Special Issue “Bacterial Toxins and Cancer”
Author Contributions
Conflicts of Interest
References
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global Burden of Cancers Attributable to Infections in 2012: A Synthetic Analysis. Lancet Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef] [PubMed]
- Jacqueline, C.; Tasiemski, A.; Sorci, G.; Ujvari, B.; Maachi, F.; Missé, D.; Renaud, F.; Ewald, P.; Thomas, F.; Roche, B. Infections and Cancer: The “Fifty Shades of Immunity” Hypothesis. BMC Cancer 2017, 17, 257. [Google Scholar] [CrossRef] [PubMed]
- Emanuele Liardo, R.L.; Borzì, A.M.; Spatola, C.; Martino, B.; Privitera, G.; Basile, F.; Biondi, A.; Vacante, M. Effects of Infections on the Pathogenesis of Cancer. Indian J. Med. Res. 2021, 153, 431–445. [Google Scholar] [CrossRef] [PubMed]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Biological Agents; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100 B, ISBN 978-92-832-1319-2.
- Baima, G.; Minoli, M.; Michaud, D.S.; Aimetti, M.; Sanz, M.; Loos, B.G.; Romandini, M. Periodontitis and Risk of Cancer: Mechanistic Evidence. Periodontology 2000 2023. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, H.; Jia, J.; Liu, Y.; Zhang, N.; Wang, R.; Qu, W.; Liu, Y.; Jia, L. Mechanisms by Which the Intestinal Microbiota Affects Gastrointestinal Tumours and Therapeutic Effects. Mol. Biomed. 2023, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, M.; Le Noci, V.; Bianchi, F.; Camelliti, S.; Balsari, A.; Tagliabue, E.; Sfondrini, L. The Lung Microbiota: Role in Maintaining Pulmonary Immune Homeostasis and Its Implications in Cancer Development and Therapy. Cell. Mol. Life Sci. 2020, 77, 2739–2749. [Google Scholar] [CrossRef] [PubMed]
- McLean, A.E.B.; Kao, S.C.; Barnes, D.J.; Wong, K.K.H.; Scolyer, R.A.; Cooper, W.A.; Kohonen-Corish, M.R.J. The Emerging Role of the Lung Microbiome and Its Importance in Non-Small Cell Lung Cancer Diagnosis and Treatment. Lung Cancer 2022, 165, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Lian, S.B.; Tam, Y.C.; Oh, C.C. The Cutaneous Microbiome in Skin Cancer—A Systematic Review. JDDG J. Dtsch. Dermatol. Ges. 2024. [Google Scholar] [CrossRef]
- Chalif, J.; Wang, H.; Spakowicz, D.; Quick, A.; Arthur, E.K.; O’malley, D.; Chambers, L.M. The Microbiome and Gynecologic Cancer: Cellular Mechanisms and Clinical Applications. Int. J. Gynecol. Cancer 2023, 34, 317–327. [Google Scholar] [CrossRef]
- Khatun, S.; Appidi, T.; Rengan, A.K. The Role Played by Bacterial Infections in the Onset and Metastasis of Cancer. Curr. Res. Microb. Sci. 2021, 2, 100078. [Google Scholar] [CrossRef]
- Lai, Y.R.; Chang, Y.F.; Ma, J.; Chiu, C.H.; Kuo, M.L.; Lai, C.H. From DNA Damage to Cancer Progression: Potential Effects of Cytolethal Distending Toxin. Front. Immunol. 2021, 12, 760451. [Google Scholar] [CrossRef]
- El Tekle, G.; Garrett, W.S. Bacteria in Cancer Initiation, Promotion and Progression. Nat. Rev. Cancer 2023, 23, 600–618. [Google Scholar] [CrossRef] [PubMed]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks + E. Coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Dalmasso, G.; Cougnoux, A.; Delmas, J.; Darfeuille-Michaud, A.; Bonnet, R. The Bacterial Genotoxin Colibactin Promotes Colon Tumor Growth by Modifying the Tumor Microenvironment. Gut Microbes 2014, 5, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Purcell, R.V.; Pearson, J.; Aitchison, A.; Dixon, L.; Frizelle, F.A.; Keenan, J.I. Colonization with Enterotoxigenic Bacteroides Fragilis Is Associated with Early-Stage Colorectal Neoplasia. PLoS ONE 2017, 12, e0171602. [Google Scholar] [CrossRef] [PubMed]
- Zamani, S.; Taslimi, R.; Sarabi, A.; Jasemi, S.; Sechi, L.A.; Feizabadi, M.M. Enterotoxigenic Bacteroides Fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Front. Cell. Infect. Microbiol. 2019, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Wu, S.; Zhang, Y.G.; Xia, Y.; Zhou, Z.; Kato, I.; Dong, H.; Bissonnette, M.; Sun, J. Salmonella Protein AvrA Activates the STAT3 Signaling Pathway in Colon Cancer. Neoplasia 2016, 18, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Vannini, E.; Maltese, F.; Olimpico, F.; Fabbri, A.; Costa, M.; Caleo, M.; Baroncelli, L. Progression of Motor Deficits in Glioma-Bearing Mice: Impact of CNF1 Therapy at Symptomatic Stages. Oncotarget 2017, 8, 23539–23550. [Google Scholar] [CrossRef]
- Zhao, C.C.; Yu, W.W.; Qi, Y.J.; Xu, L.F.; Wang, Z.R.; Qiang, Y.W.; Ma, F.; Ma, X.L. Quantitative Proteomic Analysis Reveals That Luks-PV Exerts Antitumor Activity by Regulating the Key Proteins and Metabolic Pathways in HepG2 Cells. Anti-Cancer Drugs 2020, 31, 223–230. [Google Scholar] [CrossRef]
- Sharma, P.C.; Sharma, D.; Sharma, A.; Bhagat, M.; Ola, M.; Thakur, V.K.; Bhardwaj, J.K.; Goyal, R.K. Recent Advances in Microbial Toxin-Related Strategies to Combat Cancer. Semin. Cancer Biol. 2022, 86, 753–768. [Google Scholar] [CrossRef]
- Gao, Z.; Mcclane, B.A. Use of Clostridium Perfringens Enterotoxin and the Enterotoxin Receptor-Binding Domain (C-CPE) for Cancer Treatment: Opportunities and Challenges. J. Toxicol. 2012, 2012, 981626. [Google Scholar] [CrossRef] [PubMed]
- Weerakkody, L.; Witharana, C. The Role of Bacterial Toxins and Spores in Cancer Therapy. Life Sci. 2019, 235, 116839. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Schulga, A.; Konovalova, E.; Rinne, S.S.; Zhang, H.; Vorontsova, O.; Orlova, A.; Deyev, S.M.; Tolmachev, V.; Vorobyeva, A. Feasibility of Co-Targeting HER3 and EpCAM Using Seribantumab and DARPin–Toxin Fusion in a Pancreatic Cancer Xenograft Model. Int. J. Mol. Sci. 2023, 24, 2838. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.Y.; Kim, D.S.; Kim, Y.S. Expanding the Therapeutic Window of EGFR-Targeted PE24 Immunotoxin for EGFR-Overexpressing Cancers by Tailoring the EGFR Binding Affinity. Int. J. Mol. Sci. 2022, 23, 15820. [Google Scholar] [CrossRef]
- Codolo, G.; Facchinello, N.; Papa, N.; Bertocco, A.; Coletta, S.; Benna, C.; Dall’olmo, L.; Mocellin, S.; Tiso, N.; de Bernard, M. Macrophage-Mediated Melanoma Reduction after HP-NAP Treatment in a Zebrafish Xenograft Model. Int. J. Mol. Sci. 2022, 23, 1644. [Google Scholar] [CrossRef] [PubMed]
- Márquez-López, A.; Fanarraga, M.L. AB Toxins as High-Affinity Ligands for Cell Targeting in Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 11227. [Google Scholar] [CrossRef] [PubMed]
- Markelova, N.N.; Semenova, E.F.; Sineva, O.N.; Sadykova, V.S. The Role of Cyclomodulins and Some Microbial Metabolites in Bacterial Microecology and Macroorganism Carcinogenesis. Int. J. Mol. Sci. 2022, 23, 11706. [Google Scholar] [CrossRef]
- Fettucciari, K.; Fruganti, A.; Stracci, F.; Spaterna, A.; Marconi, P.; Bassotti, G. Clostridioides Difficile Toxin B Induced Senescence: A New Pathologic Player for Colorectal Cancer? Int. J. Mol. Sci. 2023, 24, 8155. [Google Scholar] [CrossRef]
- Lambert, A.; Schwarz, L.; Borbath, I.; Henry, A.; Van Laethem, J.L.; Malka, D.; Ducreux, M.; Conroy, T. An Update on Treatment Options for Pancreatic Adenocarcinoma. Ther. Adv. Med. Oncol. 2019, 11, 1758835919875568. [Google Scholar] [CrossRef]
- Ansari, D.; Tingstedt, B.; Andersson, B.; Holmquist, F.; Sturesson, C.; Williamsson, C.; Sasor, A.; Borg, D.; Bauden, M.; Andersson, R. Pancreatic Cancer: Yesterday, Today and Tomorrow. Future Oncol. 2016, 12, 1929–1946. [Google Scholar] [CrossRef]
- D’Elios, M.M.; Amedei, A.; Cappon, A.; Del Prete, G.; De Bernard, M. The Neutrophil-Activating Protein of Helicobacter Pylori (HP-NAP) as an Immune Modulating Agent. FEMS Immunol. Med. Microbiol. 2007, 50, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, M.; Yu, D.; Wanders, A.; Essand, M.; Eriksson, F. An Infection-Enhanced Oncolytic Adenovirus Secreting H. Pylori Neutrophil-Activating Protein with Therapeutic Effects on Neuroendocrine Tumors. Mol. Ther. 2013, 21, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Amedei, A.; Cappon, A.; Codolo, G.; Cabrelle, A.; Polenghi, A.; Benagiano, M.; Tasca, E.; Azzurri, A.; Milco D’elios, M.; Del Prete, G.; et al. The Neutrophil-Activating Protein of Helicobacter Pylori Promotes Th1 Immune Responses. J. Clin. Investig. 2006, 116, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Codolo, G.; Fassan, M.; Munari, F.; Volpe, A.; Bassi, P.; Rugge, M.; Pagano, F.; D’Elios, M.M.; De Bernard, M. HP-NAP Inhibits the Growth of Bladder Cancer in Mice by Activating a Cytotoxic Th1 Response. Cancer Immunol. Immunother. 2012, 61, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current State of Melanoma Diagnosis and Treatment. Cancer Biol. Ther. 2019, 20, 1366–1379. [Google Scholar] [CrossRef] [PubMed]
- Domingues, B.; Lopes, J.M.; Soares, P.; Pópulo, H. Melanoma Treatment in Review. ImmunoTargets Ther. 2018, 7, 35–49. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.S.; Baldwin, M.R.; Barbieri, J.T. Toxins from Bacteria. EXS 2010, 100, 1–29. [Google Scholar] [CrossRef]
- Gillet, D.; Barbier, J. Diphtheria Toxin. In The Comprehensive Sourcebook of Bacterial Protein Toxins; Academic Press: Cambridge, MA, USA, 2015; pp. 111–132. [Google Scholar]
- Lacy, D.B.; Collier, R.J. Structure and Function of Anthrax Toxin. Curr. Top. Microbiol. Immunol. 2002, 271, 61–85. [Google Scholar] [CrossRef]
- Melton-Celsa, A.R. Shiga Toxin (Stx) Classification, Structure, and Function. Microbiol. Spectr. 2014, 2, 2–4. [Google Scholar] [CrossRef]
- Vanden Broeck, D.; Horvath, C.; De Wolf, M.J.S. Vibrio Cholerae: Cholera Toxin. Int. J. Biochem. Cell Biol. 2007, 39, 1771–1775. [Google Scholar] [CrossRef]
- Johannes, L.; Römer, W. Shiga Toxins—From Cell Biology to Biomedical Applications. Nat. Rev. Microbiol. 2009, 8, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Elsland, D.; Neefjes, J. Bacterial Infections and Cancer. EMBO Rep. 2018, 19, e46632. [Google Scholar] [CrossRef] [PubMed]
- Matson, V.; Chervin, C.S.; Gajewski, T.F. Cancer and the Microbiome—Influence of the Commensal Microbiota on Cancer, Immune Responses, and Immunotherapy. Gastroenterology 2021, 160, 600–613. [Google Scholar] [CrossRef] [PubMed]
- Fettucciari, K.; Macchioni, L.; Davidescu, M.; Scarpelli, P.; Palumbo, C.; Corazzi, L.; Marchegiani, A.; Cerquetella, M.; Spaterna, A.; Marconi, P.; et al. Clostridium Difficile Toxin B Induces Senescence in Enteric Glial Cells: A Potential New Mechanism of Clostridium Difficile Pathogenesis. BBA-Mol. Cell Res. 2018, 1865, 167–4889. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Lacy, D.B. The Role of Toxins in Clostridium Difficile Infection. FEMS Microbiol. Rev. 2017, 41, 723–750. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S. Management of Clostridioides Difficile Infection in Patients with Inflammatory Bowel Disease. Intest. Res. 2021, 19, 265–274. [Google Scholar] [CrossRef]
- Fettucciari, K.; Ponsini, P.; Gioè, D.; Macchioni, L.; Palumbo, C.; Antonelli, E.; Coaccioli, S.; Villanacci, V.; Corazzi, L.; Marconi, P.; et al. Enteric Glial Cells Are Susceptible to Clostridium Difficile Toxin B. Cell. Mol. Life Sci. 2017, 74, 1527–1551. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.P.; Desprez, P.Y.; Krtolica, A.; Campisi, J. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annu. Rev. Pathol. 2010, 5, 99–118. [Google Scholar] [CrossRef]
- Schmitt, C.A.; Wang, B.; Demaria, M. Senescence and Cancer—Role and Therapeutic Opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 619–636. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travaglione, S.; Carlini, F.; Maroccia, Z.; Fabbri, A. Special Issue “Bacterial Toxins and Cancer”. Int. J. Mol. Sci. 2024, 25, 2128. https://doi.org/10.3390/ijms25042128
Travaglione S, Carlini F, Maroccia Z, Fabbri A. Special Issue “Bacterial Toxins and Cancer”. International Journal of Molecular Sciences. 2024; 25(4):2128. https://doi.org/10.3390/ijms25042128
Chicago/Turabian StyleTravaglione, Sara, Francesca Carlini, Zaira Maroccia, and Alessia Fabbri. 2024. "Special Issue “Bacterial Toxins and Cancer”" International Journal of Molecular Sciences 25, no. 4: 2128. https://doi.org/10.3390/ijms25042128
APA StyleTravaglione, S., Carlini, F., Maroccia, Z., & Fabbri, A. (2024). Special Issue “Bacterial Toxins and Cancer”. International Journal of Molecular Sciences, 25(4), 2128. https://doi.org/10.3390/ijms25042128