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Abstract: High-resolution satellite images (HRSIs) obtained from onboard satellite linear array
cameras suffer from geometric disturbance in the presence of attitude jitter. Therefore, detection
and compensation of satellite attitude jitter are crucial to reduce the geopositioning error and to
improve the geometric accuracy of HRSIs. In this work, a generative adversarial network (GAN)
architecture is proposed to automatically learn and correct the deformed scene features from a single
remote sensing image. In the proposed GAN, a convolutional neural network (CNN) is designed to
discriminate the inputs, and another CNN is used to generate so-called fake inputs. To explore the
usefulness and effectiveness of a GAN for jitter detection, the proposed GANs are trained on part of
the PatternNet dataset and tested on three popular remote sensing datasets, along with a deformed
Yaogan-26 satellite image. Several experiments show that the proposed model provides competitive
results. The proposed GAN reveals the enormous potential of GAN-based methods for the analysis
of attitude jitter from remote sensing images.

Keywords: remote sensing; jitter detection; image restoration; convolutional neural network; genera-
tive adversarial network

1. Introduction

In the application of high-resolution (HR) optical satellites, attitude jitter is a key
factor affecting the accuracy of geopositioning and 3D mapping. Satellite jitter is commonly
induced by the satellite’s thermal change, attitude control operation, dynamic structure
and other factors [1–3]. Jitter is extremely difficult to eliminate [4]. Due to the complexity
of jitter sources, satellite jitter is unavoidable, and its frequencies and amplitudes vary
among satellites.

The linear array pushbroom camera has been used in high resolution remote sensing
as a mature sensor device. Line scan imaging refers to forming a line image, or even a
two-dimensional image. During each scan, the same scan line is imaged through the center
projection, such as a linear CCD pushbroom camera [5]. Therefore, with respect to a satellite
equipped with CCD linear array sensors, attitude jitter can deteriorate the geopositioning
and mapping accuracy of HR satellites in both plane and height [6]. The warping of remote
sensing images and the attitude variations are well known and are of wide concern.

The oscillations of a spacecraft around its rotation axis consequently deform the
geometric performance of HR satellite imagery. Remote sensing satellites, such as Terra,
ALOS, MOMS-2P, and QuickBird, suffer from satellite jitter. Figure 1 shows the acquisition
principle of the pushbroom camera from satellite platforms. The camera is moving straight
along the yb axis and recording 1D images over time, denoted by t. Jitter in the pitch and
row directions deforms the images in the xi and yi directions, respectively. According to
existing research [7], the influence of jitter in the yaw direction is sufficiently small to be
neglected. Figure 2 illustrates the deformed image caused by jitter in the two directions.
Jitter in the xi direction twists the airplane horizontally, and jitter in the yi direction stretches
and compresses the image in the vertical direction. In practice, image deformation occurs
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simultaneously in the two directions. Therefore, compensating images by means of classic
image processing algorithms becomes difficult. Consequently, advanced image processing
methods, such as deep learning, are required for this task.

Figure 1. Overview of the pushbroom acquisition principle.

Figure 2. Image deformation caused by jitter in the xi and yi directions.

Generally, three traditional methods are used to detect spacecraft jitter and restore
deformed remote sensing images. The first is to use high-performance attitude sensors
to obtain the attitude information with high time and angular resolution [8]. The second
is to use ground control points (GCPs) in the remote sensing scenes [9,10]. Methods that
depend on accurate GCPs or high-performance attitude sensors are economically and
technically infeasible for many on-orbit satellites [6]. The third method is to take advantage
of the fact that pushbroom sensors use the parallax formed by neighboring multispectral
sensors [11–17]. The method requires image pairs collected at the same location in different
times and has high requirements for the accuracy of feature extraction and image matching.
Thus, new jitter detection and image compensation methods are required, providing only
deformed panchromatic images when adjacent bands are not available.

In recent years, the study of feature extraction is particularly important. Fan,
Mengbao, et al. proposed the phase of spectral PEC response to serve as an original feature
in pulsed eddy current (PEC) research and presented a strategy to determine frequency
and select superior feature [18]. Furthermore, many deep learning models, especially
deep convolutional neural networks (CNNs), have been proposed in the remote sensing
community. In [19], a novel pixel-pair method was proposed as a deep spectral classifier
to classify remote sensing images with insufficient training samples. Zi et al. introduced
a double-branch principal component analysis (PCA) network to segment cloud areas
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from remote sensing images [20]. Zhou et al. demonstrated the excellent performance
of CNN methods on remote sensing image retrieval tasks [21]. Moreover, CNNs also
show great potential in various image processing tasks, such as image denoising [22], pan
sharpening [23], and target recognition [24].

Although considerable progress has been made, deep-learning-based models often
encounter a serious problem known as overfitting when the training data are limited.
Unfortunately, because data preparation is time-consuming and expensive, training data
are commonly limited in the remote sensing community, which substantially restricts the
generalization of models. Thus, effective training strategies for deep models are required
to address the issue of overfitting. In a deep convolutional GAN model, the discriminator
network of the GAN can be regarded as a regularization method that can force the generator
network to learn essential features and mitigate overfitting to a great extent. Because of the
advantages of deep convolutional GAN, GAN has shown great feasibility in a variety of
remote sensing applications, such as image classification [25], image pan sharpening [26],
and image translation [27].

In this work, the application of GANs for deformed image compensation is original
introduced to explore for attitude correction. We have conducted a comprehensive and
in-depth study on attitude jitter analysis and the restoration of deformed images based on
the generative adversarial network, by using completely different ideas and methods to
design a new network architecture that can automatically detect jitter and restore deformed
remote sensing images end-to-end through one network architecture. A GAN-based
image jitter compensation network (RestoreGAN) for remote sensing images is proposed.
RestoreGAN takes a single deformed image as input and outputs a restored image along
with jitter curves. The experimental results for three datasets and a Yaogan-26 deformed
image illustrate the superiority of RestoreGAN compared with other methods under
the condition of limited training samples. The rest of this work is organized as follows.
Section 2 presents the background of satellite jitter and the details of the proposed GAN
framework, including image interpretation architectures for jitter detection, along with
the introduction of adversarial losses for image compensation. Details of the experimental
results and discussions are reported in Section 3. In Section 4, conclusions are presented.
The major contributions of the paper are summed up as follows.

1. Aiming at detection and compensation of satellite attitude jitter, in this paper, a gener-
ative adversarial network architecture is original introduced to automatically learn
and correct the deformed scene features from a single remote sensing image suffer
from geometric disturbance in the presence of attitude jitter.

2. We proposed a new GAN-based image jitter compensation network (RestoreGAN) for
remote sensing images. Compared with the previous architecture, two convolution
blocks with large kernels are first applied, which has been proven helpful to learn
the HR features and improve network capability. Then, one stride convolution block
and two residual blocks with batch ormalization are introduced. The discriminator
network of the GAN can be regarded as a regularization method that can force the
generator network to learn essential features and mitigate overfitting to a great extent.

3. We constructed a comprehensive and in-depth study on the analysis of attitude jitter
from remote sensing images based on generative adversarial network. The experi-
mental results on three public datasets indicate that the proposed framework achieves
the highest DM and best performance on most of the restored images. The image
retrieval results demonstrate the necessity and effectiveness of the proposed method
in image retrieval tasks.

2. Materials and Methods
2.1. Jitter Displacement Estimation Modeling

A jitter detection and compensation model is established to compensate for the image
distortion caused by satellite jitter. According to previous work [28], jitter displacement
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can be modeled as an attitude jitter component combined with one or more sinusoidal
functions of different frequencies, amplitudes and phases, as demonstrated in Equation (1):

∆φp(t) =
N

∑
i=1

Api sin
(
2π fpi + φpi

)
(1)

Here, Api demotes the amplitude. fpi demotes the frequency. φpi denotes the phase of
the sinusoidal function. ∆φp(t) denotes the attitude jitter at imaging time t. Furthermore,
p denotes the attitude jitter direction in the body coordinate reference system, as shown
in the Figure 1. According to the jitter detection results for ZY-3 and Yaogan-26 satellites
images [5,7], satellite jitter in the body coordinate system is composed of three parts:
a sinusoidal curve with the dominant frequency and maximum amplitude, several high-
frequency curves with small amplitude, and several low-frequency curves with small
amplitude. Therefore, provided the satellite intrinsic parameters, Equation (1) can be
rewritten as:

∆φp(t) = Am sin(2π fm + φm) +
Nh

∑
i=1

Ah sin(2π fh + φh) +
Nl

∑
i=1

Al sin(2π fl + φl). (2)

Here, the first term on the right-hand side of the equation is the dominant frequency
sinusoidal function. The second and third terms are the high-frequency and low-frequency
parts of the jitter displacement, respectively. In the satellite platform, the dominant fre-
quency is based on the expected attitude accuracy of the AOCS control system, which is
expected to have the largest influence on attitude inaccuracies [29]. The high-frequency
jitter is caused by the vibration of the platform, wheels, CMGs, and flexible accessories
and the transient motion of the moving parts. The low-frequency jitter is generated by
temperature variation, seasonal variation, orbital perturbation, gravity gradient moments,
and so on [30].

In the geometric compensation, the relationship between the satellite attitude jitter
and the pixel displacement of the images is demonstrated below:

Dp(xi) =
∆φxb

Ps fc
(3)

Dp(yi) =
∆φyb

Ps fc
, (4)

where ∆φx and ∆φy are the satellite attitude jitter in the body coordinate system, known as
the pitch and the roll, as shown in Figure 1. PsN and fc are the pixel size and focal length,
respectively. Dp(xi) and Dp(yi) are the image displacement in the xi and yi directions,
respectively. Therefore, given that the pixel size and focal length are invariant for a specific
satellite, the equation of the image displacement is the same network as the attitude jitter
in Equation (2). Moreover, the image displacement reflects the image deformation directly.

Then, the image displacement formula with random parameters is used in the high-
resolution remote sensing images and the distorted images are generated. In addition,
original and distorted image pairs are prepared for training and evaluating our models.

2.2. GAN-Based Jitter Estimation

GAN was first proposed by Goodfellow et al. [31] in 2014.The idea of a GAN is to
define a game between two competing networks: discriminator and generator. Generator G
can capture the potential distribution of real data and output new data, while discriminator
D is a binary classifier that can judge whether the input samples are real. We proposed
a new GAN-based image jitter compensation network (RestoreGAN) for remote sensing
images. Compared with the previous architecture, two convolution blocks with large
kernels are first applied in this work, which are helpful to learn the HR features and
improve network capability. Then, one stride convolution block and two residual blocks
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with batch normalization are introduced. The discriminator network of the GAN can be
regarded as a regularization method that can force the generator network to learn essential
features and mitigate overfitting to a great extent. From a theoretical perspective, the
ultimate aim of the GAN architecture is to solve the following minimax problem:

min
G

max
D

= E
x∼pr

[log(D(x))]− E
x̃∼pq

[log(1− D(x̃))], (5)

where Pr is the data distribution and Pg is the model distribution. E is the expectation oper-
ator. The basic GAN structure encounters several problems, such as difficult convergence,
mode collapse, and vanishing gradient, as described in [32]; therefore, a Wasserstein GAN
(WGAN) [33] was proposed to improve the feasibility and efficiency. The Earth mover’s
distance (Wasserstein distance) is introduced to rewrite Equation (5) as:

min
G

max
D∈L

= E
x∼pr

[D(x)]− E
x̃∼pq

[D(x̃)] (6)

where L is the set of 1-Lipschitz functions. By introducing Lipschitz functions, WGAN
provides a gradient to push Pg towards Pr. Then, a weight clipping strategy is utilized to
enforce a Lipschitz constraint in the WGAN.

Given the deformed remote sensing image ID, the goal is to detect the image jitter and
output the compensated image IR. To achieve this goal, a CNN referred to as Generator
Gθ is created. For each ID and network Gθ , the IR is estimated. Simultaneously, during
the training phase, the output of Generator Gθ and the original image IO are introduced
into another CNN referred to as Discriminator Dθ , which helps the training of Gθ in an
adversarial manner. To generate jitter vectors simultaneously, the final layer of the Gθ is a
fully connected layer, and the network output is the jitter vectors in two directions. Then,
an image resampling model is introduced to interpolate the deformed images and retrieve
the restored images. An overview of RestoreGAN is given in Figure 3.

Figure 3. Overview of the proposed RestoreGAN.

As shown in Figure 3, the loss function of the proposed architecture is formulated as a
combination of content loss, jitter loss and adversarial loss:

LGAN = Ladv + λ1Lcon + λ2Ljit, (7)

where λ1 and λ2 are hyperparameters that control the weights of different losses.
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2.2.1. Adversarial Loss

The format of the critical function from WGAN is utilized to achieve stable, high-
quality results, and to reduce the instability of the GAN training, feature matching loss [32]
is implemented. Unlike the classic GAN architecture in which Gθ is updated based on the
binary output of Dθ (real or fake), feature matching loss updates Gθ based on the internal
representation of Dθ . Let f (x) be a function that outputs an intermediate layer of the
discriminator Dθ for a given input x. The adversarial loss is calculated as follows:

Ladv =
1
N

N

∑
n=0

( f (Io)− f (IR))
2, (8)

where N is the number of image batches.

2.2.2. Content Loss

To optimize the generator towards learning contextual information of the correct
images, content loss is introduced to penalize the generator by measuring the distance
between the correct images and the generated images. According to [34], L1-type loss
yields less blurry results than does L2-type loss. Hence, the L1 distance between the correct
and generated images is utilized as the content loss, which is defined as follows:

Lcon =
1
N

N

∑
n=0
‖(Io − IR)‖. (9)

2.2.3. Jitter Loss

In this task, jitter loss is the Euler distance between the generated jitter vectors and the
true jitter vectors. Jitter loss is introduced to help the generator find the correct direction to
reduce the loss and thereby accelerate the training phase. Jitter loss is defined as follows:

Ljit =
1
N

N

∑
n=0

(ẑ− z)2. (10)

The architecture of the discriminator in RestoreGAN is the same as that of the dis-
criminator from DCGAN [35] and is illustrated in Figure 4. Compared with the previous
architecture [36], two convolution blocks with large kernels are first applied, which has
been proven [37] helpful to learn the HR features and improve network capability. Then
one stride convolution block and two residual blocks with batch normalization are intro-
duced. After that, another one stride convolution block with Expanded tanh(Et) layer is
introduced due to the large amplitude of the output Ẑ. The ordinary tanh function clips
the input into −1 to 1, and the Expanded tanh layer can expand the input into the range
from A to −A by multiplying an expanded factor A.

Figure 4. Architecture of the proposed generator in RestoreGAN.

After applying the flatten layer and reshape layer, the proposed generator outputs the
two directional jitter vectors with the same length as the image height. The generated jitter
is then utilized in the loss function to train RestoreGAN.
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2.3. Image Area Selection

In practice, when applying pretrained models to deformed remote sensing images,
image patches of the same size as the model input should be selected to detect jitter and
compensate the images. Considering that different scenes present different degrees of
deformation and that the pixels of the same imaging lines suffer the same jitter, some
image samples with obvious deformation are retrieved from the raw image to detect jitter.
Because the onboard camera scans scenes in the horizontal direction, vertical features
are more sensitive to jitter deformation than are horizontal features. Figure 5a,c shows
two extreme situations in which jitter occurs on a horizontal road and a vertical road. In
this work, we introduce a Sobel operator in the vertical direction to detect image edges,
as shown in Figure 5b,d. The Sobel operator is defined as below:

S =

 −1 0 1
−2 0 2
−1 0 1

 (11)

Figure 5. Edge detection by the Sobel operator in the vertical direction. (a): An example deformed
image with horizontal features; (b): Edge detection result of (a); (c): An example deformed image
with vertical features; (d): Edge detection result of (d).

Thus, the image deformation metric (IDM) is proposed to evaluate the deformation
degree of image patches. The IDM formula is as follows:

IDM =
1

WH

W

∑
x=0

H

∑
y=0

(Cov(IR, S)), (12)

where Cov represents the convolution operation and W and H are the width and height of
the images. Image patches with high IDM are selected as inputs of the proposed method,
and the raw image is then corrected by image interpolation with combined jitter.

3. Experimental Results and Discussion
3.1. Data Preparation

In this task, three popular datasets, PatternNet [21], UC Merced [38] and WHU-RS19 [39],
are adopted to validate the proposed method. Moreover, a deformed image from the
Yaogan-26 satellite [7] is introduced to verify the proposed method.

The PatternNet dataset was collected by Zhou et al. from HR imagery and contains
38 classes with 800 images per class. Each image in the dataset is 256 × 256 pixels with RGB
channels. The images were manually extracted from large images from the USGS National
Map Urban Area Imagery collection for various urban areas around the country. The pixel
resolution of this public domain imagery is one foot.

The UC Merced Land Use dataset, released in 2010, contains 21 classes with 100 images
per class. The images were manually extracted from large images from the USGS National
Map Urban Area Imagery collection for various urban areas around the country.

The WHU-RS19 dataset was extracted from a set of satellite images exported from
Google Earth with spatial resolution up to 0.5 m and spectral bands of red, green, and blue.
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The dataset is composed of 19 classes of different scenes with 50 images per class. Each im-
age in the dataset is 600 × 600 pixels.

The Yaogan-26 satellite launched by China in 2014 is a HR optical satellite that orbits
synchronously against the Sun at an altitude of 490 km. Due to various attitude maneuvers,
the remote sensing images suffer from low-frequency satellite jitter. In the Yaogan-26
satellite platform, the high-frequency angular displacement sensor can measure platform
jitter in a frequency range of 0.2∼450 Hz and output high-frequency attitude jitter data,
which provides a good method for the on-ground compensation of the jitter in an image.
The deformed image and the image corrected by onboard sensors are introduced to validate
our methods.

To prepare the dataset to train and validate the proposed methods, the RGB im-
ages from each dataset are transformed into gray images, and each image is resized
256 × 256 pixels. Equation (2) with random parameters is then applied to the images to
generate deformed and correct image pairs. Then, the deformed images are resized to
128 × 128 pixels to accelerate the training process. To verify the generality of the pro-
posed RestoreGAN, only five image classes from the PatternNet dataset with palpable
edge features are selected for training. The training classes are ’solarpanel’, ’ f reeway’,
’parkingspace’, ’runway’, and ’overpass’. Additionally, one-fourth of each class in the train-
ing data was utilized for validation to evaluate the training performance and to monitor
overfitting in the training phase.

3.2. Training Details

We implemented all our models using the Tensorflow deep learning framework.
All methods were trained in the Python environment with a i7 CPU with 16 GB RAM and a
GeForce GTX 1060 GPU with 6GB RAM. For optimization, we performed gradient descent
at each time point for Gθ and Dθ using Adam as a solver. The learning rate was initially
1× 10−4 for both the generator and discriminator, and the learning rate decayed every
10 iterations to accelerate the training process. The batch size of the training process was
five due to the memory limitations of the GPU.

3.3. Results on Different Frequencies and Amplitudes

According to the jitter results from the ZY-3 satellite [40], Yaogan-3 satellite [7] and
ALOS satellite [3], the image jitter can be considered to be a combination of a sinusoidal
function with the dominant frequency and several noisy sine curves with different frequen-
cies. The dominant frequency and amplitude vary by satellites and image resolution. To
verify the generalization ability of the proposed method, the restoration results for the
jitter of different dominant amplitudes and frequencies are illustrated. Additionally, the
deformation metric (DM) is proposed to evaluate the restoration results. The DM is similar
to the RestoreGAN loss from Equation (5) and is defined as follows:

DM = 100Lcon + Ljit, (13)

where the definition of Lcon and Ljit in Equation (13) are the same as those in Equation (5).
The lower the DM is, the better the compensation results that can be acquired. Figure 6a
shows that the best performance is achieved for a dominant amplitude ranging from 5 to
8 pixels. When the amplitude of the jitter is 10 pixels or more, the proposed method loses the
ability to compensate the deformed images. In Figure 7, deformed images with dominant
amplitudes of 2 pixels, 6 pixels, and 11 pixels are illustrated. Due to the input image size
of 128 pixels, the deformation in Figure 7c is excessively severe and can be treated as an
anomalous situation. Similarly, the dominant frequency with DM is illustrated in Figure 6b,
and RestoreGAN shows better performance in the frequency range from 0.06 Hz to 0.10 Hz.
Deformed images with dominant frequencies of 0.03 Hz, 0.07 Hz and 0.13 Hz are shown in
Figure 7d–f, respectively. In Figure 7d, the deformation with low frequency looks similar
to the natural curves from the other classes, which will confuse the proposed model and
result in an output of near-zero jitter results. In other words, RestoreGAN may ignore the
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deformation when the frequency is too low. On the other hand, Figure 7c illustrates that
deformation with high frequency can also be treated as an anomalous situation. Therefore,
in terms of jitter deformation due to reasonable satellite vibration and platform controller
bias, RestoreGAN shows good capacity to detect jitter and correct the image.

Figure 6. Jitter test results with different dominant frequencies and amplitudes on pretrained
RestoreGAN. (a): Loss of RestoreGAN for deformed images with different dominant amplitudes;
(b): Loss of RestoreGAN for deformed images with different dominant frequencies.

Figure 7. Deformation results of Equation (2) for different dominant frequencies and dominant
amplitudes. (a): Amplitude = 2 pixels; (b): Amplitude = 6 pixels; (c): Amplitude = 11 pixels;
(d): Frequency = 0.03 Hz; (e): Frequency = 0.07 Hz; (f): Frequency = 0.13 Hz.

3.4. Image Restoration Experiments

In this experiment, the proposed RestoreGAN is compared with UnrollingCNN [37],
GenCNN, and ContGAN. UnrollingCNN corrects the motion distortion caused by the
rolling shutter effect of camera motion. UnrollingCNN achieves good compensation effects
by using row and column kernel banks. In this work, the architecture of UnrollingCNN
from [37] is utilized to generate image jitter, and the image resampling model in Figure 3 is
adopted to compensate the images. GenCNN is another CNN model that adapts only the
Gθ from RestoreGAN to correct images. The loss function of GenCNN is the same as that in
Equation (7), while Ladv is set to 0 to remove the influence of the discriminator. It is worth
mentioning that the GenCNN is the same network as the IJC-Net proposed in the previous
work [36]. ContGAN is a GAN that considers only the content loss during the training
phase. ContGAN has the same architecture as RestoreGAN, with λ2 in Equation (7) equal
to 0. All the methods are trained on the same images from five classes of the PatternNet
dataset, and the parameters of the backpropagation process are also the same as those of
RestoreGAN. The effectiveness of different compensation methods is evaluated based on
the image restoration results.
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Figure 8 shows the restoration results of the different methods on the three datasets.
Clearly, the proposed RestoreGAN has the best DM results in almost all classes of all the
datasets. The experimental results provide solid evidence that RestoreGAN generally
has superior deformed image restoration performance compared with other methods.
Moreover, GenCNN and ContGAN achieve worse results for most classes, which means
that jitter loss makes a greater contribution than does adversarial loss in the training phase.
The results of GenCNN and UnrollingCNN illustrate the effectiveness and necessity of the
GAN structure with adversarial loss in the training phase.

Figure 8. Restoration results of different methods on the three datasets. (a): DM results on the Pat-
ternNet dataset; (b): DM results on the UCMerced dataset; (c): DM results on the WHU-RS19 dataset.

Figure 9 presents deformed images from different datasets that are corrected by the
different methods compared to the ground truth. Figure 9a shows that the deformed
circular features from the wastewater treatment plant image are learned and corrected
by the proposed method. Compared with the other methods, the proposed method can
largely correct the slight twist and odd inflections in the plant edges. In Figure 9b,c, the
restored jitter in the x and y directions is plotted against the ground truth. The estimated
jitter indicates that the proposed method generates the best jitter among all the methods,
especially in the peak area of the jitter. The buildings in Figure 9d illustrate the excellent
performance of the proposed method on human-made scenery with many straight lines.
The industrial image from the WHU-RS19 dataset in Figure 9g shows that the proposed
method is able to rectify the deformed features from images with resolution lower than
that of the training data. The jitter detection results in Figure 9 also illustrate the generally
better performance in the x direction compared with the y direction because the image
deformation caused by satellite jitter is more noticeable in the x direction in most cases.
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Figure 9. Restoration results of different models on the three datasets. (a): Restoration results on
the wastewater treatment plant image of the PatternNet dataset; (b): Corresponding jitter in the
x direction; (c): Corresponding jitter in the y direction; (d): Restoration results on the building
image of the UCMerced dataset; (e): Corresponding jitter in the x direction; (f): Corresponding
jitter in the y direction; (g): Restoration results on the industrial image of the WH-RSU19 dataset;
(h): Corresponding jitter in the x direction; (i): Corresponding jitter in the y direction.

Figure 10 shows the restoration results on the distorted Yaogan-26 high-resolution
images affected by real attitude jitter. Considering the large size of the raw image, the
IDM metric from Equation (12) is introduced to retrieve image patches from the raw image.
Then, the jitter in each patch is detected by RestoreGAN and the jitter components of the
same lines are combined. Finally, the image resampling model from Figure 3 is utilized
to correct the raw image. The airport runways in Figure 10 demonstrate that the palpable
image deformation can be detected and rectified successfully. Considering the restoration
bandwidth explained in Figure 6, some low-frequency deformation remains in the restored
image compared with the onboard sensor result. Moreover, the jitter curve obtained for the
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Yaogan-26 image is similar to the jitter generated from the training images, which confirms
the good performance of the proposed method.

Figure 10. Restoration results on the Yaogan-26 satellite image dataset. (a): Restoration results on
the Yaogan-26 satellite airport image. From left to right: Raw deformed image; Image restored by
RestoreGAN; Image restored by onboard sensors; (b): Jitter in the x direction for the two methods;
(c): Jitters in the y direction for the two methods.

To further verify the validity of the proposed method, a pretrained ResNet50 deep
learning model from [21] is established to complete the image retrieval task. The test dataset
created from PatternNet is utilized, and five metrics, P@5 , P@10 , P@50 , P@100 and mAP,
are introduced to evaluate the performance. These commonly used performance metrics ,
means average precision (mAP) and precision at k (P@k where k is the number of retrieved
images) are the averaged values over all the queries.The detailed definition of the metrics
can be found in [21]. The image retrieval results are shown in Table 1, which shows that
after employing the image restoration methods, the image retrieval results are substantially
improved in terms of all metrics, and the proposed method achieves the best performance.
Considering that satellite jitter disturbs the edge features and essential textures, the image
deformation could confuse the deep-learning-based image retrieval methods and increase
the retrieval error rate. The results in Table 1 demonstrate the necessity and effectiveness
of jitter compensation in image retrieval tasks.

Table 1. Image retrieval results by ResNet50 on deformed and restored images from PatternNet.

Image Type P @ 5 P @ 10 P @ 50 P @ 100 mAP

Deformed 0.4263 0.41736 0.3947 0.381 0.2495
UnrollingCNN 0.6231 0.6089 0.5925 0.5726 0.3901
GenCNN 0.6157 0.6042 0.5691 0.5438 0.3622
ContGAN 0.6105 0.6079 0.5685 0.5448 0.3580
RestoreGAN 0.6979 0.6926 0.6575 0.6359 0.4180

4. Conclusions

In this paper, the usefulness and effectiveness of GAN for HR remote sensing image
restoration is explored. Based on improved GAN, the proposed method has been trained
and evaluated on distorted HR remote sensing image datasets with simulated jitter vectors.
The experimental results on three public datasets indicate that the proposed network
architecture achieves the highest DM and best performance on most of the restored images.
The image retrieval results demonstrate the necessity and effectiveness of our method in
image retrieval tasks. Furthermore, the Yaogan-26 image compensation results illustrate
that the deformed images can be corrected without any auxiliary sensor data, which



Sensors 2021, 21, 4693 13 of 14

are usually hard to obtain. In conclusion, the proposed RestoreGAN reveals the huge
potential of GAN-based methods for the analysis of attitude jitter in remote sensing images.
To increase the validity of this work, several aspects remain for further improvement.
The first is that we expect to use fewer samples to learn better features, which is meaningful
in remote sensing images. Secondly, it is normally a reasonable assumption for satellite
HR images that the attitude jitter in the yaw direction is much less noticeable than that
in the other two directions. However, we should also pay attention to the correction of
the yaw direction jitter in remote sensing images. Moreover, the present methodology can
be independently implemented with conventional methodologies, which will be a future
research direction.
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