Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization
Abstract
:1. Introduction
2. Transmitter Structure
3. Receiver Structure
3.1. FMT Demodulation
3.2. Turbo Equalization
3.2.1. Procedure of Turbo Equalization
3.2.2. Low-Complexity CE-Based MMSE Algorithm
4. Performance Assessment
4.1. Simulation Analysis
4.1.1. Simulation Setup
4.1.2. Simulation Results
4.2. Experiment
4.2.1. Experimental Setup
4.2.2. Channel Response Estimation
4.2.3. Experiment Results
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Brumm, H.; Slabbekoorn, H. Acoustic communication in noise. Adv. Study Behav. 2005, 35, 151–209. [Google Scholar]
- Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84–89. [Google Scholar] [CrossRef]
- Singer, A.C.; Nelson, J.K.; Kozat, S.S. Signal processing for underwater acoustic communications. IEEE Commun. Mag. 2009, 47, 90–96. [Google Scholar] [CrossRef]
- Stojanovic, M.; Catipovic, J.; Proakis, J.G. Adaptive multichannel combining and equalization for underwater acoustic communications. J. Acoust. Soc. Am. 1993, 93, 1621–1631. [Google Scholar] [CrossRef]
- Song, H.C.; Hodgkiss, W.S. Efficient use of bandwidth for underwater acoustic communication. J. Acoust. Soc. Am. 2013, 134, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, L.; Cui, H.; Zhang, Y. Single-carrier underwater acoustic communication combined with channel shortening and dichotomous coordinate descent recursive least squares with variable forgetting factor. IET Commun. 2015, 9, 1867–1876. [Google Scholar]
- Mason, S.; Berger, C.R.; Zhou, S.; Willett, P. Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication. IEEE J. Sel. Areas Commun. 2008, 26, 1638–1649. [Google Scholar] [CrossRef]
- Kang, T.; Iltis, A.R. Iterative carrier frequency offset and channel estimation for underwater acoustic OFDM systems. IEEE J. Sel. Areas Commun. 2008, 26, 1650–1661. [Google Scholar] [CrossRef]
- Radosevic, A.; Ahmed, R.; Duman, T.M.; Proakis, J.G.; Stojanovic, M. Adaptive OFDM modulation for underwater acoustic communications: Design considerations and experimental results. IEEE J. Ocean. Eng. 2014, 39, 357–370. [Google Scholar] [CrossRef]
- Skinder, Z.; Szczepanek, M.; Wilczewski, E. Differentially coherent multichannel detection of acoustic OFDM signals. IEEE J. Ocean. Eng. 2015, 4, 251–268. [Google Scholar]
- Wan, L.; Zhou, H.; Xu, X.; Huang, Y.; Zhou, S.; Shi, Z.; Cui, J.H. Adaptive modulation and coding for underwater acoustic OFDM. IEEE J. Ocean. Eng. 2015, 40, 327–336. [Google Scholar] [CrossRef]
- Chi, W.; Yin, J.; Huang, D.; Zielinski, A. Experimental demonstration of differential OFDM underwater acoustic communication with acoustic vector sensor. Appl. Acoust. 2015, 91, 1–5. [Google Scholar]
- Gomes, J.; Stojanovic, M. Performance analysis of filtered multitone modulation systems for underwater communication. In Proceedings of the IEEE International Conference on Oceans, Biloxi, MS, USA, 26–29 October 2009; pp. 1–5. [Google Scholar]
- Li, H.S.; Sun, L.; Du, W.D.; Zhou, T.; Chen, B.W. Multiple-input multiple-output passive time reversal acoustic communication using filtered multitone modulation. Appl. Acoust. 2017, 119, 29–38. [Google Scholar] [CrossRef]
- Amini, P.; Chen, R.R.; Farhang-boroujeny, B. Filterbank multicarrier communications for underwater acoustic channels. IEEE J. Ocean. Eng. 2015, 40, 115–130. [Google Scholar] [CrossRef]
- Silva, L.; Gomes, J. Sparse Channel estimation and equalization for underwater filtered multitone. In Proceedings of the IEEE International Conference on Oceans, Genoa, Italy, 18–21 May 2015; pp. 18–21. [Google Scholar]
- Sun, L.; Chen, B.W.; Li, H.S.; Zhou, T. Time reversal acoustic communication using filtered multitone modulation. Sensors 2015, 15, 22357–23554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.S.; Dong, H.F. Experimental assessment of a multicarrier underwater acoustic communication system. Appl. Acoust. 2011, 72, 953–961. [Google Scholar] [CrossRef]
- Tuchler, M.; Singer, A.C.; Koetter, R. Minimum mean squared error equalization using a priori information. IEEE Trans. Signal Process. 2002, 50, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zheng, Y.R. Iterative Channel estimation and turbo equalization for multiple-input multiple-output underwater acoustic communications. IEEE J. Ocean. Eng. 2016, 41, 232–242. [Google Scholar]
- Zheng, Y.R.; Wu, J.; Xiao, C. Turbo equalization for single-carrier underwater acoustic communications. IEEE Commun. Mag. 2015, 53, 79–87. [Google Scholar] [CrossRef]
- Tuchler, M.; Singer, A.C. Turbo equalization: An overview. IEEE Trans. Inf. Theory 2011, 57, 920–952. [Google Scholar] [CrossRef]
- Choi, J.W. Adaptive linear turbo equalization over doubly selective channels. IEEE J. Ocean. Eng. 2011, 36, 473–489. [Google Scholar] [CrossRef]
- Tao, J.; Wu, J.; Zheng, Y.R.; Xiao, C. Enhanced MIMO LMMSE turbo equalization: Algorithm, simulations, and undersea experimental results. IEEE Trans. Signal Process. 2011, 59, 3813–3823. [Google Scholar] [CrossRef]
- Otnes, R.; Eggen, T.H. Underwater acoustic communications: Long-term test of turbo equalization in shallow water. IEEE J. Ocean. Eng. 2008, 33, 321–334. [Google Scholar] [CrossRef]
- Duan, W.; Zheng, Y.R. Bidirectional soft-decision feedback turbo equalization for MIMO systems. IEEE Trans. Veh. Technol. 2016, 65, 4925–4936. [Google Scholar] [CrossRef]
Parameters | The Proposed Method | The Method Using Traditional Minimum Mean Square Error (MMSE) Equalization |
---|---|---|
Communication band (kHz) | 8–16 | 8–16 |
The number of subbands of filtered multitone (FMT) modulation | 8 | 8 |
Roll-off factor of each transmit filter | 0.5 | 0.5 |
Symbol interval (ms) | 1.5 | 1.5 |
Mapping pattern | Binary phase shift keying (BPSK) 8 phase shift keying (8PSK) | BPSK, 8PSK |
Number of information bits on each subband | 750 (BPSK), 2250 (8PSK) | 1500 (BPSK), 4500 (8PSK) |
Error control coding (ECC) | Convolution code with generator polynomial [7,5] | None |
Number of mapped symbols on each subband | 1500 | 1500 |
Symbol rate on each subband (symbol/s) | 667 | 667 |
Information bit rate on each subband (bit/s) | 333 (BPSK), 1000 (8PSK) | 667 (BPSK), 2000 (8PSK) |
The number of equalization coefficients | 25 | 25 |
Band (kHz) | After Equalization (Each Subband: 667 symbol/s) | After Decoding (Each Subband: 333 bit/s) | ||
---|---|---|---|---|
SER | MI | BER | MI | |
8–9 | 0/1400 | 1 | 0/700 | 1 |
9–10 | 3/1400 | 0.997 | 0/700 | 1 |
10–11 | 1/1400 | 0.999 | 0/700 | 1 |
11–12 | 4/1400 | 0.989 | 0/700 | 1 |
12–13 | 0/1400 | 0.999 | 0/700 | 1 |
13–14 | 0/1400 | 1 | 0/700 | 1 |
14–15 | 0/1400 | 1 | 0/700 | 1 |
15–16 | 3/1400 | 0.998 | 0/700 | 1 |
Band (kHz) | After Equalization (Each Subband: 667 symbol/s) | After Decoding (Each Subband: 1000 bit/s) | ||||||
---|---|---|---|---|---|---|---|---|
SER | MI | BER | MI | |||||
1st | 2nd | 1st | 2nd | 1st | 2nd | 1st | 2nd | |
8–9 | 411/1400 | 39/1400 | 0.739 | 0.971 | 18/2100 | 0/2100 | 0.931 | 0.998 |
9–10 | 144/1400 | 8/1400 | 0.908 | 0.991 | 0/2100 | 0/2100 | 0.990 | 0.999 |
10–11 | 240/1400 | 11/1400 | 0.830 | 0.991 | 0/2100 | 0/2100 | 0.973 | 0.999 |
11–12 | 496/1400 | 263/1400 | 0.700 | 0.939 | 55/2100 | 5/2100 | 0.887 | 0.991 |
12–13 | 390/1400 | 39/1400 | 0.734 | 0.961 | 29/2100 | 0/2100 | 0.920 | 0.996 |
13–14 | 206/1400 | 3/1400 | 0.849 | 0.994 | 4/2100 | 0/2100 | 0.978 | 0.999 |
14–15 | 205/1400 | 17/1400 | 0.889 | 0.994 | 6/2100 | 0/2100 | 0.983 | 1 |
15–16 | 338/1400 | 13/1400 | 0.765 | 0.951 | 9/2100 | 0/2100 | 0.954 | 0.995 |
Band (kHz) | SER of BPSK Mapping (Each Subband: 667 symbol/s, 667 bit/s) | SER of 8PSK Mapping (Each Subband: 667 symbol/s, 2000 bit/s) |
---|---|---|
8–9 | 0/1400 | 411/1400 |
9–10 | 3/1400 | 144/1400 |
10–11 | 1/1400 | 240/1400 |
11–12 | 4/1400 | 496/1400 |
12–13 | 0/1400 | 390/1400 |
13–14 | 0/1400 | 206/1400 |
14–15 | 0/1400 | 205/1400 |
15–16 | 3/1400 | 338/1400 |
Band (kHz) | BER of the Proposed Method after Performance Convergence Reached (Each Subband: 667 symbol/s, 1000 bit/s) | BER of the Method Using Traditional Adaptive Equalization (Each Subband: 667 symbol/s, 667 bit/s) |
---|---|---|
8–9 | 0/2100 | 0/1400 |
9–10 | 0/2100 | 3/1400 |
10–11 | 0/2100 | 1/1400 |
11–12 | 5/2100 | 4/1400 |
12–13 | 0/2100 | 0/1400 |
13–14 | 0/2100 | 0/1400 |
14–15 | 0/2100 | 0/1400 |
15–16 | 0/2100 | 3/1400 |
Total | 5/16800 | 11/11200 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Wang, M.; Zhang, G.; Li, H.; Huang, L. Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization. Sensors 2019, 19, 2714. https://doi.org/10.3390/s19122714
Sun L, Wang M, Zhang G, Li H, Huang L. Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization. Sensors. 2019; 19(12):2714. https://doi.org/10.3390/s19122714
Chicago/Turabian StyleSun, Lin, Mei Wang, Guoheng Zhang, Haisen Li, and Lan Huang. 2019. "Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization" Sensors 19, no. 12: 2714. https://doi.org/10.3390/s19122714
APA StyleSun, L., Wang, M., Zhang, G., Li, H., & Huang, L. (2019). Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization. Sensors, 19(12), 2714. https://doi.org/10.3390/s19122714