
sensors

Article

Learn to Steer through Deep Reinforcement Learning

Keyu Wu , Mahdi Abolfazli Esfahani , Shenghai Yuan and Han Wang *

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave,
Singapore 639798, Singapore; wukeyu@ntu.edu.sg (K.W.); MAHDI001@e.ntu.edu.sg (M.A.E.);
SYUAN003@e.ntu.edu.sg (S.Y.)
* Correspondence: HW@ntu.edu.sg; Tel.: +65-6790-4506

Received: 12 October 2018; Accepted: 25 October 2018; Published: 27 October 2018
����������
�������

Abstract: It is crucial for robots to autonomously steer in complex environments safely without
colliding with any obstacles. Compared to conventional methods, deep reinforcement learning-based
methods are able to learn from past experiences automatically and enhance the generalization
capability to cope with unseen circumstances. Therefore, we propose an end-to-end deep
reinforcement learning algorithm in this paper to improve the performance of autonomous steering
in complex environments. By embedding a branching noisy dueling architecture, the proposed
model is capable of deriving steering commands directly from raw depth images with high efficiency.
Specifically, our learning-based approach extracts the feature representation from depth inputs
through convolutional neural networks and maps it to both linear and angular velocity commands
simultaneously through different streams of the network. Moreover, the training framework is also
meticulously designed to improve the learning efficiency and effectiveness. It is worth noting that the
developed system is readily transferable from virtual training scenarios to real-world deployment
without any fine-tuning by utilizing depth images. The proposed method is evaluated and compared
with a series of baseline methods in various virtual environments. Experimental results demonstrate
the superiority of the proposed model in terms of average reward, learning efficiency, success rate as
well as computational time. Moreover, a variety of real-world experiments are also conducted which
reveal the high adaptability of our model to both static and dynamic obstacle-cluttered environments.

Keywords: deep reinforcement learning; autonomous steering; depth image

1. Introduction

Autonomous robots have been built for a wide range of applications, such as surveillance,
exploration, data collection, inspection, rescue and service, etc. [1]. In most of the missions, it is
essential for autonomous robots to detect and avoid various obstacles while maneuver in unknown
cluttered environments safely. Numerous methods have been proposed and adapted successfully
to different robots [2–5]. However, conventional methods may impose intensive computational
demand [6,7] and are often built upon a set of assumptions that are likely not to be satisfied in
practice [8,9]. Moreover, conventional algorithms typically include a number of parameters need to
be tuned manually [10] rather than being capable to learn from past experiences automatically [11].
Therefore, it is difficult for these approaches to generalize well to unseen scenarios.

Without any labeled dataset, deep reinforcement learning (DRL) has achieved remarkable success
in solving challenging problems in many domains, such as video games [12], continuous control [13],
and robotics [14,15]. Recently, the preliminary study of DRL algorithms in the context of autonomous
steering has demonstrated that effective control policies can be directly mapped from raw sensor
inputs [16–19]. The network proposed in Ref. [20] output control commands based on ten-dimensional
laser range inputs and was trained using an asynchronous DRL algorithm. Similarly, the models

Sensors 2018, 18, 3650; doi:10.3390/s18113650 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8493-0712
https://orcid.org/0000-0002-0709-0534
http://dx.doi.org/10.3390/s18113650
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3650?type=check_update&version=2

Sensors 2018, 18, 3650 2 of 19

introduced in Refs. [21,22] also derived the steering commands from laser range sensors, with the
former utilizing the intrinsic curiosity to augment the reward signals while the latter assisting the
DRL algorithm using an external controller. Since it is impractical to train DRL algorithms in
real-world environments considering the excessive time consumption and heavy workload required
for interaction, laser-based methods are competitive in terms of the transferability to real world because
of the smaller discrepancies between their simulated and real domains.

Nevertheless, a limitation of these 2D laser-based DRL architectures is the lack of 3D information
while 2D sensing data is not informative enough to describe complex 3D scenarios. On the contrary,
vision sensors are capable of providing 3D observations to achieve higher reliability and, in the
meantime, are generally more affordable as well. Instead of using laser range finders, Zhu et al.
proposed a DRL framework to derive control policies for mobile robots directly from RGB images [23]
and succeeded in adapting their model to a real robot scenario after fine-tuning. In Ref. [24], the
segmented rather than raw RGB images were used while training a DRL model to derive motion
commands for humanoid robots. However, it is as expected that RGB inputs suffer from the significant
deviation between real-world situations and the synthetic environments during training, which leads
to quite limited generalization across situations. Compared to RGB images, the depth inputs in
simulations exhibit much better visual fidelity due to the textureless nature and, as a result, greatly
alleviate the burden of transferring the trained model to real deployments [25].

Based on raw depth images, Tai et al. trained their network through the Deep Q-Network (DQN) for
a mobile robot to avoid obstacles in unknown environments [26], and in Ref. [27], Zhang et al. proposed
to use successor features to achieve efficient knowledge transfer across tasks in depth-based navigation.
Rather than adopting depth inputs directly, the network presented in Ref. [10] comprised two parts.
Firstly, a fully convolutional residual network [28] was implemented to predict depth information
from the input monocular RGB images. The estimated depth images were subsequently fed into a
dueling architecture based double DQN for action selection. Due to the extraordinary performance
of Convolutional Neural Networks (CNNs) in feature extraction [29,30], all the aforementioned
depth-based approaches employed CNNs to generate feature representations so that the networks were
end-to-end trainable without any explicit extraction of hand-crafted features. Meanwhile, based on
CNN architectures, most of these models were trained using the value-based DRL algorithms, including
DQN and its variants.

Introduced by Mnih et al. [12,31], DQN has achieved breakthroughs in tackling a variety
of challenges, including autonomous steering tasks [32]. Generally, DQN solves problems with
high-dimensional observation spaces by leveraging deep neural networks to estimate the Q-values
for corresponding actions and taking advantage of two significant innovations. Firstly, DQN adopts
the experience replay technique to improve data efficiency. At each step, it updates the deep neural
network through randomly sampling a mini-batch of stored experiences from the replay buffer.
Besides, it also separates the target network from the behavior network to achieve more stable
trainings. As an important milestone, many extensions of DQN have been proposed so far to further
improve its performance. The double DQN (DDQN) was proposed to address the overestimation issue
of Q-learning by decoupling action selection and evaluation during performing the maximization
operation for the bootstrap target [33]. The dueling network architecture introduced in Ref. [34]
generalized the learning across actions by explicitly separating the representation of state values
and action advantages. The Noisy DQN proposed by Fortunato et al. contributed to enhance the
exploration by combining both deterministic and noisy streams in a linear layer [35].

Despite the extraordinary success of DQN in processing high-dimensional state spaces, it is
incompetent to cope with continuous action spaces directly and generally requires sampling actions
from discrete spaces to simplify the problems. Indeed, although DQN theoretically leads to better
sample efficiency compared to policy gradient approaches, its performance is restricted when dealing
with high-dimensional discrete action spaces [36]. Therefore, the aforementioned DQN-based methods
are quite limited in their allowed ranges of control outputs.

Sensors 2018, 18, 3650 3 of 19

In this paper, we propose a new variant of DQN which can derive control commands effectively
from depth images and learn to steer automatically with high efficiency. By embedding a branching
noisy dueling architecture in a DDQN, our network, which is named BND-DDQN, combines the
merits of multiple variants of DQN and addresses the limitation of DQN in handling actions in
continuous domains. Specifically, the feature representation is firstly extracted from raw depth inputs
using CNNs. Subsequently, we map it to two Q-value vectors separately via different branches of
the network. Based on the estimated Q-values, the optimal linear and angular velocity commands
can then be determined and executed simultaneously to improve the response capability of the
system. Moreover, a tailored training framework is also proposed to enable the system to learn desired
behaviors more efficiently. Compared to previous value-based DRL algorithms, the performance
of the proposed model is dramatically improved and, in the meanwhile, the number of selectable
control outputs is also increased. It is worth mentioning that although our model is trained in virtual
environments, it can adapt to real-world situations readily without any fine-tuning due to the usage of
depth information. Experiments have been conducted in both virtual and real-world environments to
evaluate the proposed BND-DDQN model. The experimental results demonstrate the superiority of
the proposed algorithm and reveal its outstanding transferability to both static and dynamic unknown
environments in practice.

The rest of the paper is organized as follows. Section 2 provides a brief introduction of the
background and preliminaries. In Section 3, the proposed depth-based DRL algorithm is described
in detail. The experimental results are presented and discussed in Section 4. Finally, conclusions are
given in Section 5.

2. Background and Preliminaries

2.1. Reinforcement Learning

Markov Decision Processes (MDPs) provide a mathematical framework to model stochastic
planning and decision-making problems under uncertainty [37]. An MDP is a tuple M = (S, A, R, P, γ),
where S indicates the state space, A is the action space, R represents the reward function which
illustrates the immediate state-action reward signal, P indicates the transition function which describes
the probability distribution over states if an action a is taken in the current state s, and γ ∈ [0, 1] is
discount factor. In an MDP, a policy π(a|s) specifies the probability of mapping state s to action a.
The superiority of a policy π can be assessed by the action-value function (or Q-value) defined as:

Qπ(s, a) = Eπ [
∞

∑
t=0

γtR(st, at)|s0 = s, a0 = a]. (1)

Therefore, the action-value function is the expectation of discounted sums of rewards, given that
action a is taken in state s and policy π is executed afterwards. The objective of the agent is to maximize
the expected cumulative future reward, and this can be achieved by adopting the Q-learning algorithm
which approximates the optimal action-value function iteratively using the Bellman equation described
in the following:

Q∗(st, at) = R(st, at) + γmax
at+1

Q(st+1, at+1). (2)

2.2. Deep Q-Learning

Combined with deep neural networks, DQN enables reinforcement learning to cope with complex
high-dimensional environments in which there are a large number of combinations of states and
actions [12]. Generally, DQN maintains two deep neural networks, including an online network with
parameters θ and a separate target network with parameters θ−. During each iteration, an action is
determined using the ε-greedy policy. That is, actions are greedily selected most of the time according
to the action-value function resulted from the online network while are randomly generated with a

Sensors 2018, 18, 3650 4 of 19

probability of ε. Subsequently, the new transition after executing the selected action is stored in the
experience replay buffer. In the meantime, a random mini-batch of stored transitions is sampled from
the replay memory and the estimated optimal action-value function is then updated by performing
gradient descent on (yt − Q(st, at; θ))2 with respect to parameters θ, where yt can be calculated
as follows:

yt =

{
rt if episode terminates at step t+1

rt + γmax
at+1

Q(st+1, at+1; θ−) otherwise . (3)

Thus, the parameters of the online network are updated constantly by minimizing the loss
function while the parameters of the target network are fixed for generating Temporal-Difference (TD)
targets and synchronized regularly with those of the online network.

The maximum operation, however, introduces a positive bias towards the estimation of Q-values.
Therefore, DDQN is proposed to alleviate this overestimation by decoupling the action selection from
the generation of action-value [33]. Instead of regarding the maximum Q-value of the target network
as the target action-value, DDQN selects the best action for the next state based on the online network
while estimates the target action-value through calculating the Q-value of the selected action according
to the target network. Therefore, yt is rewritten as Equation (4) in DDQN.

yt =

 rt if episode terminates at step t+1
rt + γQ(st+1, argmax

at+1

Q(st+1, at+1; θ); θ−) otherwise (4)

Moreover, a dueling architecture based DDQN has been introduced as a further extension of
DQN [34]. In Dueling DDQN, the network is split into two streams with one providing an estimate of
the state value function V(s) and the other calculating the state-dependent action advantages A(s, a).
The action-state function is then estimated by combining the two streams through an aggregation layer
and can be expressed as:

Q(st, at; θ, θV , θA) = V(st; θ, θV) + A(st, at; θ, θA)−
1
N ∑

a
A(st, a; θ, θA), (5)

where θ, θV , θA denote the common network parameters, the value stream parameters and the
advantage stream parameters, respectively, and N represents the total number of actions. In this way,
the state values can be obtained without calculating the action-values for all actions, which contributes
to a more reliable estimation of Q-values.

3. Architecture and Implementation of BND-DDQN

3.1. Problem Definition

The objective of our work is to learn the autonomous steering policies effectively and efficiently
through training the proposed network architecture using a reinforcement learning algorithm.
The designed model is aimed to derive both linear and angular velocity commands directly from the
raw depth images in real time. By choosing depth images as the inputs of the neural network, the
transferability of our model to real deployments is significantly increased while the full 3D sensing
information is also well preserved. Before the introduction of our model, a description of the input
state, output action and the designed reward function is presented in the following.

A state of the agent is consisted of a stack of depth images from four consecutive steps to
maintain the temporal information. The images are all captured from the first-person view and
resized to 80× 100. With a series of four depth images as input, our neural network outputs the
steering commands by selecting actions from the designed action space. Instead of considering merely
a few simple commands such as ‘moving forward’, ‘turning left’, and ‘turning right’, our action
space of the agent contains a set of control commands so that both a linear velocity and an angular

Sensors 2018, 18, 3650 5 of 19

velocity can be selected separately from the action pool corresponding to the input state. The action
space of our agent is meticulously defined so that both linear and angular velocities are executed
simultaneously to acquire more stable policies through addressing the problems associated with coarse
action discretization.

Although sparse reward functions are much easier to design, they typically slow down the
learning since more experiences are required for the sparse signal to propagate throughout the
representation of the state space. A dense reward, on the contrary, provides more information for each
move to simplify the learning process. Therefore, an informative instantaneous reward function is
designed as illustrated in Equation (6), which allows the model to learn safe, fast and smooth steering
with high efficiency.

r(st, at) =

{
−10 if in collision

c1v2cos(c2vω)− c3 otherwise
(6)

In Equation (6), v and ω represent the linear and angular velocity, respectively while c1, c2 and
c3 are three constant factors that can be tuned according to the specifications of the robotic system.
In specific, the first constant c1 is a scaling factor and the third constant c3 is a bias. These two
coefficients are to determine the range of the reward function so that its largest value is approximately
equal to one while its distribution is appropriately defined. Besides, the second factor c2 is to regulate
the effect of angular velocity as the linear velocity changes. According to the definition, the agent
is desired to move straight forward as fast as possible and the difference in linear velocity leads to
significant difference in reward when the angular velocity is small. By tuning c1 and c3, the reward
is much smaller than −10 when no collision is detected so that the largest penalty is resulted from
bumping into an obstacle. As a result, a larger angular velocity will be selected if it is necessary
for the agent to change its heading orientation for obstacle avoidance. In these situations, the linear
velocity plays a less important role in determining the reward as the angular velocity increases and the
attenuation of the effect of linear velocity can be customized by tuning constant c2. From a security
standpoint, for instance, the reward can even be designed to drop when a large linear velocity is picked
together with a large angular velocity. With the defined reward signal, our goal is to maximize the
cumulative reward received by the agent in the long run.

3.2. Network Architecture

In order to achieve the aforementioned objectives, we propose a new deep neural network named
BND-DDQN to realize the non-linear approximation of the control policy. Our BND-DDQN model
adopts a branching noisy dueling architecture built upon the DDQN framework, and its network
structure is illustrated in Figure 1.

As introduced in Section 3.1, a series of four 80× 100 depth images obtained from four successive
steps are concatenated together as the input of our BND-DDQN model, and three convolutional layers
activated by the ReLU function are then used to generate the 4160-D feature representation from the
raw depth inputs. Specifically, the first convolutional layer filters the input images with 16 kernels of
size 8× 12 and a stride of 4 pixels. Next, the second convolutional layer produces 32 feature maps
with 4× 4 kernels and a stride of 2 pixels. The output is subsequently filtered by the last convolutional
layer using 32 kernels of size 3× 3 and a stride of 1 to yield 32 feature maps of size 10× 13, which are
then flattened into a vector and fed to the fully connected layers.

Sensors 2018, 18, 3650 6 of 19

���������	
����
�
�����	
���� ��������	
�������
�
������� ����
���������������� ����
���������������� ����
���������������� ������
������

� !"#$%�&� !"#$%�&'()*+,�'-!",)".%�&'()*+,�'-!",)".%�&
'()*+,'()*+,/)")%�0"#$%/)")%�0"#$%

'()*+,�'-!",)".%�1'()*+,�'-!",)".%�1 � !"#$%�1� !"#$%�1
�
		2������3��4

�
		2������3��4
�
		2������3��4
�
		2������3��45���6

5���6
5���6

Figure 1. Network architecture of the BND-DDQN model. Input of the network is the state of the agent,
which consists of a sequence of depth images from four consecutive steps. The feature representation
is generated from these raw depth inputs via three convolutional layers. Subsequently, the network
branches into three streams to map the feature representation to one common state value and two action
advantages corresponding to linear and angular velocity commands, respectively. The action-value
functions are then estimated through aggregation layers and the optimal actions are greedily selected.

On the whole, the network splits into three streams after the feature representation is obtained.
One of the branches is to estimate the state-value function while the other two aim to calculate the
action advantages in different dimensions which correspond to linear and angular velocities, separately.
More specifically, the 4160-D feature vector is passed into two fully connected layers with 512 neurons
and 1 neuron, respectively, to estimate the state value. In the meantime, the advantages of actions
associated to linear velocity commands are acquired by feeding the same feature vector through two
fully connected layers with 512 and N units, respectively, where N refers to the number of discretized
actions. Similarly, the feature representation is mapped to action advantages corresponding to angular
velocities via another two fully connected layers with the same configuration. In each branch, the first
fully connected layer is followed by a ReLU activation function while no activation is applied for the
second fully connected layer.

It is worth noting that instead of utilizing conventional fully connected layers, our model
implements the concept of NoisyNets [35] to achieve more efficient exploration in a more consistent
way. This is achieved through perturbing the weights and biases by a parametric function of noise.
To begin with, it is known that a linear layer can be expressed as y = ωx + b, where x is the input, y is
the output, ω represents the weight matrix, and b denotes the bias. In order to achieve the exploration,
the uncertainty can be added by introducing Gaussian noises as shown in Equation (7), where µω , σω ,
µb, and σb are the parameters of the network whereas εω and εb are random noises, and � denotes
element-wise multiplication.

y = (µω + σω � εω)x + µb + σb � εb (7)

However, the introduction of noise can lead to a large number of noise variables. Therefore, rather
than independent noises, factorized Gaussian noises can be used to alleviate the computational burden.
The weight matrix can then be re-formatted as:

ωi,j = µω
i,j + σω

i,j f (εi) f (εj), (8)

Sensors 2018, 18, 3650 7 of 19

and the corresponding bias can be re-written as:

bj = µb
j + σb

j f (εj), (9)

where function f is defined as f (ε) = sgn(ε)
√
|ε|. Besides, the initial values of µω and µb are randomly

sampled from the uniform distribution on the interval (− 1√
N

, 1√
N
), where N is the size of the input

layer. Meanwhile, the values of σω and σb are initialized to 0.4√
N

.
In this way, the state value V(s) and the two advantages A1 and A2 are estimated via the noisy

fully connected layers and combined thereafter through a special aggregation layer to produce the
estimates of the action-value functions Q1 and Q2 as illustrated in Equation (10), where Ni is the size
of action space for the i-th action dimension.

Qi(s, ai) = ReLU(V(s) + Ai(s, ai)− 1
Ni

∑
a′i

Ai(s, a′i)), i = 1, 2 (10)

Since the exploration is achieved through the addition of Gaussian noises, the ε-greedy strategy is
no longer used while interacting with the environments. Instead, the optimal action is greedily chosen
according to the learned policy.

3.3. Training Framework

Built upon the proposed branching noisy dueling architecture, our BND-DDQN model is trained
following the protocol depicted in Figure 2. At the beginning, the parameters of the online network θ

are initialized randomly while those of the target network θ− are assigned as a duplication. The online
network is subsequently utilized to select optimal actions based on the states of the agent. At each step,
the system receives an immediate reward and simultaneously transits to a new state after executing the
determined control commands. The new state is then updated to be the input state for determination of
the optimal actions in the next step. In the meantime, all these transitions are stored in the experience
replay memory which is initialized to a capacity of 1000 before training and updated continuously
with a maximum capacity of 30,000.

During training, the online network is used to evaluate the policies while the target network is
deployed to estimate the TD target values. A mini-batch of transitions is sampled from the experience
replay buffer to update the network at each iteration and these training data are composed of the
current state, executed actions, immediate reward, and the next state. Firstly, the current state st is fed
through the online network to calculate the two vectors of action-state values, Q1(st; θ) and Q2(st; θ),
which correspond to the discretized linear and angular velocity commands, respectively. The Q-values
of the executed actions, a1t and a2t, are then extracted as Q1(st, a1t; θ) and Q2(st, a2t; θ), accordingly,
from the two Q-value vectors. In addition, the next state st+1 is also passed into the online network
to acquire the optimal actions which lead to the maximum Q-values at step t + 1. Meanwhile, st+1 is
fed through the target network as well to compute Q1(st+1; θ−) and Q2(st+1; θ−). Complying with
DDQN, the action values of the optimal actions chosen by the online network are determined by the
target network. Therefore, with a discount factor of γ and the current reward rt, the target values, y1

and y2, of the action-state value functions at step t can be calculated using Equation (11), where i = 1, 2
denotes the category of the action, ε and θ represent the noise variables and parameters of the online
network, respectively, while ε− and θ− indicate those of the target network.

yi =

 rt if episode terminates at step t+1
rt + γQi(st+1, argmax

ait+1

Qi(st+1, ait+1, ε; θ), ε−; θ−) otherwise (11)

Sensors 2018, 18, 3650 8 of 19

Based on the current Q-values attained by the online network and their corresponding target
values computed via Equation (11), we define the loss function as:

L(θ) = E[α1(y1 −Q1(st, a1t, ε; θ))2

+ α2(y2 −Q2(st, a2t, ε; θ))2

+ α3(Q1(st, a1t, ε; θ)−Q2(st, a2t, ε; θ))2],

(12)

where α1, α2, and α3 are three weight coefficients. In Equation (12), the first two terms aim to minimize
the differences between the Q-values calculated by the online network and their corresponding target
values estimated via the target network. Moreover, since the linear and angular velocity commands are
executed simultaneously, these two categories of actions are applied jointly as a whole and, therefore,
the difference between the two Q-values extracted from the online network is also minimized.����������	
���

����� ��
�������	
�����

�������
�������

�	���
�� ������������
�
������

�������
���� �
����
� �

������
 ���
�!��	�

!"

���#�����
����#�����
������$�������
������$�������
����$����
����$����
%���##################�!�##################�!� ���%��%
%������ �%�����%�����
�����
���� �
����
%�����������

����
������ �%��%�
%����
%���$�%��
%���$�%�� &#

�������
%�����$�%�����
%�����$�%�����
Figure 2. Training framework of the BND-DDQN model. The online network is used to output control
commands and evaluate the policies while the target network is employed to estimate the target values
for evaluation. At each iteration, the current state is fed through the online network to compute the
Q-values of the executed actions whereas the next state is passed into both networks to determine
the corresponding target Q-values together with the discounted factor and the immediate reward.
The loss function is calculated as a combination of three terms, including the difference between the
first Q-value and its target value, the difference between the second Q-value and its target value, and
the difference between the two Q-values. The loss is back-propagated through the online network to
update its parameters while the target network is a periodic duplicate of the online network.

The loss is back-propagated through the online network to adjust its parameters using the Adam
optimizer at each iteration. The pseudo-code of our BND-DDQN algorithm is described in Algorithm 1.
It is worth mentioning that in consideration of the branching architecture of our BND-DDQN model,
the gradients with respect to the parameters of the convolutional layers are divided by two during the
backpropagation. The parameters of the target network, on the contrary, are not trainable. In essence,
the target network is a periodic duplicate of the online network so as to avoid rapidly fluctuating
estimations of target Q-values.

Sensors 2018, 18, 3650 9 of 19

Algorithm 1: BND-DDQN Algorithm
Input : batch size NB, experience reply buffer D, maximum size of replay buffer NR, update

frequency of target network NT , initial parameters of online network θ, initial
parameters of target network θ− = θ

1 for t = 1 to T do
2 Select a1∗ = argmaxaQ1(sk, a; θ) and a2∗ = argmaxaQ2(sk, a; θ)

3 Execute a1∗ and a2∗ simultaneously, receive reward rk, and transit to new state sk+1

4 Store transition (sk, a1∗, a2∗, rk, sk+1) in D
5 if |D| > NR then
6 Delete oldest element from D
7 end
8 Sample a batch of NB transitions (st, a1t, a2t, rt, st+1) from D
9 Sample noise variables εi, εj, ε−i , ε−j ∼ N(0, 1)

10 if episode terminates at step t+1 then
11 Set y1 = rt and y2 = rt

12 else
13 Set y1 = rt + γQ1(st+1, argmaxa1t+1 Q1(st+1, a1t+1, ε; θ), ε−; θ−)

14 Set y2 = rt + γQ2(st+1, argmaxa2t+1 Q2(st+1, a2t+1, ε; θ), ε−; θ−)

15 end
16 Compute loss L(θ) = E[α1(y1 −Q1(st, a1t, ε; θ))2 + α2(y2 −Q2(st, a2t, ε; θ))2

17 +α3(Q1(st, a1t, ε; θ)−Q2(st, a2t, ε; θ))2]

18 Perform a gradient descent step with respect to parameters of the online network θ

19 if t mod NT = 0 then
20 Update parameters of the target network θ− ← θ

21 end

22 end

4. Experiments and Discussions

4.1. Experiments in Virtual Environments

We firstly evaluate our BND-DDQN model and compare its performance with a series of baseline
models using a simulated Pioneer 3-AT mobile robot in a variety of virtual environments created by
Gazebo [38]. As shown in Figure 3, the first environment is a 10× 10 world with relatively larger
obstacles whereas the second environment is a more realistic and complicated scenario. Besides,
the third environment is the office-like Willow Garage world in gazebo. Our BND-DDQN model is
compared with four baseline methods, including DQN, DDQN, Dueling DDQN, and Noisy Dueling
DDQN, in all the virtual environments. The input depth images fed into the networks are captured by
the depth sensor of a simulated Kinect, and the output control commands are sent to the robot via a
ROS message. Besides, the reward function is calculated based on the subscribed odometry message
during training.

Sensors 2018, 18, 3650 10 of 19

(a) Virtual Environment 1 (b) Virtual Environment 2 (c) Virtual Environment 3

Figure 3. Virtual environments created by Gazebo.

In the first scenario, all models are trained from scratch with Tensorflow [39] on a single NVIDIA
GeForce GTX 1080 Ti with a batch size of 64 and a discount factor γ of 0.99. Rather than decaying
the learning rate during training, we adopts a small fixed learning rate of 1e-5. For models achieving
exploration through the ε-greedy policy, the initial value of ε is set to 0.1 and eventually decayed
uniformly to 0.0001 after 200,000 iterations. In the second and third virtual environments, the models
are initialized via copying weights trained in the first environment. The training is terminated after
5e5 iterations in the first virtual scenario whereas is terminated after 5e4 steps in the other two
environments. In all experiments, the constant coefficients of the reward function, c1, c2 and c3, are
set to 2, 2, 0.1, respectively. In addition, the maximum number of steps is set to 500, which means
an episode is terminated without any punishment after 500 steps. Besides, the weights in the loss
function of our model, α1, α2 and α3, are set to 0.4, 0.4, 0.2, correspondingly. The linear velocity is
discretized to seven values, including 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 m/s, while the angular velocity
is discretized to π/4, π/6, π/12, 0, −π/12, −π/6, −π/4 rad/s. For each baseline model, either a
linear or an angular velocity command is picked at each time step, however, both a linear velocity and
an angular velocity are selected and executed simultaneously at every step when our BND-DDQN
model is employed. Moreover, the starting location in the first environment is the center of the world
while in the other two scenarios, the robot starts from a random collision-free location at the beginning
of each episode. In all scenarios, the starting orientation of the mobile robot is randomly sampled from
the uniform distribution between −π and π rad.

During training, the models are evaluated after every 5000 iterations by calculating the average
total reward of five episodes. The total reward of an episode is defined as the accumulation of
instantaneous rewards received at all steps within that episode, and the average total rewards received
by the five models in the first environment are illustrated in Figure 4. It can be observed that the
DQN algorithm leads to the lowest average reward at the end of training. The DDQN model
performs slightly better than the DQN, nevertheless, results in lower average rewards compared
to the Dueling DDQN algorithm. By introducing the noise variables for exploration enhancement, the
performance of Noisy Dueling DDQN model is distinctly improved both in terms of average reward
and convergence rate. However, the competence of the Noisy Dueling DDQN is inferior compared
with the proposed BND-DDQN model. In general, the BND-DDQN algorithm results in the most
outstanding performance throughout the evaluation. Through adopting the proposed branching noisy
dueling architecture, the BND-DDQN model further speed up the training process and converges in
much less number of iterations. In the meantime, our BND-DDQN algorithm also receives significantly
increased average rewards.

Sensors 2018, 18, 3650 11 of 19

0 1 2 3 4 5
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0
Av

era
ge

 Re
wa

rd

T r a i n i n g S t e p s (1 e 5)

 D Q N
 D D Q N
 D u e l i n g D D Q N
 N o i s y D u e l i n g D D Q N
 B N D - D D Q N

Figure 4. Average total rewards received by various models at different training steps in the first virtual
environment. Compared to baseline methods, the BND-DDQN model results in the highest average
reward as well as the fastest convergence speed.

The models are subsequently trained in the second and third environments with parameters
initialized via copying the values obtained in the previous stage. Similarly, the evaluation is conducted
every 5000 iterations and the average reward received by the five models at different training iterations
are demonstrated in Figure 5. Since the situations involved in these two environments are much more
challenging compared to those contained in the first scenario, there is a dramatic reduction in acquired
average reward. Specifically, in the second environment, the DQN, DDQN and Dueling DDQN
algorithms exhibit similar performance and end up with average total rewards of approximately 80.
The Noisy Dueling DDQN model reaches an average reward that is around 25 percent higher. It is
noteworthy that the proposed BND-DDQN model results in an average total reward of almost 200 at
the end of training, which is twice as high as that obtained by the Noisy Dueling DDQN algorithm.
Analogously, in the third scenario, our BND-DDQN model is consistently considerably superior
compared to the four baseline methods. The baseline algorithms result in similar average rewards
with the Dueling DDQN and Noisy Dueling DDQN models performing slightly better than the other
two algorithms. Therefore, the proposed BND-DDQN model outperforms the baseline algorithms
significantly and its superiority can be more pronounced in challenging scenarios.

In addition to average reward, a comparison is also carried out with respect to success rate.
An episode is regarded to be successful if it is terminated with no punishment. During this evaluation,
the maximum step of an episode is set to 500 in the first virtual environment whereas is reduced to 200
in the second and third scenarios considering their complexity. In each environment, the success rate
of a model is calculated based on the results of 50 episodes and the results are shown in Table 1.

Sensors 2018, 18, 3650 12 of 19

1 2 3 4 5
0

5 0

1 0 0

1 5 0

2 0 0

Av
era

ge
 Re

wa
rd

T r a i n i n g S t e p s (1 e 4)

 D Q N
 D D Q N
 D u e l i n g D D Q N
 N o i s y D u e l i n g D D Q N
 B N D - D D Q N

(a) Average rewards received by various
models in the second virtual environment

1 2 3 4 5

5 0

1 0 0

1 5 0

Av
era

ge
 Re

wa
rd

T r a i n i n g S t e p s (1 e 4)

 D Q N
 D D Q N
 D u e l i n g D D Q N
 N o i s y D u e l i n g D D Q N
 B N D - D D Q N

(b) Average rewards received by various
models in the third virtual environment

Figure 5. Average total rewards received by various models at different training steps in the second and
third virtual environments. The BND-DDQN model results in the highest average rewards compared
to baseline methods.

Table 1. Comparison between the proposed BND-DDQN model and four baseline algorithms with
respect to success rate in various virtual environments.

Scenario DQN DDQN Dueling Noisy Dueling BND-DDQNDDQN DDQN

Virtual Environment 1 84% 84% 88% 92% 100%
Virtual Environment 2 26% 30% 30% 46% 88%
Virtual Environment 3 34% 36% 42% 40% 62%

It is noticed that the BND-DDQN model yields the highest success rates in all three cases. In the
first environment, all models result in higher success rates due to the simplicity of encountered
situations. The lowest success rates are acquired by the DQN and DDQN algorithms while the
BND-DDQN model succeeds in all 50 episodes. The superiority of our model become more significant
in the second virtual environment. A success rate of 88 percent is obtained by the BND-DDQN
model while all the baseline methods result in success rates below 46 percent. Due to the competence
of the proposed branching noisy dueling architecture, our BND-DDQN model is capable of taking
more effective actions through outputting linear and angular velocity commands simultaneously
and, at the same time, can also be trained more efficiently. These features improves the response
capability as well as self-learning ability of the system and, hence, plays a vital role in performance
improvement, especially in complex changing environments. In the third environment, the success rate
of the BND-DDQN model is still much higher than those obtained by baseline algorithms, however, it
decreases to 62 percent. The less satisfactory performance of the BND-DDQN model can be caused
by several reasons. Firstly, the field of view of the sensor is relatively small and as a result, the depth
inputs are not informative enough to derive the desired steering commands in some situations,
especially in quite constrained places. More importantly, since merely four images from successive
steps are concatenated together as the input of the network at each time step, the sensing information
contained in the set of images can be insufficient to provide a reliable description of the surrounding
environment, and consequently leads to failures. The problem can be alleviated by modifying the
network architecture to take account of more past memories in an efficient way so that more knowledge
can be exploited when making decisions. Besides, the instantaneous reward signal as well as the
discretized commands can be redesigned to improve the performance of the system.

In order to illustrate the effectiveness of the proposed algorithm in a more intuitive way, six
examples of the velocity commands produced by the BND-DDQN model based on the estimated
Q-values are demonstrated in Figure 6. In each example, the orientation of the robot is indicated

Sensors 2018, 18, 3650 13 of 19

using a red triangle and the corresponding raw depth image acquired from the Kinect is displayed
in the bottom left corner. In the first case, a small angular velocity is selected to prevent the mobile
robot from colliding with the bookshelf. Since the distances from the robot to the obstacles are still
relatively large, the maximum linear velocity is executed. In the much more constrained space shown
in the second example, the linear velocity is reduced to only 0.2 m/s and the largest angular velocity is
chosen for effective collision avoidance while the robot is passing through a door. A similar scenario
is presented in the fifth example. However, since the situation is less imperative, the BND-DDQN
model selects a smaller angular velocity in this case. In the third example, the robot is controlled to
maintain a moderate linear velocity while execute the maximum angular velocity so as to pass through
the corridor. Finally, a positive angular velocity is sent to the robot to avoid a person in the fourth
scenario while a negative angular velocity command is selected to prevent the robot from bumping
into a table in the last scenario.

(a) Linear velocity: 0.7 m/s
Angular velocity: π/12 rad/s

(b) Linear velocity: 0.2 m/s
Angular velocity: π/4 rad/s

(c) Linear velocity: 0.6 m/s
Angular velocity: −π/4 rad/s

(d) Linear velocity: 0.4 m/s
Angular velocity: π/4 rad/s

(e) Linear velocity: 0.2 m/s
Angular velocity: π/6 rad/s

(f) Linear velocity: 0.7 m/s
Angular velocity: −π/4 rad/s

Figure 6. Sample velocity commands produced by the BND-DDQN model based on the estimated
Q-values in various scenarios. In each example, the orientation of the mobile robot is highlighted using
a red triangle and the raw depth image is shown in the bottom left corner correspondingly.

Last but not least, it is worth mentioning that the average time required by the BND-DDQN
model to derive a pair of control commands from the depth images is merely 0.005 s. Among the
baseline algorithms, the DQN and DDQN models, which result in the least computational time, take
about 0.002 s. Although the computational cost of our model is higher than the baseline algorithms
due to the increase in network complexity for performance improvement, it has already been efficient
enough for common mobile robots which typically receive commands at a frequency of tens of Hz for
real-time autonomous steering tasks.

Sensors 2018, 18, 3650 14 of 19

4.2. Experiments in Real-World Environments

A variety of real-world experiments are conducted as well to verify the proposed BND-DDQN
model. In all experiments, we obtain depth images from a Kinect and derive the control commands
directly from the depth inputs based on the Q-values estimated by the BND-DDQN model. The steering
commands are then sent to a Pioneer 3-AT mobile robot to execute. It is worth noting that the
BND-DDQN model trained in the virtual environments is directly transferred to the real-world
deployment without any fine-tuning of parameters, and it is proved that the our model is capable of
adapting well to real-world unseen scenarios by adopting depth images as the inputs to the network.

Firstly, our BND-DDQN model is evaluated in a cluttered office environment and six intermediate
steps are presented in Figure 7. For each step, the third-person view is provided on the right while
the corresponding depth image and first-person view are shown in the top and bottom left corners,
respectively. The robot is controlled to travel forward at the beginning to pass through the corridor
and larger angular velocities are then selected when the first turning point is detected. Similarly, the
robot continues to move forward after the first turning point is passed and starts to receive large
angular velocity commands again when the second turning point is identified. By following the
control commands provided by our BND-DDQN model, the mobile robot succeeds in achieving safe
autonomous steering in the cluttered environment, which demonstrates the effectiveness and high
transferability of the proposed algorithm.

(a) Beginning of steering (b) Before the first turning point (c) At the first turning point

(d) Before the second turning point (e) At the second turning point (f) After the second turning point

Figure 7. Intermediate steps of the first real-world experiment. In this experiment, the BND-DDQN
model is evaluated in a cluttered office environment. For each step, the third-person view is shown
on the right and the corresponding depth image and first-person view are displayed in the top and
bottom left corners, respectively.

In addition to the office environment, the BND-DDQN model is also evaluated in a number
of other unseen environments, including both indoor and outdoor scenarios. Three examples in
static environments are described in Figure 8. For each example, three steps are demonstrated and,
for each step, the third-person view is displayed on the right while the corresponding depth image
and first-person view are provided in the top and bottom left corners, respectively. As illustrated
in Figure 8a–c, the robot travels towards a tripod at the beginning of the first example. However,
after the tripod is perceived, the maneuver direction of the robot is changed by following the velocity
commands provided by the BND-DDQN model so that the robot is prevented from bumping into the
tripod. Similarly, the control commands derived from the learned policy enables the robot to change
its steering direction to avoid a wheelchair in the second example shown in Figure 8d–f, as well as a
railing in the third example illustrated in Figure 8g–i.

Sensors 2018, 18, 3650 15 of 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8. Examples in static environments. In each figure, the third-person view is shown on the right
while the corresponding depth image and first-person view are displayed in the top and bottom left
corners, respectively. (a–c) Illustrate the process to avoid colliding with a tripod. (d–f) Describe the
process to avoid bumping into a wheelchair. (g–i) Demonstrate the process to avoid running into
a railing.

Furthermore, our BND-DDQN model is verified in dynamic environments as well and three
examples are demonstrated in Figure 9. For each example, six intermediate steps are presented in
sequence, and for each step, the depth image and first-person view are displayed in the top and bottom
left corners, respectively, while the corresponding third-person view is presented on the right. In the
first example shown in Figure 9a–f, the robot is passing through two pillars at the beginning. However,
the learned policy guides the robot to turn left after the two walking persons are detected in the depth
images. In this way, the robot is able to continue the steering safely without bumping into the two
walking persons. Moreover, in the second example illustrated in Figure 9g–l, the robot is maneuvering
towards the stage at first and is subsequently commanded to turn right after a walking person is
detected on the left side of the depth image. However, since the detected person is moving from the
left side to the right side of the depth image, the robot is controlled to maneuver through the two
persons instead of turning to the right. At a later step, the robot is commanded to steer left to avoid
colliding with the second pedestrian. In addition, an example of controlling the robot to pass through
a crowd based on the learned policy is demonstrated in Figure 9g–l. In this example, the robot is
commanded to turn left or right based on the input depth images so as to avoid bumping into people
while moving forward.

Sensors 2018, 18, 3650 16 of 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 9. Examples in dynamic environments. For each example, six intermediate steps are
demonstrated in sequence. For each step, the third-person view is shown on the right and the
corresponding depth image and first-person view are displayed in the top and bottom left corners,
respectively. (a–f) Show the process to avoid collision with two walking persons. (g–l) Describe the
process to avoid a group of people separately. (m–r) Illustrate an example of traveling through a crowd.

Sensors 2018, 18, 3650 17 of 19

Besides the aforementioned experiments, more real-world examples can be found in our video at
https://youtu.be/yixnmFXIKf4. The experimental results demonstrate that our BND-DDQN model
which is trained in the virtual environments can be directly transferred to various real-world unseen
scenarios without any fine-tuning.

5. Conclusions

It is challenging for conventional methods to generalize well to unseen scenarios because they
are often built upon a set of assumptions and typically contain a number of parameters to be tuned
manually. Moreover, they are unable to learn the control policies automatically from past experiences.
In this paper, we propose an end-to-end deep neural network named BND-DDQN to derive control
commands directly from depth images through deep reinforcement learning. The proposed model
embeds a branching noisy dueling architecture and is capable of learning autonomous steering with
high efficiency. Firstly, we adopt convolutional neural networks to extract features from the depth
inputs. The feature representation is then mapped to two Q-value vectors separately through different
streams of noisy fully connected layers and aggregation layers. In this way, linear and angular velocity
commands can be determined and executed simultaneously to improve the response capability of the
system. Moreover, the training framework is also meticulously designed to improve the efficiency and
effectiveness of learning. It is worth noting that the proposed model trained in virtual environments
can adapt to real-world unseen scenarios readily without any fine-tuning due to the high visual fidelity
of simulated depth images.

The BND-DDQN model is evaluated and compared to a series of baseline methods in
various virtual environments and the experimental results illustrate the outstanding performance
of the proposed algorithm in terms of average reward, learning efficiency, success rate as well as
computational time. Furthermore, the proposed model is also evaluated in a variety of real-world
environments, including both indoor and outdoor scenarios. The experiments show that our
BND-DDQN model is competent to derive effective steering commands in both static and dynamic
environments, which demonstrates its high transferability as well as generalization capability. In the
future, the architecture of the network will be modified to exploit more knowledge extracted from the
past trajectory memories to achieve higher success rate in complex environments.

Author Contributions: Conceptualization, K.W.; Methodology, K.W.; Software, K.W.; Formal analysis, K.W.;
Investigation, K.W., and M.A.E.; Resources, H.W.; Writing—original draft preparation, K.W.; Writing—review and
editing, K.W., M.A.E., S.Y., and H.W.; Visualization, K.W.; Supervision, H.W.

Funding: This work is supported by NTU.

Acknowledgments: This work is supported by the ST Engineering-NTU Corporate Lab.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ingrand, F.; Ghallab, M. Deliberation for autonomous robots: A survey. Artif. Intell. 2017, 247, 10–44.
[CrossRef]

2. Pandey, A.; Pandey, S.; Parhi, D. Mobile robot navigation and obstacle avoidance techniques: A review.
Int. Robot. Autom. J. 2017, 2, 00022. [CrossRef]

3. Yan, Z.; Li, J.; Zhang, G.; Wu, Y. A Real-Time Reaction Obstacle Avoidance Algorithm for Autonomous
Underwater Vehicles in Unknown Environments. Sensors 2018, 18, 438. [CrossRef] [PubMed]

4. Sasongko, R.A.; Rawikara, S.; Tampubolon, H.J. UAV Obstacle Avoidance Algorithm Based on Ellipsoid
Geometry. J. Intell. Robot. Syst. 2017, 88, 567–581. [CrossRef]

5. Shim, Y.; Kim, G.W. Range Sensor-Based Efficient Obstacle Avoidance through Selective Decision-Making.
Sensors 2018, 18, 1030. [CrossRef] [PubMed]

6. Zhou, D.; Wang, Z.; Bandyopadhyay, S.; Schwager, M. Fast, on-line collision avoidance for dynamic vehicles
using buffered voronoi cells. IEEE Robot. Autom. Lett. 2017, 2, 1047–1054. [CrossRef]

7. Zhang, X.; Liniger, A.; Borrelli, F. Optimization-based collision avoidance. arXiv 2017, arXiv:1711.03449.

https://youtu.be/yixnmFXIKf4
http://dx.doi.org/10.1016/j.artint.2014.11.003
http://dx.doi.org/10.15406/iratj.2017.02.00023
http://dx.doi.org/10.3390/s18020438
http://www.ncbi.nlm.nih.gov/pubmed/29393915
http://dx.doi.org/10.1007/s10846-017-0543-4
http://dx.doi.org/10.3390/s18041030
http://www.ncbi.nlm.nih.gov/pubmed/29596378
http://dx.doi.org/10.1109/LRA.2017.2656241

Sensors 2018, 18, 3650 18 of 19

8. Al-Kaff, A.; García, F.; Martín, D.; De La Escalera, A.; Armingol, J.M. Obstacle detection and avoidance system
based on monocular camera and size expansion algorithm for UAVs. Sensors 2017, 17, 1061. [CrossRef]
[PubMed]

9. Zhang, W.; Wei, S.; Teng, Y.; Zhang, J.; Wang, X.; Yan, Z. Dynamic Obstacle Avoidance for Unmanned
Underwater Vehicles Based on an Improved Velocity Obstacle Method. Sensors 2017, 17, 2742. [CrossRef]
[PubMed]

10. Xie, L.; Wang, S.; Markham, A.; Trigoni, N. Towards monocular vision based obstacle avoidance through
deep reinforcement learning. arXiv 2017, arXiv:1706.09829.

11. Kahn, G.; Villaflor, A.; Ding, B.; Abbeel, P.; Levine, S. Self-Supervised Deep Reinforcement Learning with
Generalized Computation Graphs for Robot Navigation. arXiv 2017, arXiv:1709.10489.

12. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature
2015, 518, 529–533. [CrossRef] [PubMed]

13. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

14. Chen, X.; Ghadirzadeh, A.; Folkesson, J.; Jensfelt, P. Deep reinforcement learning to acquire navigation skills
for wheel-legged robots in complex environments. arXiv 2018, arXiv:1804.10500.

15. Yu, L.; Shao, X.; Wei, Y.; Zhou, K. Intelligent Land-Vehicle Model Transfer Trajectory Planning Method Based
on Deep Reinforcement Learning. Sensors 2018, 18, 2905.

16. Sadeghi, F.; Levine, S. CAD2RL: Real single-image flight without a single real image. arXiv 2016,
arXiv:1611.04201.

17. Long, P.; Fan, T.; Liao, X.; Liu, W.; Zhang, H.; Pan, J. Towards optimally decentralized multi-robot collision
avoidance via deep reinforcement learning. arXiv 2017, arXiv:1709.10082.

18. Bruce, J.; Sünderhauf, N.; Mirowski, P.; Hadsell, R.; Milford, M. One-shot reinforcement learning for robot
navigation with interactive replay. arXiv 2017, arXiv:1711.10137.

19. Pfeiffer, M.; Shukla, S.; Turchetta, M.; Cadena, C.; Krause, A.; Siegwart, R.; Nieto, J. Reinforced Imitation:
Sample Efficient Deep Reinforcement Learning for Map-less Navigation by Leveraging Prior Demonstrations.
arXiv 2018, arXiv:1805.07095.

20. Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots
for mapless navigation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 31–36.

21. Zhelo, O.; Zhang, J.; Tai, L.; Liu, M.; Burgard, W. Curiosity-driven Exploration for Mapless Navigation with
Deep Reinforcement Learning. arXiv 2018, arXiv:1804.00456.

22. Xie, L.; Wang, S.; Rosa, S.; Markham, A.; Trigoni, N. Learning with Training Wheels: Speeding up Training
with a Simple Controller for Deep Reinforcement Learning; Institute of Electrical and Electronics Engineers:
Piscataway, NJ, USA, 2018.

23. Zhu, Y.; Mottaghi, R.; Kolve, E.; Lim, J.J.; Gupta, A.; Fei-Fei, L.; Farhadi, A. Target-driven visual navigation in
indoor scenes using deep reinforcement learning. In Proceedings of the 2017 IEEE International Conference
on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3357–3364.

24. Lobos-Tsunekawa, K.; Leiva, F.; Ruiz-del Solar, J. Visual Navigation for Biped Humanoid Robots Using
Deep Reinforcement Learning. IEEE Robot. Autom. Lett. 2018, 3, 3247–3254. [CrossRef]

25. Tai, L.; Zhang, J.; Liu, M.; Burgard, W. Socially compliant navigation through raw depth inputs with
generative adversarial imitation learning. arXiv 2017, arXiv:1710.02543.

26. Tai, L.; Liu, M. Towards cognitive exploration through deep reinforcement learning for mobile robots. arXiv
2016, arXiv:1610.01733.

27. Zhang, J.; Springenberg, J.T.; Boedecker, J.; Burgard, W. Deep reinforcement learning with successor features
for navigation across similar environments. In Proceedings of the 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 2371–2378.

28. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper depth prediction with fully
convolutional residual networks. In Proceedings of the 2016 Fourth International Conference on 3D Vision
(3DV), Stanford, CA, USA, 25–28 October 2016; pp. 239–248.

29. Chen, Y.; Chen, R.; Liu, M.; Xiao, A.; Wu, D.; Zhao, S. Indoor Visual Positioning Aided by CNN-Based Image
Retrieval: Training-Free, 3D Modeling-Free. Sensors 2018, 18, 2692. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s17051061
http://www.ncbi.nlm.nih.gov/pubmed/28481277
http://dx.doi.org/10.3390/s17122742
http://www.ncbi.nlm.nih.gov/pubmed/29186878
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1109/LRA.2018.2851148
http://dx.doi.org/10.3390/s18082692
http://www.ncbi.nlm.nih.gov/pubmed/30115845

Sensors 2018, 18, 3650 19 of 19

30. Yang, S.; Konam, S.; Ma, C.; Rosenthal, S.; Veloso, M.; Scherer, S. Obstacle avoidance through deep networks
based intermediate perception. arXiv 2017, arXiv:1704.08759.

31. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari
with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.

32. Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard, A.J.; Banino, A.; Denil, M.; Goroshin, R.; Sifre, L.;
Kavukcuoglu, K.; et al. Learning to navigate in complex environments. arXiv 2016, arXiv:1611.03673.

33. Van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings
of the 2016 AAAI, Phoenix, AZ, USA, 12–17 February 2016; Volume 2, p. 5.

34. Wang, Z.; Schaul, T.; Hessel, M.; Van Hasselt, H.; Lanctot, M.; De Freitas, N. Dueling network architectures
for deep reinforcement learning. arXiv 2015, arXiv:1511.06581.

35. Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.;
Pietquin, O.; et al. Noisy networks for exploration. arXiv 2017, arXiv:1706.10295.

36. Tavakoli, A.; Pardo, F.; Kormushev, P. Action branching architectures for deep reinforcement learning. arXiv
2017, arXiv:1711.08946.

37. Kearns, M.; Mansour, Y.; Ng, A.Y. A sparse sampling algorithm for near-optimal planning in large Markov
decision processes. Mach. Learn. 2002, 49, 193–208. [CrossRef]

38. Koenig, N.P.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator.
In Proceedings of the IROS 2004, Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 2149–2154.

39. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.;
Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the OSDI 2016,
Savannah, GA, USA, 2–4 November 2016; Volume 16, pp. 265–283.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1017932429737
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Preliminaries
	Reinforcement Learning
	Deep Q-Learning

	Architecture and Implementation of BND-DDQN
	Problem Definition
	Network Architecture
	Training Framework

	Experiments and Discussions
	Experiments in Virtual Environments
	Experiments in Real-World Environments

	Conclusions
	References

