova, N. V., & Gutnik, D. I. (2024). Potato Microbiome: Relationship with Environmental Factors and Approaches for Microbiome Modulation. International Journal of Molecular Sciences, 25(2), 750. https://doi.org/10.3390/ijms25020750