
sensors

Article

Iss2Image: A Novel Signal-Encoding Technique for
CNN-Based Human Activity Recognition

Taeho Hur 1, Jaehun Bang 1 , Thien Huynh-The 1 , Jongwon Lee 1, Jee-In Kim 2,*
and Sungyoung Lee 1,*

1 Department of Computer Science and Engineering, Kyung Hee University, (Global Campus), 1732,
Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Korea; hth@oslab.khu.ac.kr (T.H.);
jhb@oslab.khu.ac.kr (J.B.); thienht@oslab.khu.ac.kr (T.H.-T.); jwlee2oo@hanmail.net (J.L.)

2 Department of Smart ICT Convergence, Konkuk University, 120 Neungdong-ro, Gwangjin-gu,
Seoul 05029, Korea

* Correspondence: jnkm@konkuk.ac.kr (J.-I.K.); sylee@oslab.khu.ac.kr (S.L.);
Tel.: +82-2-450-3540 (J.-I.K.); +82-31-201-2514 (S.L.)

Received: 31 August 2018; Accepted: 12 November 2018; Published: 13 November 2018
����������
�������

Abstract: The most significant barrier to success in human activity recognition is extracting and
selecting the right features. In traditional methods, the features are chosen by humans, which requires
the user to have expert knowledge or to do a large amount of empirical study. Newly developed deep
learning technology can automatically extract and select features. Among the various deep learning
methods, convolutional neural networks (CNNs) have the advantages of local dependency and scale
invariance and are suitable for temporal data such as accelerometer (ACC) signals. In this paper,
we propose an efficient human activity recognition method, namely Iss2Image (Inertial sensor signal
to Image), a novel encoding technique for transforming an inertial sensor signal into an image with
minimum distortion and a CNN model for image-based activity classification. Iss2Image converts
real number values from the X, Y, and Z axes into three color channels to precisely infer correlations
among successive sensor signal values in three different dimensions. We experimentally evaluated
our method using several well-known datasets and our own dataset collected from a smartphone
and smartwatch. The proposed method shows higher accuracy than other state-of-the-art approaches
on the tested datasets.

Keywords: human activity recognition; convolutional neural network; encoder; signal transformation;
smartphone; smartwatch; accelerometer

1. Introduction

The purpose of human activity recognition (HAR) is to detect user behavior, such as locomotion,
postures, and gestures, to understand users’ habits and lifestyles and provide healthcare and wellness
services for health promotion. There are three different methods of HAR, video-based, wearable
sensor–based, and environmental sensor–based, and each method has its own pros and cons.

In wearable sensor–based methods, devices containing inertial sensor units, such as an
accelerometers (ACCs), gyroscopes and magnetometers, are attached to the body. Activities are then
classified into types, with each activity type showing a different pattern of sensor values. To classify
an activity, the features that can best represent it must be extracted from the collected sensory data.
Selecting and extracting the most meaningful features are the most significant problems for achieving
accurate HAR [1]. Traditionally, the features are chosen by humans, called hand-crafted features,
and include time-domain features such as mean and standard deviation and frequency-domain
features such as those found using the fast Fourier transform (FFT) [2]. To find the most efficient

Sensors 2018, 18, 3910; doi:10.3390/s18113910 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3675-2258
https://orcid.org/0000-0002-9172-2935
http://dx.doi.org/10.3390/s18113910
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3910?type=check_update&version=2

Sensors 2018, 18, 3910 2 of 19

and effective features, (1) the programmers must have prior expert knowledge, or (2) they must do
a large amount of empirical study to learn which features are useful [3]. Deep learning technology
has now been developed and can be used for HAR [4]. The most prominent advantage of using
deep learning is that it can automatically extract both low- and high-level features and select them
without user manipulation. In terms of sensor signals, low-level features include statistical features
and frequency-domain features, whereas high-level features are semantic [5]. Likewise, for images,
low-level features are external representations of objects such as line or color, and high-level features are
semantic [6]. In both cases, high-level features are understandable to humans. In the domain of HAR,
low-level features can be signal lines, inflection points, min/max values, or variations, and high-level
features are patterns in the signals.

Many researchers have used deep learning techniques for HAR, such as a convolutional neural
network (CNN) [7], an autoencoder [8], a restricted Boltzmann machine [9], a recurrent neural network
(RNN) [10], and a hybrid method [11]. Among those options, the CNN shows good performance in
natural language processing, image recognition, and speech recognition [12]. CNNs are now widely
used in inertial-sensor-based HAR and have two advantages over other techniques: local dependency
and scale invariance [13]. Local dependency can show the correlation of successive values, and inertial
data contain mainly temporal values. Scale invariance means that the intrinsic property is maintained,
regardless of scale variability. For example, if a person walks for thirty minutes, their pace will vary
over time without changing their activity, i.e., they are walking for the entire duration. Research
using CNN for HAR usually is of two types, configuring the input data and configuring the CNN
architecture [14]. Configuring the data involves changing the input inertial data into various different
forms. For example, an ACC signal can be transformed into a raw plot image, with the X, Y, and Z axis
signals projected into red, green, and blue channels, respectively, or they can be transformed into an
image which shows frequency features such as spectrogram. Configuring the CNN architecture means
to include new kind of layers or insert different layers from other deep learning techniques which
does not belong to general CNN layers, such as other kinds of normalization or classification layers.
From this perspective, our hypothesis is that transforming an inertial sensor signal into images with
large dimensions will allow a CNN to infer many correlations among dimensions, allowing it to extract
detailed features and rich information from the original signal.

In this paper, we use a data configuration method to propose an efficient HAR method, called
Iss2Image. Iss2Image is a novel encoding technique for transforming an inertial sensor signal into
an image-type data form because our CNN model uses image-based classification. The Iss2Image
technique converts the real number values from the X, Y, and Z axes into three color channels to
precisely infer correlations among successive sensor signal values in three different dimensions.
Our method divides the sensor signal into three parts: the integer, the first two decimal places,
and the following two decimal places. This technique minimizes data distortion without requiring any
processes beyond dividing and extending the original signal. Other signal transformation methods,
such as raw plot signal or spectrogram, are just drawing the signal in time series or the spectrogram
of signal, and export to an image. These are not really an encoder where the signal value is not
mapped/transformed to RGB pixel value. Besides, these methods depends on the resolution of the
exported image. If the resolution is low, the signal is drawn dimly, not clear enough to see the signal,
resulting downgrade of the accuracy. For our experiments, we used three well-known public datasets,
compared with three pre-trained CNNs, and other traditional methods. In addition, we collected
our own dataset using a smartphone and smartwatch, which are easily obtained and widely used.
Many researchers are now adapting deep learning techniques for use with mobile device data [15–19],
but previous works have focused on only a single device. We have experimentally compared the
different datasets, different signal transformation methods, and different traditional methods with our
method. The contributions of this paper are:

(1) A novel encoding technique for transforming an ACC signal into an image-type data form to
precisely infer correlations among successive ACC signal values in three different dimensions.

Sensors 2018, 18, 3910 3 of 19

(2) A fast and lightweight CNN-based activity recognition model for mobile platform.

The remainder of this paper is structured as follows: Section 2 describes related works for deep
learning–based HAR; Section 3 describes our proposed methodology; Section 4 describes and discusses
our experiments, and we present our final conclusions in Section 5.

2. Related Works

Many works have used deep neural networks with inertial sensor data for HAR. These works
can be categorized as changing the form of sensory data, configuring the architecture, and comparing
different features or classification methods.

Changing the form of sensory data is essential to achieving inertial sensor–based activity
recognition using a CNN, which requires its input to be in image form. Garcia-Ceja et al. [20]
has changed the sensor signal into recurrence plots, a distance matrices that capture temporal
patterns in the signal, and classified with CNNs. Zhang et al. [21] used linear interpolation to get
values of a sequence in specific proportional position to form new feature vectors to have a fixed
dimensionality. And then they formed an image called data-band, a narrow matrix with a small
row number and a large column number, which could grasp the position invariant. Jiang et al. [22]
changed sensory data into image form by stacking the data row-by-row. Then, they applied a 2D
discrete Fourier transform (2D DFT) and chose its magnitude as the activity image. They also applied
a bi-class support vector machine (SVM) classifier to sort uncertain categories after CNN classification.
Dehzangi et al. [23] used smoothed Wigner-Ville distribution (SWVD) as an input with early and
late fusion after and before CNN to improve the performance based on multiple sensor devices.
Alsheikh et al. [24] and Ravi et al. [25] changed ACC signals into spectrograms, a three-dimensional
representation of changes in the acceleration energy content of a signal as a function of frequency
and time. Aforementioned four papers commonly use time-frequency representation for image. 2D
DFT represents the sensor signal in discrete plane image. Because it does not contain temporal
information, it is unsuitable to show the continuity of the activity. Both SWVD and spectrogram are
bilinear representations, where spectrogram is represented after squared Short-Time Fourier Transform
and SWVD is represented applying 2D low-pass filter on WVD to remove cross-term affection [26].
While spectrogram has lower complexity with faster computation time than SWVD, it has lower
resolution. These works transformed sensory data into images, but the original values could be
distorted by the additional computations they required.

Numerous methods can be used to change the general CNN architecture to increase its
performance. Ha et al. [27] did not changed the general CNN architecture, but used 2D kernels
in both the convolutional and pooling layers to capture local dependencies over time and spatial
dependencies across sensors. Yang et al. [28] placed a unification layer between the convolutional and
fully connected layers, which unified the feature map output. Instead of simply concatenating the
feature maps, they were trying to achieve parametric concatenation. Baldominos et al. [29] applied
neuroevolution, which changes the CNN topology for better accuracy. Ordóñez et al. [30] used a
hybrid model, combining a CNN and long short term memory (LSTM). Cho et al. [31] proposed a
divide-and-conquer-based method using two stage learning. They first classified the activity based
on static and dynamic characteristics and then classified the detailed activity. Using such two-stage
learning sharpens the data. Those works showed better results than using the general CNN architecture,
but they also increased the computational complexity. Because those authors do not describe how
they transformed the raw sensory data into an image, we cannot judge whether those methods always
show better results than using a general CNN or another signal transformation method.

To find the best performance when deep learning techniques are used for sensor-based HAR,
comparison studies have been conducted with different criteria. Hammerla et al. [32] compared deep
feed forward networks, CNNs, and RNNs. Murad et al. [33] compared unidirectional, bidirectional,
and cascaded architectures using an LSTM-based RNN that could capture long-range dependencies
in variable-length input sequences. Saez et al. [34] compared classification methods, such as

Sensors 2018, 18, 3910 4 of 19

distance-based, statistical, kernel, decision tree, ensemble, and deep learning methods. Li et al. [35]
compared feature learning from different methods: hand-crafted, multi-layer-perceptron (MLP), CNN,
LSTM, hybrid CNN and LSTM models, an autoencoder, and codebook feature-learning approaches.
Among those options, the hybrid model showed the best accuracy. To achieve minimum computational
complexity with the highest performance, we transform the sensory data in an image form and design
fast and lightweight CNN-based activity recognition model to process it.

3. HAR Using a CNN with a Transformed Inertial Sensor Signal

In this section, we explain our proposed method for transforming the inertial sensor signal using
an encoding process and our CNN-based activity recognition learning procedure. First, we collected
inertial raw sensory signals from a smartphone and smartwatch. The data from two different
devices are synchronized to match each other and then segmented into 150 samples per 3 s
window. Then, we transformed those data into color images using our proposed encoding method.
The transformed signals were used as training input for a CNN, and then generated a CNN-based
activity recognition model. Through this model, inertial raw sensory signal collected from a
smartphone and smartwatch are input directly for classification, which produces the final activity label.
Figure 1 shows the overall workflow.

Sensors 2018, 18, x 4 of 19

hybrid CNN and LSTM models, an autoencoder, and codebook feature-learning approaches. Among
those options, the hybrid model showed the best accuracy. To achieve minimum computational
complexity with the highest performance, we transform the sensory data in an image form and design
fast and lightweight CNN-based activity recognition model to process it.

3. HAR Using a CNN with a Transformed Inertial Sensor Signal

In this section, we explain our proposed method for transforming the inertial sensor signal using
an encoding process and our CNN-based activity recognition learning procedure. First, we collected
inertial raw sensory signals from a smartphone and smartwatch. The data from two different devices
are synchronized to match each other and then segmented into 150 samples per 3 s window. Then,
we transformed those data into color images using our proposed encoding method. The transformed
signals were used as training input for a CNN, and then generated a CNN-based activity recognition
model. Through this model, inertial raw sensory signal collected from a smartphone and smartwatch
are input directly for classification, which produces the final activity label. Figure 1 shows the overall
workflow.

Figure 1. The workflow of our proposed method for human activity recognition; the main
contributions are the data encoder and CNN model.

3.1. Encoding the Inertial Sensor Signal

In this subsection, we will show the method using the ACC signal for example. The input to
CNNs must be in an image form, a gray-scale or color image, with the pixel values represented as
integers from 0 to 255. However, an ACC signal value is a real number containing both integers and
decimal places, so it cannot be directly input into a CNN. Therefore, we here propose a novel encoder
to efficiently transform raw ACC signal data into image data. We divide each ACC signal value (a
real number) into three parts: the integer, the first two decimal places, and the next two decimal
places. The three parts are separated and represented using decimal digits that correspond to the
three color channels (red, green, and blue) of a color image. In that way, our proposed technique
extends the dimensions of the original 1D ACC signal data into 3D image-type data. Every ACC
signal value is modified, with the output represented as integers. For example, if one second of an
ACC signal contains 150 values (50 X signal values, 50 Y signal values, and 50 Z signal values), each
second of the encoded ACC signal contains a total of 450 integer values. If there are fewer than four
decimal places, the missing places are set to zero. On the contrary, the ACC signal value will be
rounded up to four decimal places.

Compared with the existing encoder, which uses only the integer to convert the ACC signal into
a gray-scale image, our proposed technique more efficiently and precisely transforms the signal,
minimizing distortion in the new image. Additionally, our transformation produces more detailed
correlations among successive ACC signals than the earlier methods, not only among X, Y, and Z
data, but also between their integers and decimal places. Given that one activity sample D, includes
N samples of [x y z]:

Figure 1. The workflow of our proposed method for human activity recognition; the main contributions
are the data encoder and CNN model.

3.1. Encoding the Inertial Sensor Signal

In this subsection, we will show the method using the ACC signal for example. The input to
CNNs must be in an image form, a gray-scale or color image, with the pixel values represented as
integers from 0 to 255. However, an ACC signal value is a real number containing both integers and
decimal places, so it cannot be directly input into a CNN. Therefore, we here propose a novel encoder
to efficiently transform raw ACC signal data into image data. We divide each ACC signal value (a real
number) into three parts: the integer, the first two decimal places, and the next two decimal places.
The three parts are separated and represented using decimal digits that correspond to the three color
channels (red, green, and blue) of a color image. In that way, our proposed technique extends the
dimensions of the original 1D ACC signal data into 3D image-type data. Every ACC signal value
is modified, with the output represented as integers. For example, if one second of an ACC signal
contains 150 values (50 X signal values, 50 Y signal values, and 50 Z signal values), each second of the
encoded ACC signal contains a total of 450 integer values. If there are fewer than four decimal places,
the missing places are set to zero. On the contrary, the ACC signal value will be rounded up to four
decimal places.

Compared with the existing encoder, which uses only the integer to convert the ACC signal
into a gray-scale image, our proposed technique more efficiently and precisely transforms the signal,
minimizing distortion in the new image. Additionally, our transformation produces more detailed

Sensors 2018, 18, 3910 5 of 19

correlations among successive ACC signals than the earlier methods, not only among X, Y, and Z
data, but also between their integers and decimal places. Given that one activity sample D, includes N
samples of [x y z]:

D =

 x1 y1 z1
...

...
...

xN yN zN

The proposed encoding technique requires three steps:

• Step 1: Normalize all ACC signals and scales to 255, converting as follows:

x = x−min(X)
max(X)−min(X)

× 255

y = y−min(Y)
max(Y)−min(Y) × 255

z = z−min(Z)
max(Z)−min(Z) × 255

(1)

• Step 2: Convert the normalized ACC signal values into three integers that correspond to pixel
values in the red, green, and blue channels of a color image, wherein each ACC signal value is
treated as a pixel. For each sample of [x y z], three pixels are produced by our encoding technique:

Rx = bxc
Gx = b(x− bxc)× 102c

Bx = b
(

x× 102 − bx× 102c
)
× 102c

(2)

• Step 3: Generate and write a color image I = [R G B] from a three-second ACC signal, including
three color channels:

R =

Rx1 Ry1

Rz1
...

...
...

RxN RyN
RzN

G =

Gx1 Gy1

Gz1
...

...
...

GxN GyN
GzN

B =

Bx1 By1

Bz1
...

...
...

BxN ByN
BzN

(3)

The Algorithm 1 shows the process of ACC signal encoding:

Algorithm 1. ACC signal encoding

Sensors 2018, 18, x 5 of 19

ܦ = ݔଵ ଵݕ ⋮ଵݖ ⋮ ேݔ⋮ ேݕ ே൩ݖ

The proposed encoding technique requires three steps:

• Step 1: Normalize all ACC signals and scales to 255, converting as follows: ̅ݔ = ݔ − ݉݅݊ሺܺሻ݉ܽݔሺܺሻ −݉݅݊ሺܺሻ × തݕ 255 = ݕ −݉݅݊ሺܻሻ݉ܽݔሺܻሻ −݉݅݊ሺܻሻ × ̅ݖ 255 = ݖ − ݉݅݊ሺܼሻ݉ܽݔሺܼሻ − ݉݅݊ሺܼሻ × 255

(1)

• Step 2: Convert the normalized ACC signal values into three integers that correspond to pixel
values in the red, green, and blue channels of a color image, wherein each ACC signal value is
treated as a pixel. For each sample of [x y z], three pixels are produced by our encoding
technique: ܴ௫̅ = ௫̅ܩ ⌊ݔ̅⌋ = ⌊ሺ̅ݔ − ሻ⌊ݔ̅⌋ × 10ଶ⌋ ܤ௫̅ = ⌊ሺ̅ݔ × 10ଶ − ݔ̅⌋ × 10ଶ⌋ሻ × 10ଶ⌋ (2)

• Step 3: Generate and write a color image I = [R G B] from a three-second ACC signal, including
three color channels: ܴ = ܴ௫̅భ ܴ௬തభ ܴ௭̅భ⋮ ⋮ ⋮ܴ௫̅ಿ ܴ௬തಿ ܴ௭̅ಿ

ܩ = ܩ௫̅భ ௬തభܩ ⋮௭̅భܩ ⋮ ௫̅ಿܩ⋮ ௬തಿܩ ௭̅ಿܩ
ܤ = ܤ௫̅భ ௬തభܤ ⋮௭̅భܤ ⋮ ௫̅ಿܤ⋮ ௬തಿܤ ௭̅ಿܤ

(3)

The Algorithm 1 shows the process of ACC signal encoding:

Algorithm 1. ACC signal encoding
Input: D—The activity sample containing ACC signal values of [x y z]
 T—Total number of [x y z] samples

Output: I—Color image after encoding

for i = 1 to T do

N = normalize(D); (1)
G = converttoGrayScale(D);
R = getInteger(G);
G = getFirstTwoDecimalPlaces(G); (2)
B = getNextTwoDecimalPlaces(G);
I = maptoImage(R,G,B); (3)

end

Figure 2 shows an example of the ACC signal encoding procedure. Suppose a three-second set
of ACC signals is input in which the first x, y, and z values are ݔଵ	= 12.3456, ݕଵ	 = 21.2356, and ݖଵ	 =
5.9845. Those data are normalized first and then multiplied by 255 for gray-scale conversion, which
changes the values to ݔଵ		= 158.9812, ݕଵ		= 181.6508, and ݖଵ		= 112.2935. Then, each axis value is
mapped onto three integer values for the three corresponding color channels. For example, ݔଵ will be
mapped as ܴ௫భ = 158, ܩ௫భ = 98, and ܤ௫భ = 12, ݕଵ into ܴ௬భ = 181, ܩ௬భ = 65, and ܤ௬భ = 08, and ݖଵ into ܴ௭భ =
 = 95. Each of these values is treated as a pixel, and thus together they form a	௭భܤ ௭భ = 23, andܩ ,112
color image.

Sensors 2018, 18, 3910 6 of 19

Figure 2 shows an example of the ACC signal encoding procedure. Suppose a three-second set of
ACC signals is input in which the first x, y, and z values are x1 = 12.3456, y1 = 21.2356, and z1 = 5.9845.
Those data are normalized first and then multiplied by 255 for gray-scale conversion, which changes
the values to x1 = 158.9812, y1 = 181.6508, and z1 = 112.2935. Then, each axis value is mapped onto
three integer values for the three corresponding color channels. For example, x1 will be mapped as Rx1

= 158, Gx1 = 98, and Bx1 = 12, y1 into Ry1 = 181, Gy1 = 65, and By1 = 08, and z1 into Rz1 = 112, Gz1 = 23,
and Bz1 = 95. Each of these values is treated as a pixel, and thus together they form a color image.Sensors 2018, 18, x 6 of 19

Figure 2. An example of encoding an ACC signal into an image.

The output of our proposed signal encoder is a color image. The size of the output color image
varies based on the number of samples N in an activity sample D, the number of devices
(smartphones and smartwatches), and number of sensors used for activity recognition. For example,
an activity sample observed for three seconds using one smartphone and one smartwatch only
collecting ACC signals has 150 [x y z] samples at a sampling rate of 50 Hz/s. The output color image
is thus produced with a resolution of 150 × 6, where 150 is the number of samples and 6 is the x, y,
and z components from the smartphone and smartwatch. The sampling rate parameter of all devices
at the collection time must be the same for synchronization.

3.2. CNN-Based Human Activity Learning

In this section, we contribute a CNN model for the deep learning HAR classification task after
the input of an image. Each activity sample D is represented as an activity image I after applying our
proposed encoding technique. In our method, the inertial sensor signal based HAR task becomes an
activity image classification task using the deep learning technique. Therefore, the CNN model
presented in this paper is generally designed to be suitable for image recognition. In particular, our
CNN model, namely UCNet6, includes six convolutional layers in addition to the batch
normalization layers, rectified linear unit (ReLU) layers, max pooling layers, fully connected layer,
and softmax layer. The architecture of our CNN model is shown in Figure 3 and summarized in detail
in Table 1.

In UCNet6, the six 2-D convolutional layers have a square filter size of 3, stride (or step size for
traversing input) size of 1, and padding size of 1. After each convolutional layer, a batch
normalization layer normalizes each input channel across a mini-batch, and a ReLU layer has as an
activation function. There are three blocks of convolutional operation, and each block includes two
modules of {2Dconvolutional, batch-normalization, and ReLU}. The two modules differ in the
number of filters defined inside a convolutional layer: the first module has 64 filters, and the second
module has 128 filters. Between the convolutional blocks is a max pooling layer to perform down-
sampling by dividing the input into rectangular pooling regions. All the max pooling layers in our
network are configured with a square pooling region size of 2, stride size of 2, and padding size of 0.

Figure 2. An example of encoding an ACC signal into an image.

The output of our proposed signal encoder is a color image. The size of the output color image
varies based on the number of samples N in an activity sample D, the number of devices (smartphones
and smartwatches), and number of sensors used for activity recognition. For example, an activity
sample observed for three seconds using one smartphone and one smartwatch only collecting ACC
signals has 150 [x y z] samples at a sampling rate of 50 Hz/s. The output color image is thus produced
with a resolution of 150 × 6, where 150 is the number of samples and 6 is the x, y, and z components
from the smartphone and smartwatch. The sampling rate parameter of all devices at the collection
time must be the same for synchronization.

3.2. CNN-Based Human Activity Learning

In this section, we contribute a CNN model for the deep learning HAR classification task
after the input of an image. Each activity sample D is represented as an activity image I after
applying our proposed encoding technique. In our method, the inertial sensor signal based HAR
task becomes an activity image classification task using the deep learning technique. Therefore,
the CNN model presented in this paper is generally designed to be suitable for image recognition.
In particular, our CNN model, namely UCNet6, includes six convolutional layers in addition to the
batch normalization layers, rectified linear unit (ReLU) layers, max pooling layers, fully connected
layer, and softmax layer. The architecture of our CNN model is shown in Figure 3 and summarized in
detail in Table 1.

Sensors 2018, 18, 3910 7 of 19

Sensors 2018, 18, x 7 of 19

At the end of the network, we summarize with a fully connected layer and softmax function
layer to classify an object with probabilistic values between 0 and 1. The fully connected layer for the
classification task is defined with an output size equal to the number of classes, i.e., the number of
activities in this research. At the bottom of the network, the classification layer holds the name of the
loss function, particularly the cross entropy function that is used for training the network for multi-
class classification. A convolutional network thus has two parts: feature learning (convolutional
layer, batch normalization layer, ReLU layer, and pooling layer) and classification (fully connected
layer and softmax layer).

Figure 3. The architecture of UCNet6 for image-based activity recognition.

Table 1. The detailed CNN architecture of UCNet6.

Layer No. of Filters Size of Filer/Pooling Size of Stride Size of Padding
conv1 64 3 1 1
conv2 128 3 1 1

maxpool1 - 2 2 0
conv3 64 3 1 1
conv4 128 3 1 1

maxpool2 - 2 2 0
conv5 64 3 1 1
conv6 128 3 1 1

The input layer is defined by the input image size, i.e., the resolution of the color image, where
the image resolution depends on the activity observation duration (seconds), the sampling rate
parameter (Hz or samples/second), and the number of devices. As explained in the previous
subsection, the resolution of the output images created by the encoder is 150 × 6; therefore, the input
size of the image input layer is set to 150 × 6.

4. Experiments and Discussion

This section benchmarks our proposed activity recognition method on our own collected
dataset, UC-HAR, and three public datasets commonly used in this research field, MobiAct [36],
DaLiAc [37], and UCI-HAR [38]. The proposed method is also compared with other state-of-the-art
approaches in terms of recognition accuracy and processing speed.

Figure 3. The architecture of UCNet6 for image-based activity recognition.

Table 1. The detailed CNN architecture of UCNet6.

Layer No. of Filters Size of Filer/Pooling Size of Stride Size of Padding

conv1 64 3 1 1
conv2 128 3 1 1

maxpool1 - 2 2 0
conv3 64 3 1 1
conv4 128 3 1 1

maxpool2 - 2 2 0
conv5 64 3 1 1
conv6 128 3 1 1

In UCNet6, the six 2-D convolutional layers have a square filter size of 3, stride (or step size for
traversing input) size of 1, and padding size of 1. After each convolutional layer, a batch normalization
layer normalizes each input channel across a mini-batch, and a ReLU layer has as an activation
function. There are three blocks of convolutional operation, and each block includes two modules
of {2Dconvolutional, batch-normalization, and ReLU}. The two modules differ in the number of
filters defined inside a convolutional layer: the first module has 64 filters, and the second module has
128 filters. Between the convolutional blocks is a max pooling layer to perform down-sampling by
dividing the input into rectangular pooling regions. All the max pooling layers in our network are
configured with a square pooling region size of 2, stride size of 2, and padding size of 0.

At the end of the network, we summarize with a fully connected layer and softmax function
layer to classify an object with probabilistic values between 0 and 1. The fully connected layer for
the classification task is defined with an output size equal to the number of classes, i.e., the number
of activities in this research. At the bottom of the network, the classification layer holds the name
of the loss function, particularly the cross entropy function that is used for training the network for
multi-class classification. A convolutional network thus has two parts: feature learning (convolutional

Sensors 2018, 18, 3910 8 of 19

layer, batch normalization layer, ReLU layer, and pooling layer) and classification (fully connected
layer and softmax layer).

The input layer is defined by the input image size, i.e., the resolution of the color image, where the
image resolution depends on the activity observation duration (seconds), the sampling rate parameter
(Hz or samples/second), and the number of devices. As explained in the previous subsection,
the resolution of the output images created by the encoder is 150 × 6; therefore, the input size
of the image input layer is set to 150 × 6.

4. Experiments and Discussion

This section benchmarks our proposed activity recognition method on our own collected dataset,
UC-HAR, and three public datasets commonly used in this research field, MobiAct [36], DaLiAc [37],
and UCI-HAR [38]. The proposed method is also compared with other state-of-the-art approaches in
terms of recognition accuracy and processing speed.

4.1. Dataset

We used the following datasets:

• MobiAct: This dataset is from a single smartphone (Samsung Galaxy S3) positioned in the
trouser pocket to collect data from an accelerometer, gyroscope, and orientation sensor at a
100 Hz sampling rate without considering orientation. Fifty four (54) subjects participated in data
collection: 42 men and 15 women from 20 to 47 years old, of 160–189 cm height and 50–120 kg
weight. Nine kinds of daily activities were performed: standing, walking, jogging, jumping, stairs
up, stairs down, sit chair, car step in, and car step out.

• DaLiAc: This dataset is from four shimmer sensors attached to the left ankle, right hip, chest,
and right wrist of participants to collect accelerometer and gyroscope data at a 200 Hz sampling
rate. Data collection used 19 subjects—eight female and 11 male—26 ± 8 years old; their
height was 177 ± 11 cm, and their weight was 75.2 ± 14.2 kg. Thirteen daily activities were
performed: postures (sitting, lying, standing), household activities (washing dishes, vacuuming,
sweeping), walking (normal walking, running, climbing stairs) and sports (bicycling at two
speeds, rope jumping).

• UCI-HAR: This dataset is from a single smartphone (Samsung Galaxy S2) positioned on the user’s
waist to collect accelerometer and gyroscope data at a 50 Hz sampling rate. Thirty subjects aged
19 to 48 years participated in data collection for six daily activities: walking, walking upstairs,
walking downstairs, sitting, standing, and lying.

• UC-HAR: This dataset is from a smartphone (Samsung Galaxy S5) and a smartwatch (LG G
Watch R) to collect accelerometer data at a 100 Hz sampling rate. The smartphone was positioned
in the trousers pocket, and the smartwatch was positioned on the right wrist because all 28 male
subjects who participated in the data collection were right handed; the subjects ranged in age
from 20 to 30, in height from 163 cm to 185 cm, and in weight from 58 kg to 92 kg. None of the
subjects had any kind of physical or mental disorder. Eight daily activities were collected: eating,
lying, running, sitting, standing, stretching, sweeping, and walking. Each subject performed each
activity for one minute. Thus, eight minutes of activity data were collected from each person.

Table 2 shows the activity list of all of the datasets and the abbreviations used in the confusion
matrix of the experimental results.

Sensors 2018, 18, 3910 9 of 19

Table 2. Activity list for all the datasets and their abbreviations.

MobiAct DaLiAc UCI-HAR UC-HAR

Standing (STD) Sitting (SI) Walking Eating (Eat)
Walking (WAK) Lying (LY) Upstairs Lying (Lie)
Jogging (JOG) Standing (ST) Downstairs Running (Run)

Jumping (JUM) Washing dishes (WD) Standing Sitting (Sit)
Stairs up (STU) Vacuuming (VC) Sitting Standing (Std)

Stairs down (STN) Sweeping (SW) Lying Stretching (Str)
Stand to sit (SCH) Walking (WK) Sweeping (Swp)
Car step in (CSI) Ascending stairs (AS) Walking (Wlk)

Car step out (CSO) Descending stairs (DS)
Running (RU)

Bicycling on ergometer 50 W (BC50)
Bicycling on ergometer 100 W (BC100)

Rope jumping (RJ)

4.2. Experimental Setup

We evaluated our proposed method with all of the datasets using fixed-width sliding windows of
3 s and an overlapping size of 1 s as the default configuration. As explained in the previous section,
the resolution of the output image generated by the Iss2Image technique depends on the window size,
the sampling rate, the number of devices, and the number of sensors. For example, with the UCI-HAR
dataset, the image resolution is 150 × 6, where 150 represents the number of samples collected in 3 s at
a sampling rate of 50 Hz, and 6 represents 3-axial linear accelerations and 3-axial angular velocities
from the accelerometer and gyroscope. Based on the resolution of the input image, the size of the input
layer in UCNet6 is also modified adaptively for each particular dataset. Additionally, we trained the
convolutional network in 45 epochs using the stochastic gradient descent with momentum optimizer,
a mini-batch size of 128, and initial learning rate of 0.1 with a 10-times downgrade after 15 epochs.
We conducted the three following experiments using Matlab 2018b on a PC with a core i5 4.5 GHz CPU
(Intel, Santa Clara, CA, USA), 16 Gb of memory, and a single GTX 1080ti GPU (Nvidia, Santa Clara,
CA, USA):

• The first experiment evaluated the proposed method on human activity recognition using the
various datasets.

• The second experiment compared our Iss2Image encoding technique with other transformation
approaches that convert inertial sensor data to image-type data.

• The third experiment compared the performance of our UCNet6 model with other
pre-trained models

• The last experiment compared the performance of our Iss2Image method and UCNet6 with
existing methods in terms of recognition accuracy and processing speed.

• Image creation time among different sensor signal transformation methods inference time among
different CNN models are also benchmarked.

4.3. Experimental Results and Discussion

In the first experiment, we evaluated our proposed method on the MobiAct, DaLiAc, UCI-HAR,
and UC-HAR datasets. The recognition results are presented as confusion matrices in Figure 4 and
summarized as average recognition accuracy in Table 3. With the MobiAct dataset, our method
yields 100% recognition accuracy on the test set. The three remaining datasets are more challenging,
but the overall accuracy is still impressive, with 98.9%, 97.11%, and 98.02% accuracy on the DaLiAc,
UCI-HAR, and UC-HAR datasets, respectively. With the DaLiAc dataset, our method misrecognized
some activities in the same group, for example, vacuuming with sweeping in HOUSE and bicycling
50 W with bicycling 100 W, because of the similarity of those activities in a realistic environment and
the inhomogeneity of the actors.

Sensors 2018, 18, 3910 10 of 19

Sensors 2018, 18, x 10 of 19

with bicycling 100 W, because of the similarity of those activities in a realistic environment and the
inhomogeneity of the actors.

The activities in the REST (sitting, lying, and standing) and WALK (walking, running, and
ascending/descending stairs) groups are proficiently recognized with very high accuracy. In the UCI-
HAR dataset, our method was confused between walking and downstairs and upstairs and
downstairs, but sitting and lying were precisely recognized. This result is explained by the position
of the smartphone during data collection for that dataset; all volunteers wore the smartphone on the
waist. In our dataset, standing and stretching were confused because the time between the two
consecutive stretching actions was considered as a standing activity. Furthermore, sweeping was
sometimes detected as stretching because of the position of the smartwatch.

(a)

(b)

(c)

(d)

Figure 4. The confusion matrices of the recognition results of our proposed Iss2Image and UCNet6

method on the different datasets: (a) MobiAct, (b) DaLiAc, (c) UCI-HAR, and (d) UC-HAR.

Table 3. Average recognition accuracy of our proposed method on the different datasets.

Dataset Accuracy (%)
MobiAct 100.00
DaLiAc 98.90

UCI-HAR 97.11
UC-HAR 98.16

In the second experiment, we compared our proposed encoding technique with four other
approaches that transform inertial sensor signal into an image for activity representation: the first one

Figure 4. The confusion matrices of the recognition results of our proposed Iss2Image and UCNet6
method on the different datasets: (a) MobiAct, (b) DaLiAc, (c) UCI-HAR, and (d) UC-HAR.

Table 3. Average recognition accuracy of our proposed method on the different datasets.

Dataset Accuracy (%)

MobiAct 100.00
DaLiAc 98.90

UCI-HAR 97.11
UC-HAR 98.16

The activities in the REST (sitting, lying, and standing) and WALK (walking, running,
and ascending/descending stairs) groups are proficiently recognized with very high accuracy. In the
UCI-HAR dataset, our method was confused between walking and downstairs and upstairs and
downstairs, but sitting and lying were precisely recognized. This result is explained by the position
of the smartphone during data collection for that dataset; all volunteers wore the smartphone on
the waist. In our dataset, standing and stretching were confused because the time between the two
consecutive stretching actions was considered as a standing activity. Furthermore, sweeping was
sometimes detected as stretching because of the position of the smartwatch.

In the second experiment, we compared our proposed encoding technique with four other
approaches that transform inertial sensor signal into an image for activity representation: the first
one [39], called the raw signal plot method, transforms the acceleration signal directly into a time series
image and represents it as a gray-scale image; the second one [40], called the spectrogram method,

Sensors 2018, 18, 3910 11 of 19

plots a spectrogram of an inertial signal after computing squared Short-Time Fourier Transform for
input into a deep neural network; the third one [41], called recurrence plot method, a distance matrices
that capture temporal patterns in the signal, represented in image with texture patterns; the last
one [42], called the multichannel method, encodes the acceleration signal (including X, Y, and Z) into
the corresponding red, green, and blue channels of a color image by normalizing, scaling, and rounding
a real value into an integer for pixel representation. Some example activity images generated by the
transformation methods are presented in Figure 5.

Sensors 2018, 18, x 11 of 19

[39], called the raw signal plot method, transforms the acceleration signal directly into a time series
image and represents it as a gray-scale image; the second one [40], called the spectrogram method,
plots a spectrogram of an inertial signal after computing squared Short-Time Fourier Transform for
input into a deep neural network; the third one [41], called recurrence plot method, a distance
matrices that capture temporal patterns in the signal, represented in image with texture patterns; the
last one [42], called the multichannel method, encodes the acceleration signal (including X, Y, and Z)
into the corresponding red, green, and blue channels of a color image by normalizing, scaling, and
rounding a real value into an integer for pixel representation. Some example activity images
generated by the transformation methods are presented in Figure 5.

(a)

(b)

(c)

(d)

(e)

Figure 5. An illustration of activity images generated by (a) raw signal plot, (b) spectrogram, (c)
recurrence plot, (d) multichannel, and (e) Iss2Image.

In this experiment, we evaluated and compared the accuracy of HAR using our deep network
with the input images generated from each of the different transformation techniques on all four
datasets. All of the benchmarked techniques are realized by our own implementation. In the
comparison result reported in Table 4, Iss2Image is replaced by the other transformation methods
without modifying our deep neural network. As shown in Table 4, our proposed encoding technique
outperformed the other transformation methods for most of the benchmarked datasets: by 0.97% on
MobiAct, 6.53% on DaLiAc, 4.87% on UCI-HAR, and 3.72% on UC-HAR on average. Compared with
the raw signal plot, spectrogram and recurrence plot approaches, Iss2Image is much more powerful,
4.45%, 4.3% and 6.59% more accurate, respectively, on average across all datasets. Similar to
Iss2Image, the multichannel approach encodes sensor signal sample of [x y z] to a pixel with three
values for the red, green, and blue channels; however, it encodes only the integer of the real number
instead of the integer plus four more decimal places used in Iss2Image. Thus, the precision of the
multichannel approach is less than in our proposed technique, which lowers its accuracy by
approximately 0.36% on average across all datasets. Clearly, plotting a raw signal, spectrogram or
recurrence plot are not efficient solutions for representing activity signals in images because of
distortion in the original information during the conversion and the complexity of the operation.

Table 4. Average recognition accuracy (%) comparison of the different transformation methods
with the different datasets.

Method MobiAct DaLiAc UCI-HAR UC-HAR
Raw signal plot [39] 98.22 92.06 92.86 93.08

Spectrogram [40] 98.02 94.54 91.02 93.40
Recurrence plot [41] 100.00 84.75 88.47 93.15

Multichannel [42] 99.88 98.12 96.60 98.14
Iss2Image 100.00 98.90 97.11 98.16

Figure 5. An illustration of activity images generated by (a) raw signal plot, (b) spectrogram,
(c) recurrence plot, (d) multichannel, and (e) Iss2Image.

In this experiment, we evaluated and compared the accuracy of HAR using our deep network with
the input images generated from each of the different transformation techniques on all four datasets.
All of the benchmarked techniques are realized by our own implementation. In the comparison result
reported in Table 4, Iss2Image is replaced by the other transformation methods without modifying
our deep neural network. As shown in Table 4, our proposed encoding technique outperformed the
other transformation methods for most of the benchmarked datasets: by 0.97% on MobiAct, 6.53% on
DaLiAc, 4.87% on UCI-HAR, and 3.72% on UC-HAR on average. Compared with the raw signal plot,
spectrogram and recurrence plot approaches, Iss2Image is much more powerful, 4.45%, 4.3% and 6.59%
more accurate, respectively, on average across all datasets. Similar to Iss2Image, the multichannel
approach encodes sensor signal sample of [x y z] to a pixel with three values for the red, green, and blue
channels; however, it encodes only the integer of the real number instead of the integer plus four
more decimal places used in Iss2Image. Thus, the precision of the multichannel approach is less than
in our proposed technique, which lowers its accuracy by approximately 0.36% on average across all
datasets. Clearly, plotting a raw signal, spectrogram or recurrence plot are not efficient solutions for
representing activity signals in images because of distortion in the original information during the
conversion and the complexity of the operation.

Table 4. Average recognition accuracy (%) comparison of the different transformation methods with
the different datasets.

Method MobiAct DaLiAc UCI-HAR UC-HAR

Raw signal plot [39] 98.22 92.06 92.86 93.08
Spectrogram [40] 98.02 94.54 91.02 93.40

Recurrence plot [41] 100.00 84.75 88.47 93.15
Multichannel [42] 99.88 98.12 96.60 98.14

Iss2Image 100.00 98.90 97.11 98.16

Sensors 2018, 18, 3910 12 of 19

In the third experiment, we have compared the accuracy of our network (trained from scratch
and pre-trained on CIFAR-10 [43]) with three other pre-trained CNNs, which are Resnet18 [44],
Alexnet [45] and GoogleNet [46]. Note that the depth of our network is small, having six layers.
Resnet18, containing 18 layers, introduces a deep residual learning framework. Instead of hoping
each few stacked layers directly fit a desired underlying mapping, it explicitly let these layers fit a
residual mapping to solve degradation problem. Alexnet, containing eight layers, adopted ReLUs,
local response normalization and overlapping pooling to improve the performance and reduce training
time. GoogleNet, containing 22 layers, is based on NIN (Network In Network) [47], adding Inception
architecture which includes 1× 1, 3× 3 and 5× 5 convolution for efficiency and then 1× 1 convolution
for dimension reduction to reduce the computation. All of these three networks classifies images
into 1000 objects categories, based on the ImageNet database having 1.2 million images. To pre-train
UCNet6, we have used CIFAR-10 dataset, having 50,000 training images and 10,000 testing images
with 10 classes.

From the experimental results, the highest accuracy on different signal transformation methods
is achieved by using ResNet18 and GoogleNet. Recurrence plot and Iss2Image method showed
the highest accuracy on ResNet18 while raw signal plot, spectrogram and multichannel method
showed highest results on GoogleNet. Raw signal plot has the lowest accuracy on all five networks,
which indicates such approach has lowest efficiency on signal transformation. This can be inferred
that having too much blank area on the image, convolves meaningless information. Spectrogram
and recurrence plot showed average accuracy between raw signal plot and multichannel-Iss2Image
group. On all of the networks, Multichannel and Iss2Image showed high accuracy over 98%, meaning
that images made from these two methods are concise. UCNet6 trained from scratch shows the
lowest performance on the overall average, especially on the high-resolution images, but shows
comparable result on multichannel and Iss2Image. Pre-trained UCNet6 overcomes this weakness,
showing comparable results on other three signal transformation methods, resulting average accuracy
of 96.41%. Although this is still lower than other public pre-trained networks, it has the difference
under 1%, ResNet18 with 0.66%, GoogleNet with 0.84% and Alexnet with 0.27%. Because the purpose
of UCNet6 is for fast and lightweight, to be able to run on mobile platform in the future work,
the performance is acceptable, and has the strength on training time and inference time which will
be shown in the last part of this section. The three public pre-trained networks are pre-trained with
very large data, having ability to classify images with richer feature maps. Pre-trained UCNet6 is
trained with small-scale dataset, but possess the optimized parameters for learning, which can show
comparable performance. Meanwhile, UCNet6 trained from scratch shows lowest performance but the
gap is trivial. The recognition accuracy comparison of different transformation methods on different
networks are shown in Table 5.

Table 5. Recognition accuracy (%) comparison of different transformation methods on different networks.

Method ResNet18 GoogleNet AlexNet UCNet6
(from Scratch)

UCNet6
(Pre-Trained)

Raw signal plot 93.82 94.55 94.15 93.08 94.24
Spectrogram 95.19 96.87 96.09 93.40 95.46

Recurrence plot 98.10 96.38 96.15 91.15 94.37
Multichannel 98.55 99.02 98.07 98.14 98.71

Iss2Image 99.70 99.46 98.97 98.16 99.27

Average 97.07 97.25 96.68 95.78 96.41

In the last experiment, we compared our proposed our method with state-of-the-art methods for
HAR on the three public datasets, MobiAct, DaLiAc, and UCI-HAR, in terms of recognition accuracy.
For a fair comparison, we strictly followed the benchmark setups (such as dataset partition and k-fold
validation) indicated in the published research:

Sensors 2018, 18, 3910 13 of 19

• MobiAct dataset: In the dataset paper [36], MobiAct was evaluated using a window size of 5 s
with an overlapping ratio of 80%. The recognition accuracy was conducted using a conventional
approach with three components: feature extraction, feature selection, and classification.
In particular, the authors extracted and manually selected 64 features to train with the IBk
and J48 classifiers. Both classifiers yield very high accuracy results of 99.88% and 99.30% on
the MobiAct dataset, as shown in Table 6. However, this approach cannot precisely recognize
mostly similar activities, such as stairs up and stairs down, due to the limitation of feature
engineering. The method in [48] resampled the frequency to 20 Hz, segmented the data in 10 s
window without overlapping, extracted features using Auto-Regressive model, and classified with
SVM. But this approach also confused the similar activities, stairs up and stairs down, resulting
97.45% accuracy. Our Iss2Image-UCNet6 method consistently reports outstanding performance
on MobiAct, with an average accuracy of 100%. In Iss2Image-UCNet6, many features produced
inside the network by the convolutional layers, ReLU layers, and pooling layers are learned,
producing better recognition accuracy than available with traditional classifiers, such as k-nearest
neighbors and decision tree.

• DaLiAc dataset: Following the guidance in [37], we reimplemented our Iss2Image-UCNet6
method on DaLiAc with a 5-s window and 50% overlapping ratio. The comparison results are
reported in Table 7, using the results for the other methods presented in the dataset paper.
The authors extracted 152 features for each sliding window, including time and frequency
domain features, and a hierarchical classification system including AdaBoost, a classification
and regression tree, k-nearest neighbor (kNN), and SVM. The methods in [49,50] also extracted
features from the acceleration signal in both the time and frequency domains; however, they
each use a single classifier, decision tree and kNN, respectively. The paper in [51] divided
the subjects of DaLiAc dataset into three subsets for training, validating and testing. 10 steps
of feature extraction was conducted from original and magnitude time series data, and select
features by discarding unimportant features and applying diversified forward-backward feature
selection method. Comparing with six different classifiers, SVM showed the highest accuracy
of 93%. Following the experiment configuration in [37], we evaluated the Iss2Image-UCNet6
method with a leave-one-subject-out procedure. In this comparison, our method outperformed
the existing approaches with an impressive improvement in accuracy. Compared with traditional
classification techniques, a deep neural network is much more powerful in classifying a large
dataset. In addition, transforming the sensor signal into an image without much data distortion,
as Iss2Image does, is important for achieving high recognition accuracy.

• UCI-HAR dataset: For a fair comparison, we benchmarked our proposed method with a
sliding window size of 2.56 s and 50% overlap. The comparison results are reported in Table 8.
In [52], the authors extracted 17 features measured in the time and frequency domains for both
accelerometer and gyroscope data and classified the activities using a MultiClass SVM (MC-SVM).
Additionally, they developed another lightweight version with fixed-point arithmetic for energy
efficiency. The accuracy of the standard version and lightweight version of the MC-SVM is
acceptable, approximately 89.30% and 89.00%. The authors of [19] proposed a HAR system using
deep learning neural networks, entering the accelerometer and gyroscope sensor data after some
preprocessing steps. To improve performance, those convolutional networks were combined with
an MLP. This combination strategy produced 94.79% recognition accuracy on average. Another
strategy described in [19] combines the features extracted from the convolutional layers with
the features extracted by FFT. That strategy improves on the first strategy, with an average
accuracy of 95.75%. The authors of [53] proposed a hierarchical classification named GCHAR
which has two stage classification. The first stage is group based classification, dividing similar
activities into a specific activity group. The second stage is context awareness based, correcting the
activity to be included in the proper group from stage one. Comparing with six other traditional
classifiers, GCHAR showed the highest accuracy of 94.16%. With our Iss2Image-UCNet6 method,

Sensors 2018, 18, 3910 14 of 19

the accuracy suffered from decreasing the window size from 3 s to 2.56 s, so in this experiment,
Iss2Image-UCNet6 achieved an average accuracy of only 96.84%, but that is still better than the
other methods. Our method is much better than the MC-SVM, whereas the accuracy improvement
over Convnet is not significant. These results show the power of deep CNNs in classification tasks.

Table 6. Average accuracy comparison between Iss2Image-UCNet6, and existing methods on the
MobiAct dataset.

Method Accuracy (%)

IBk [36] 99.88
J48 [36] 99.30

SVM [48] 97.45
Iss2Image-UCNet6 100.00

Table 7. Average accuracy comparison between Iss2Image-UCNet6 and existing methods on the
DaLiAc dataset.

Method Accuracy (%)

Hierarchical classifier [37] 89.60
Decision tree [49] 80.00

kNN [50] 68.70
SVM [51] 93.00

Iss2Image-UCNet6 96.40

Table 8. Average accuracy comparison between Iss2Image-UCNet6 and existing methods on the
UCI-HAR dataset.

Method Accuracy (%)

MC-SVM [52] 89.30
Convnet + MLP [19] 94.79
tFFT + Convnet [19] 95.75

GCHAR [53] 94.16
Iss2Image-UCNet6 96.84

Finally, we benchmarked the sensor signal transformation time, training time and inference time
for different networks using our collected dataset.

From the perspective of signal transformation time from inertial sensor signal to image, we have
set the time for 10 s and count how many images were created for fair comparison. The raw signal plot
and spectrogram method created only few images, less than 10 images. The recurrence plot created
medium number of images about 700 images, and the multichannel method and our proposed method
created the most with similar number of images, 2838 images and 2772 images, respectively.

Plotting x, y, and z signals into a single component image and combining all of the images to
a unified image, raw signal plot method spends much time for signal transformation. Similarly,
spectrogram method also spends much time for plotting spectrogram and writing it to an image.
Meanwhile, recurrence plot captures temporal patterns in the signal first and then plot the overall
texture pattern into image, shortening time than raw signal plot and spectrogram.

Compared with the above mentioned three methods, multichannel and our proposed approach
takes less time for converting raw inertial signal to image due to directly encoding only raw data to
pixel value. However, the computational cost of our method is more expensive than multichannel
method because we have to encode not only the integer part but also the floating part. The comparison
result of signal transformation time is shown in Table 9.

Sensors 2018, 18, 3910 15 of 19

Table 9. Comparison of image creation time on different signal transformation methods.

Method Created Images for 10 s

Raw signal plot 7 images
Spectrogram 4 images

Recurrence plot 699 images
Multichannel 2838 images

Iss2Image 2772 images

From the perspective of training time, we have compared ResNet18, GoogleNet, AlexNet,
and trained from scratch and pre-trained UCNet6 with five different signal transformation methods.
A total of 38,279 activity samples are segmented with a sliding window size of three seconds and an
overlapping width of one second. We have made different sizes of images on different methods that
the networks have different size of input image; 244 × 244 for ResNet18 and GoogleNet, 227 × 277
for AlexNet. The input size for UCNet6 networks are not fixed, having flexibility to be changed. Raw
signal plot, spectrogram and recurrence plot have higher resolution while multichannel and Iss2Image
has low resolution.

Training time for public pre-trained networks costed similar times; average time about 62 min for
ResNet18, 57 min for GoogleNet, and 74 min for AlexNet. On each network, training time on different
signal transformation methods also did not show big differences; the time gap between highest and
lowest time is 4 min for ResNet18, 6 min for GoogleNet, and 7 min for AlexNet. Iss2Image was fastest
in GoogleNet among other signal transformation methods, but not from the others. But Iss2Image is
still competitive on other networks that it was third fast on ResNet18 and second fast on AlexNet.

The UCNet6 trained from scratch took more than 5 h for training for raw signal plot, spectrogram
and recurrence plot. Without utilizing pre-trained parameters, it took long time on high resolution
images for reaching desired training performance. On the contrary, training time for multichannel
and Iss2Image took very short, 7 min and 9 min respectively, showing that the way of initializing
parameters (from random generation or from pre-trained model) does not impact on training speed
of low resolution image. The pre-trained UCNet6 showed the highest performance, having average
speed of 9 min. By utilizing transfer learning, it now has the ability to well handle the high resolution
images. The comparison result of training times on different networks is shown in Table 10.

Table 10. Comparison of training times (minutes) on different networks.

Method ResNet18 GoogleNet AlexNet UCNet6
(from Scratch)

UCNet6
(Pre-Trained)

Raw signal plot 60 57 73 309 9
Spectrogram 63 58 71 330 8

Recurrence plot 64 60 77 318 14
Multichannel 61 58 78 7 6

Iss2Image 62 54 72 9 7

Average 62 57 74 195 9

From the perspective of inference time, we have compared ResNet18, GoogleNet, AlexNet and
our network with five different signal transformation methods. A total of 1000 activity samples are
segmented with a sliding window size of three seconds and an overlapping width of one second.
We have made different sizes of images on different methods that the networks have different size of
input image; 244 × 244 for ResNet18 and GoogleNet, 227 × 277 for AlexNet, and 150 × 6 for UCNet6.
The inference time is shown by calculating the average for 10 times execution.

As shown in the result on Table 11, all of the five different methods showed fastest inference
time on UCNet6 than other pre-trained networks where the average speed is less than one second.
This is because that having less layers with less complex layers, an input image will pass the network

Sensors 2018, 18, 3910 16 of 19

end-to-end with less computation. Among three pre-trained networks, GoogleNet has the most
number of layers but faster than ResNet18. This is because ResNet18 contains more complex layers
such as batch normalization and addition layers, resulting in more computation time. In the case of
AlexNet, it has relatively small number of layers than other two networks which is able to compute
fastest among three networks.

Table 11. Comparison of inference time (seconds) on different networks with 1000 samples.

Method ResNet18 GoogleNet AlexNet UCNet6

Raw signal plot 1.89 1.77 1.18 0.61
Spectrogram 2.06 1.90 1.33 0.87

Recurrence plot 2.12 1.93 1.33 0.88
Multichannel 1.96 1.86 1.30 0.17

Iss2Image 1.99 1.87 1.27 0.29

Average 2.01 1.87 1.29 0.56

From the perspective of signal transformation methods, all three pre-trained networks showed
the Iss2Image as second or third fastest method, compared with multichannel method, where the
difference is negligible. The fastest was the raw signal plot, but this is not practical in real-time
recognition environment that creating the image takes too much time. From UCNet6, because it is
optimized for Iss2Image, the multichannel and Iss2Image showed the first and second fastest and
faster than raw signal plot.

5. Conclusions

In this research, we have proposed an activity recognition method using a CNN. The Iss2Image
encoder transforms the inertial sensor signals into an image form, and an image-based CNN model
classifies the activity. The sensor signals are divided into three parts, the integer, the first two decimal
places, and the following two decimal places, to minimize data distortion. In this way, we infer
detailed correlations among successive sensor signal values in three different dimensions. We have
also proposed UCNet6 which is a fast and lightweight CNN model. We compared the results of our
proposed method with different datasets, different signal transformation methods, different CNNs,
and different traditional methods, and benchmarked the speed of image creation time and inference
time. The experimental results show that our proposed method outperforms existing methods using
both our own dataset and public datasets. Our future work will incorporate the improvements in
accuracy reported here into different datasets using different combinations of sensor signals, and also
adopt this for real-time mobile based activity recognition.

Author Contributions: T.H. designed the overall architecture and algorithm. T.H. and J.B. collected and sorted
the data. T.H. and T.H.-T. performed the experiments and analyzed the results. T.H. wrote the manuscript. J.L.,
J.-I.K. and S.L. reviewed the manuscript for scientific content.

Funding: This work was supported by Institute for Information & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIT) (No. 2017-0-00655). This work was also supported by the MSIT
(Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program
(IITP-2017-0-01629) and under the National Program for Excellence in SW (2017-0-00093) supervised by the IITP
(Institute for Information & communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Plötz, T.; Hammerla, N.Y.; Olivier, P. Feature learning for activity recognition in ubiquitous computing.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Spain,
16–22 July 2011; pp. 1729–1734.

Sensors 2018, 18, 3910 17 of 19

2. Erdaş, Ç.B.; Atasoy, I.; Açıcı, K.; Oğul, H. Integrating features for accelerometer-based activity recognition.
Procedia Comput. Sci. 2016, 98, 522–527. [CrossRef]

3. Heaton, J. An empirical analysis of feature engineering for predictive modeling. In Proceedings of the
SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016.

4. Zebin, T.; Scully, P.J.; Ozanyan, K.B. Human activity recognition with inertial sensors using a deep learning
approach. In Proceedings of the 2016 IEEE SENSORS, Orlando, FL, USA, 30 October–3 November 2016.

5. Xu, Y.; Shen, Z.; Zhang, X.; Gao, Y.; Deng, S.; Wang, Y.; Fan, Y.; Chang, C. Learning multi-level features for
sensor-based human action recognition. Pervasive Mob. Comput. 2017, 40, 324–338. [CrossRef]

6. Zhang, C.; Chen, T. From low level features to high level semantics. In Handbook of Video Databases: Design
and Applications; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780849370069.

7. Ha, S.; Choi, S. Convolutional neural networks for human activity recognition using multiple accelerometer
and gyroscope sensors. In Proceedings of the 2016 International Joint Conference on Neural Networks,
Vancouver, BC, Canada, 24–29 July 2016; pp. 381–388.

8. Almaslukh, B.; AlMuhtadi, J.; Artoli, A. An effective deep autoencoder approach for online smartphone-
based human activity recognition. Int. J. Comput. Sci. Netw. Secur. 2017, 17, 160.

9. Zhang, L.; Wu, X.; Luo, D. Real-time activity recognition on smartphones using deep neural networks.
In Proceedings of the Ubiquitous Intelligence and Computing and 2015 IEEE 12th International Conference
on Autonomic and Trusted Computing and 2015 IEEE 15th International Conference on Scalable Computing
and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015;
pp. 1236–1242.

10. Inoue, M.; Inoue, S.; Nishida, T. Deep recurrent neural network for mobile human activity recognition with
high throughput. Artif. Life Rob. 2018, 23, 173–185. [CrossRef]

11. Yao, S.; Hu, S.; Zhao, Y.; Zhang, A.; Abdelzaher, T. Deepsense: A unified deep learning framework for
time-series mobile sensing data processing. In Proceedings of the 26th International Conference on World
Wide Web, Perth, Australia, 3–7 April 2017; pp. 351–360.

12. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Lui, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent
advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

13. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional neural networks
for human activity recognition using mobile sensors. In Proceedings of the 6th International Conference on
Mobile Computing, Applications and Services, Austin, TX, USA, 6–7 November 2014; pp. 197–205.

14. Chen, Y.; Xue, Y. A deep learning approach to human activity recognition based on single accelerometer.
In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong,
China, 9–12 October 2015; pp. 1488–1492.

15. Radu, V.; Lane, N.D.; Bhattacharya, S.; Mascolo, C.; Marina, M.K.; Kawsar, F. Towards multimodal deep
learning for activity recognition on mobile devices. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 12–16 September 2016;
pp. 185–188.

16. Lane, N.D.; Georgiev, P. Can deep learning revolutionize mobile sensing? In Proceedings of the
16th International Workshop on Mobile Computing Systems and Applications, Snata Fe, NM, USA,
12–13 February 2015; pp. 117–122.

17. Bhattacharya, S.; Lane, N.D. From smart to deep: Robust activity recognition on smartwatches using
deep learning. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and
Communication Workshops, Sydney, Australia, 14–18 March 2016.

18. Ronao, C.A.; Cho, S.B. Deep convolutional neural networks for human activity recognition with
smartphone sensors. In Proceedings of the Conference on Neural Information Processing, Istanbul, Turkey,
9–12 November 2015; pp. 46–53.

19. Ronao, C.A.; Cho, S.B. Human activity recognition with smartphone sensors using deep learning neural
networks. Expert Syst. Appl. 2016, 59, 235–244. [CrossRef]

20. Garcia-Ceja, E.; Uddin, M.Z.; Torresen, J. Classification of Recurrence Plots’ Distance Matrices with a
Convolutional Neural Network for Activity Recognition. Procedia Comput. Sci. 2018, 130, 157–163. [CrossRef]

21. Zhang, R.; Li, C. Motion sequence recognition with multi-sensors using deep convolutional neural network.
In Intelligent Data Analysis and Applications; Springer: Cham, Switzerland, 2015; pp. 13–23.

http://dx.doi.org/10.1016/j.procs.2016.09.070
http://dx.doi.org/10.1016/j.pmcj.2017.07.001
http://dx.doi.org/10.1007/s10015-017-0422-x
http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1016/j.eswa.2016.04.032
http://dx.doi.org/10.1016/j.procs.2018.04.025

Sensors 2018, 18, 3910 18 of 19

22. Jiang, W.; Yin, Z. Human activity recognition using wearable sensors by deep convolutional neural networks.
In Proceedings of the 23rd ACM international conference on Multimedia, Kyoto, Japan, 26–27 October 2015;
pp. 1307–1310.

23. Dehzangi, O.; Taherisadr, M.; ChangalVala, R. IMU-Based Gait Recognition Using Convolutional Neural
Networks and Multi-Sensor Fusion. Sensors 2017, 17, 2735. [CrossRef] [PubMed]

24. Alsheikh, M.A.; Selim, A.; Niyato, D.; Doyle, L.; Lin, S.; Tan, H.P. Deep Activity Recognition Models with
Triaxial Accelerometers. In Proceedings of the Artificial Intelligence Applied to Assistive Technologies and
Smart Environments, Phoenix, AZ, USA, 12 February 2016.

25. Ravi, D.; Wong, C.; Lo, B.; Yang, G.Z. Deep learning for human activity recognition: A resource efficient
implementation on low-power devices. In Proceedings of the IEEE 13th International Conference on
Wearable and Implantable Body Sensor Networks, San Francisco, CA, USA, 14–17 June 2016; pp. 71–76.

26. Lu, W.K.; Zhang, Q. Deconvolutive short-time Fourier transform spectrogram. IEEE Signal Process Lett. 2019,
16, 576–579.

27. Ha, S.; Yun, J.M.; Choi, S. Multi-modal convolutional neural networks for activity recognition. In Proceedings
of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China,
9–12 October 2015; pp. 3017–3022.

28. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.; Krishnaswamy, S. Deep Convolutional Neural Networks on
Multichannel Time Series for Human Activity Recognition. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence, Buenos Aires, Argentina, 28 July–1 August 2015; pp. 3995–4001.

29. Baldominos, A.; Saez, Y.; Isasi, P. Evolutionary Design of Convolutional Neural Networks for Human
Activity Recognition in Sensor-Rich Environments. Sensors 2018, 18, 1288. [CrossRef] [PubMed]

30. Ordóñez, F.J.; Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable
activity recognition. Sensors 2016, 16, 115. [CrossRef] [PubMed]

31. Cho, H.; Yoon, S.M. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data
Sharpening. Sensors 2018, 18, 1055. [CrossRef]

32. Hammerla, N.Y.; Halloran, S.; Ploetz, T. Deep, convolutional, and recurrent models for human activity
recognition using wearables. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence, New York, NY, USA, 9–16 July 2016; pp. 1533–1540.

33. Murad, A.; Pyun, J.Y. Deep recurrent neural networks for human activity recognition. Sensors 2017, 17, 2556.
[CrossRef] [PubMed]

34. Saez, Y.; Baldominos, A.; Isasi, P. A comparison study of classifier algorithms for cross-person physical
activity recognition. Sensors 2017, 17, 66. [CrossRef] [PubMed]

35. Li, F.; Shirahama, K.; Nisar, M.A.; Köping, L.; Grzegorzek, M. Comparison of Feature Learning Methods for
Human Activity Recognition Using Wearable Sensors. Sensors 2018, 18, 679. [CrossRef] [PubMed]

36. Vavoulas, G.; Chatzaki, C.; Malliotakis, T.; Pediaditis, M.; Tsiknakis, M. The MobiAct Dataset: Recognition
of Activities of Daily Living using Smartphones. In Proceedings of the 2nd International Conference on
Information and Communication Technologies for Ageing Well and e-Health, Rome, Italy, 21–22 April 2016;
pp. 143–151.

37. Leutheuser, H.; Schuldhaus, D.; Eskofier, B.M. Hierarchical, multi-sensor based classification of daily life
activities: Comparison with state-of-the-art algorithms using a benchmark dataset. PLoS ONE 2013, 8, e75196.
[CrossRef] [PubMed]

38. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. A Public Domain Dataset for Human
Activity Recognition Using Smartphones. In Proceedings of the 21th European Symposium on Artificial
Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April 2013;
pp. 437–442.

39. Bayat, A.; Pomplun, M.; Tran, D.A. A study on human activity recognition using accelerometer data from
smartphones. Procedia Comput. Sci. 2014, 34, 450–457. [CrossRef]

40. Ravi, D.; Wong, C.; Lo, B.; Yang, G.Z. A deep learning approach to on-node sensor data analytics for mobile
or wearable devices. IEEE J. Biomed. Health Inf. 2017, 21, 56–64. [CrossRef] [PubMed]

41. Penatti, O.A.; Santos, M.F. Human activity recognition from mobile inertial sensors using recurrence plots.
arXiv 2017, arXiv:1712.01429.

http://dx.doi.org/10.3390/s17122735
http://www.ncbi.nlm.nih.gov/pubmed/29186887
http://dx.doi.org/10.3390/s18041288
http://www.ncbi.nlm.nih.gov/pubmed/29690587
http://dx.doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612
http://dx.doi.org/10.3390/s18041055
http://dx.doi.org/10.3390/s17112556
http://www.ncbi.nlm.nih.gov/pubmed/29113103
http://dx.doi.org/10.3390/s17010066
http://www.ncbi.nlm.nih.gov/pubmed/28042838
http://dx.doi.org/10.3390/s18020679
http://www.ncbi.nlm.nih.gov/pubmed/29495310
http://dx.doi.org/10.1371/journal.pone.0075196
http://www.ncbi.nlm.nih.gov/pubmed/24130686
http://dx.doi.org/10.1016/j.procs.2014.07.009
http://dx.doi.org/10.1109/JBHI.2016.2633287
http://www.ncbi.nlm.nih.gov/pubmed/28026792

Sensors 2018, 18, 3910 19 of 19

42. Zheng, X.; Wang, M.; Ordieres-Meré, J. Comparison of Data Preprocessing Approaches for Applying Deep
Learning to Human Activity Recognition in the Context of Industry 4.0. Sensors 2018, 18, 2146. [CrossRef]
[PubMed]

43. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University
of Toronto: Toronto, ON, Canada, 2009.

44. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778.

45. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

46. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

47. Lin, M.; Chen, Q.; Yan, S. Network in network. arXiv 2013, arXiv:1312.4400.
48. Ahmer, M.; Shah, M.Z.A.; Shah, S.M.Z.S.; Shah, S.M.S.; Chowdhry, B.S.; Shah, A.; Bhatti, K.H. Using

Non-Linear Support Vector Machines for Detection of Activities of Daily Living. Indian J. Sci. Technol.
2017, 10. [CrossRef]

49. Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In Proceedings of the
International Conference on Pervasive Computing, Vienna, Austria, 21–23 April 2004.

50. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D. A comparison of feature extraction methods for the
classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 2009, 56, 871–879.
[CrossRef] [PubMed]

51. Zdravevski, E.; Lameski, P.; Trajkovik, V.; Kulakov, A.; Chorbev, I.; Goleva, R.; Pombo, N.; Garcia, N.
Improving activity recognition accuracy in ambient-assisted living systems by automated feature engineering.
IEEE Access 2017, 5, 5262–5280. [CrossRef]

52. Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; Reyes-Ortiz, J.L. Energy Efficient Smartphone-Based Activity
Recognition using Fixed-Point Arithmetic. J. Univ. Comput. Sci. 2013, 19, 1295–1314. [CrossRef]

53. Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V. GCHAR: An efficient Group-based Context—Aware
human activity recognition on smartphone. J. Parallel Distrib. Comput. 2018, 118, 67–80. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18072146
http://www.ncbi.nlm.nih.gov/pubmed/29970873
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.17485/ijst/2017/v10i36/119182
http://dx.doi.org/10.1109/TBME.2008.2006190
http://www.ncbi.nlm.nih.gov/pubmed/19272902
http://dx.doi.org/10.1109/ACCESS.2017.2684913
http://dx.doi.org/10.3217/jucs-019-09-1295
http://dx.doi.org/10.1016/j.jpdc.2017.05.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	HAR Using a CNN with a Transformed Inertial Sensor Signal
	Encoding the Inertial Sensor Signal
	CNN-Based Human Activity Learning

	Experiments and Discussion
	Dataset
	Experimental Setup
	Experimental Results and Discussion

	Conclusions
	References

