Remote Sensing Image Classification Using the Spectral-Spatial Distance Based on Information Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of SRM Segmentation
2.2. Spectral-Spatial Distance Based on SRM
2.3. Novel Spectral-Spatial Distance Based SRM Considering IC
2.4. Application of the Proposed Comprehensive Distance Measure
2.4.1. k-NN-SRM-IC
2.4.2. OPF-SRM-IC
3. Results
3.1. Datasets
3.2. Parameter Settings
3.3. Quantitative Results
3.4. Visual Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef] [Green Version]
- Stuckens, J.; Coppin, P.R.; Bauer, M.E. Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens. Environ. Res. 2000, 71, 282–296. [Google Scholar] [CrossRef]
- Magnussen, S.; Boudewyn, P.; Wulder, M. Contextual classification of Landsat TM images to forest inventory cover types. Int. J. Remote Sens. 2004, 25, 2421–2440. [Google Scholar] [CrossRef]
- Ghamisi, P.; Souza, R.; Benediktsson, J.A.; Rittner, L.; Lotufo, R.; Zhu, X.X. Hyperspectral Data Classification Using Extended Extinction Profiles. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1641–1645. [Google Scholar] [CrossRef]
- Kartikeyan, B.; Sarker, A.; Majumder, K.L. A segmentation approach to classification of remote sensing imagery. Int. J. Remote Sens. 1998, 19, 1695–1709. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Shekhar, S.; Schrater, P.; Vatsavai, R.R.; Wu, W.; Chawla, S. Spatial Contextual Classification and Prediction Models for Mining Geospatial Data. IEEE Trans. Multimed. 2002, 4, 174–188. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. SVM-and MRF-based Method for Accurate Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef]
- Moser, G.; Seprpico, S.B. Combining Support Vector Machines and Markov Random Fields in an Integrated Framework for Contextual Image Classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2734–2752. [Google Scholar] [CrossRef]
- Nakamura, R.Y.M.; Osaku, D.; Levada, A.L.M.; Cappabianco, F.; Falcão, A. OPF-MRF: Optimum-path Forest and Markov Random Fields for Contextual-based Image Classification. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, York, UK, 27–29 August 2013; pp. 233–240. [Google Scholar]
- Osaku, D.; Levada, A.L.M.; Papa, J.P. On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification. In Pattern Recognition, Image Analysis, Computer Vision, and Applications; Bayro-Corrochano, E., Hancock, E., Eds.; Springer International Publishing: Basel, Switzerland, 2014; Volume 8827, pp. 462–469. [Google Scholar]
- Osaku, D.; Nakamura, R.Y.M.; Pereira, L.A.M.; Pisani, R.J.; Levada, A.L.M.; Cappabianco, F.A.M.; Falcão, A.X.; Papa, J.P. Improving Land Cover Classification through Contextual-based Optimum-path Forest. Inf. Sci. 2015, 324, 60–87. [Google Scholar] [CrossRef]
- Zhang, G.; Jia, X. Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification. IEEE Geosci. Remote Sens. Lett. 2012, 9, 856–860. [Google Scholar] [CrossRef]
- Zhao, J.; Zhong, Y.; Shu, H.; Zhang, L. High-resolution image classification integrating spectral-spatial-location cues by conditional random fields. IEEE Trans. Image Process. 2016, 25, 4033–4045. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhong, Y.; Jia, T.; Wang, X.; Xu, Y.; Shu, H.; Zhang, L. Spectral-spatial classification of hyperspectral imagery with cooperative game. ISPRS J. Photogram. Remote Sens. 2018, 135, 31–42. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Benediktssonb, J.A.; Chanussota, J. Spectral-Spatial Classification of Hyperspectral Imangey Based on Partitional Clustering Techniques. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2973–2987. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussota, J.; Benediktssonb, J.A. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Couceiro, M.S.; Fauvel, M.; Benediktsson, J.A. Integration of Segmentation Techniques for Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.Z.; Tang, P.; Zhang, Z.; Tuia, D. Semisupervised Classification of Remote Sensing Images with Hierarchical Spatial Similarity. IEEE Geosci. Remote Sens. Lett. 2015, 12, 150–154. [Google Scholar]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353. [Google Scholar] [CrossRef]
- Ghamisi, P.; Souza, R.; Benediktsson, J.A.; Zhu, X.X.; Rittner, L.; Lotufo, R.A. Extinction Profiles for the Classification of Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5631–5645. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Contextual deep CNN based hyperspectral classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 3322–3325. [Google Scholar]
- Yang, J.; Zhao, Y.; Chan, J.C.W.; Yi, C. Hyperspectral image classification using two-channel deep convolutional neural network. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 5079–5082. [Google Scholar]
- Chen, C.; Jiang, F.; Yang, C.; Rho, S.; Shen, W.; Liu, S.; Liu, Z. Hyperspectral classification based on spectral–spatial convolutional neural networks. Eng. Appl. Artif. Intell. 2018, 68, 165–171. [Google Scholar] [CrossRef]
- Aptoula, E.; Ozdemir, M.C.; Yanikoglu, B. Deep Learning With Attribute Profiles for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1970–1974. [Google Scholar] [CrossRef]
- Yuan, H.; Tang, Y.; Lu, Y.; Yang, L.; Luo, H. Spectral-Spatial Classification of Hyperspectral Image Based on Discriminant Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2035–2043. [Google Scholar] [CrossRef]
- Sellami, A.; Farah, I.R. High-level hyperspectral image classification based on spectro-spatial dimensionality reduction. Spat. Stat. 2016, 16, 103–117. [Google Scholar] [CrossRef]
- Chen, S.Y.; Sun, T.L.; Yang, F.Q.; Sun, H.G.; Guan, Y. Remote sensing image classification using the spatial information obtained by statistical region merging. Remote Sens. Lett. 2017, 8, 567–575. [Google Scholar] [CrossRef]
- Nock, R.; Nielsen, F. Statistical Region Merging. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Resnik, P. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 95), Montreal, QC, Canada, 20–25 August 1995; pp. 448–453. [Google Scholar]
- Souza, R.; Rittner, L.; Lotufo, R. A Comparison between Optimum Path Forest and k-Nearest Neighbors Classifiers. In Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and Images, Ouro Preto, Brazil, 22–25 August 2012; pp. 260–267. [Google Scholar]
- Papa, J.P.; Falcao, A.X.; Suzuki, C.T.N. Supervised Pattern Classification Based on Optimum-Path Forest. Int. J. Imaging Syst. Technol. 2009, 19, 120–131. [Google Scholar] [CrossRef]
- LibOPF: A library for the design of optimum-path forest classifiers 2009. Software version 2.0. Available online: http://www.ic.unicamp.br/~afalcao/libopf/ (accessed on 15 March 2018).
Class | grass lands | reforesting | cultures | roads | dams | bushes |
Color | light green | dark gray | salmon | gray | red | green |
Class | roads | clear tonal signatures | bare moist soil | tree cover |
Color | gray | white | salmon | dark green |
Class | shadows | dark tonal signatures | bare soil clear | grasslands |
Color | black | dark tonal signatures | yellow | light green |
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | 65 | 70 | |
14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
Method/Image | CBERS-2B | Landsat-5 | Ikonos-2MS | Geoeye |
---|---|---|---|---|
k-NN | 69.95%(10) | 71.43%(7) | 68.84%(1) | 75.32%(9) |
k-NN-WH-MV | 72.17%(1) | 72.72%(1) | 73.13%(1) | 77.30%(1) |
k-NN-SRM | 76.90%(7) | 76.69%(3) | 79.49%(10) | 82.45%(9) |
k-NN-SRM-IC | 77.91%(7) | 77.75%(3) | 80.45%(10) | 83.62%(9) |
OPF | 66.04% | 68.04% | 68.00% | 69.31% |
OPF-WH-MV | 70.74% | 71.19% | 72.27% | 73.72% |
OPF-MRF | 68.90%(0.6) | 71.11%(0.8) | 69.42%(1.2) | 72.97%(1.0) |
OPF-SRM | 73.65% | 75.36% | 78.84% | 78.13% |
OPF-SRM-IC | 73.86% | 76.83% | 80.06% | 79.02% |
SVM | 70.26% | 71.21% | 66.73% | 76% |
SVM-WH-MV | 70.35% | 71.40% | 67.81% | 76.47% |
SVM-MRF | 73.73%(1.2) | 74.96%(1.3) | 72.16%(1.2) | 76.81%(1.3) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Zhang, H.; Sun, T.; Zhao, J.; Guo, X. Remote Sensing Image Classification Using the Spectral-Spatial Distance Based on Information Content. Sensors 2018, 18, 3428. https://doi.org/10.3390/s18103428
Chen S, Zhang H, Sun T, Zhao J, Guo X. Remote Sensing Image Classification Using the Spectral-Spatial Distance Based on Information Content. Sensors. 2018; 18(10):3428. https://doi.org/10.3390/s18103428
Chicago/Turabian StyleChen, Siya, Hongyan Zhang, Tieli Sun, Jianjun Zhao, and Xiaoyi Guo. 2018. "Remote Sensing Image Classification Using the Spectral-Spatial Distance Based on Information Content" Sensors 18, no. 10: 3428. https://doi.org/10.3390/s18103428