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Abstract: Bowing is the fundamental motor action responsible for sound production in violin playing.
A lot of effort is required to control such a complex technique, especially at the beginning of violin
training, also due to a lack of quantitative assessments of bowing movements. Here, we present
magneto-inertial measurement units (MIMUs) and an optical sensor interface for the real-time
monitoring of the fundamental parameters of bowing. Two MIMUs and a sound recorder were used
to estimate the bow orientation and acquire sounds. An optical motion capture system was used
as the gold standard for comparison. Four optical sensors positioned on the bow stick measured
the stick–hair distance. During a pilot test, a musician was asked to perform strokes using different
sections of the bow at different paces. Distance data were used to train two classifiers, a linear
discriminant (LD) classifier and a decision tree (DT) classifier, to estimate the bow section used. The
DT classifier reached the best classification accuracy (94.2%). Larger data analysis on nine violin
beginners showed that the orientation error was less than 2◦; the bow tilt correlated with the audio
information (r(134) = −0.973, 95% CI [−0.981,−0.962], p < 0.001). The results confirmed that the
interface provides reliable information on the bowing technique that might improve the learning
performance of violin beginners.

Keywords: human movement; motor control; motor learning; feedback; MIMU; variability; behavior

1. Introduction

A violin is one of the most complex musical instruments to learn. Its structure
forces the trainee to maintain unnatural body postures for long periods. Moreover, since
producing pleasant sounds is a hard task that requires a precise model of the instrument to
properly interact with it, the initial phase of training is not rewarding for practitioners in
terms of auditory feedback.

Despite the different methods that are adopted to teach the violin, it is common to start
training the fundamentals of bowing techniques with a series of basic exercises focused on
elementary motor skills. In particular, the first year of study is almost entirely dedicated
to learning how to perform bowing on open strings (i.e., without pressing strings on the
neck with the left hand) in a natural, fluid, and smooth way. Such bowing gestures require
the development of precise sensorimotor control both in time and space domains. It has
been estimated that 10,000 h of training is needed to bring fine sensorimotor control to a
professional level [1].

In the first phase of teaching, teachers hold the arms of the students and guide
their gestures so they perform the correct movement. In this way, with practice and
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the teachers’ feedback, beginners gradually learn to automatically perform the correct
movement. Learning musical instruments is strongly based on such teacher–student
interaction, where teachers show how to perform a specific exercise and students attempt
to imitate their performance. This process requires time and the constant supervision
of the teacher. To reduce learning time, technological solutions might be developed to
provide students with reliable feedback about their movement, even when the teacher is not
physically present. Such technologies should allow monitoring of the factors that have the
maximum influence on the quality of the sound emitted [2,3]: (i) the bow section, i.e., the
transversal bow portion in direct contact with the string; (ii) the bow–bridge distance,
i.e., the distance between the bridge and the point of the string in contact with the bow hair;
(iii) the bow velocity; and (iv) the bow force, i.e., the force applied by the musician through
the bow on the string. Although each of these parameters influences sound quality, in the
initial stages of training, trainees focus most on controlling bow orientation with respect to
the violin strings to keep the bow–bridge distance constant and play one string at a time.
Such skill can be worked on by dividing the bow into three parts: the lower section (closest
to the hand), the middle section, and the upper section (the most distal part of the bow).

A number of studies have applied technologies to the analysis of bowing movements.
For example, the bow–bridge distance is measured in [4] by using a resistive voltage
divider. In [5,6], the authors propose the use of a resistive strip placed along the bow stick.
Two square waves at different frequencies are generated at the opposite ends of the strips.
An electrode antenna, placed behind the bridge, receives through capacitive coupling the
combined signal coming from the bow and sends it to a remote unit. The latter separates
the two signals from each other. The proportion of the two coupled frequencies varies with
the transverse position of the bow. Bow force is generally measured by using strain gauges,
usually placed on the bow body [4,5,7]. Pardue et al. [8,9] use four optical sensors, placed
on the bow stick at specific distances from the frog, to measure the pressure exerted on the
string from the bow, as well as to identify the position of the contact point between the
bow hair and the string. In [5,10], a wireless measurement of the acceleration of the bow is
carried out by means of two accelerometers mounted on the frog. In [11,12], the violin and
bow poses are measured by means of an optical marker system. Van der Linden et al. [13]
combine motion capture based on optical markers with a wearable system to provide
vibrotactile feedback (music jacket). This allows children of different ages to exploit real-
time vibrotactile feedback delivered to the upper limb to learn the bowing technique. From
a technical perspective, the main limitation of the above approaches is the system used to
measure bowing techniques. In particular, while optical markers guarantee a high level
of accuracy, the small dimensions of the objects involved (i.e., the violin and the bow)
limit the possibility of opportunely placing the marker. Moreover, these systems require
several cameras to avoid problems of marker occlusion and need to strongly structure the
environment with high-cost technology.

While most systems allow for monitoring different aspects of bowing, only a few of
them [5,13] are specifically developed for teaching, and apparently none of them can be
effectively used at home with a low-cost technology. Table 1 summarizes the technologies
used. Each technology is assessed in terms of the number of variables it allows measure-
ment of and with respect to a set of usability parameters we derived from the system
usability scale [14].
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Table 1. The technology comparison table lists different technologies used to monitor bowing and provides information
about the variables they monitor and the usability.

Technology Variables to Be Monitored
(Accuracy: High, Medium, Low) Usability Parameters

Bow
Section

Bow–Bridge
Distance

Bow
Velocity

Bow
Acceleration

Bow
Force

Bow
Orientation Invasiveness Weight Integration

Difficulties Cost

Resistive strip
and capacitive

coupling

+
(High)

+
(High)

d
(Medium)

d
(Medium)

−
(N.A.)

−
(N.A.) Low Low High Low

Optical sensors +
(High)

−
(N.A.)

−
(N.A.)

−
(N.A.)

d
(Medium)

−
(N.A.) Low Low Medium Low

Strain gauges −
(N.A.)

−
(N.A.)

−
(N.A.)

−
(N.A.)

+
(High)

−
(N.A.) Low Low Low Low

MEMS
accelerometers

−
(N.A.)

−
(N.A.)

−
(N.A.)

+
(High)

−
(N.A.)

−
(N.A.) Low Low Low Low

Optical marker
systems

+
(High)

+
(Low)

d
(Medium)

d
(Medium)

−
(N.A.)

+
(High) High Low High High

MIMU −
(N.A.)

−
(N.A.)

−
(N.A.)

+
(High)

−
(N.A.)

+
(High) Low Low Low Low

(+) The variable can be directly measured; (−) the variable cannot be measured; and (d) the label can be derived from the row data. When
the variable can be measured, the accuracy is reported in parentheses; N.A.: not applicable.

Technological solutions that might be exploited for developing a real-time interface
for learning in violin-playing scenarios should be cheap; usable in minimally structured
environments, e.g., at home; and non-invasive. For these reasons, based on Table 1,
we carry out a feasibility study on the use of use magneto-inertial measurement units
(MIMUs) and optical proximity sensors for assessing bow orientation and bow section,
respectively. Indeed, MIMUs embed inertial accelerometers and gyroscopes as well as
magnetometers. This set of sensors allows easy reconstruction of the orientation solely
relying upon gravitational and geomagnetic fields, which are present everywhere on earth,
without the need of other sources of fields (sourceless). The optical proximity sensors are
usually composed of a transmitting module and a receiving module. They are typically
developed with an LED emitting on a specific bandwidth coupled with a phototransistor.
In reflective configuration, the LED and the phototransistor are mounted side by side in
the same plastic small case (usually a square chip a few millimeters long and wide and
1–2 mm in height) and can be easily used to measure the change in the distance of the
objects placed in front of the case. Such technologies are non-invasive and cheap and can
be easily embedded into a bow and a violin. The present interface could foster the learning
process by assisting violin beginners during their training as it provides the students with
feedback, even when the teacher is not physically present.

2. Materials and Methods

During the first year of training, violin beginners learn to control two fundamental
parameters of the bowing technique that strongly affect the quality of the sound produced:
the orientation of the bow with respect to the violin body and the contact point between
the bow and the string. To correctly perform bowing movements, the bow trajectory
should be maintained perpendicular to the violin strings during the whole movement.
Moreover, knowing the contact point between the bow and strings allows the learner to
master the different sections of the bow (i.e., upper, middle, and lower), each one having
different mechanical properties that allow for different usages of the bow (e.g., different
bow strokes).

To assess bow orientation, we considered two angles: the one between the bow hair
and the violin string (i.e., the α angle, Figure 1) and the angle between the bow hair and
the axis normal to the violin soundboard (i.e., the β angle, Figure 1). The α angle should
be kept at approximately 90◦ to maintain the bow–bridge distance constant during the
execution of a stroke, thus controlling the amplitude of the string’s vibration [4]. A proper
tilt of the bow (the β angle or the bow tilt) guarantees that only the effective string will
be played.
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Figure 1. (a) α is the angle between the bow hair and the violin string; (b) β is the angle between the
bow hair and the axis normal to the violin soundboard ( ˆzV ). ˆxV and ˆzV are, respectively, the x-unit
vector and the z-unit vector of the violin triad. x̂V

B is the projection of the x-unit vector of the bow
reference frame in the violin reference frame, as described in Equation (1).

Concerning the contact point between the bow and strings, we divided the bow length
into three sections (Figure 2): lower, the section closest to the frog; middle, in which the
equilibrium point of the bow typically falls; and upper, the most distal part of the bow.
We considered such division in line with technical exercises typically performed during
the first year of violin training [15]. Indeed, during training, students are often requested
to perform the same exercise using upper, middle, and lower sections. Moreover, some
advanced techniques, such as the balzato and saltellato, are performed exclusively using
specific sections of the bow due to their mechanical properties.

Figure 2. Sections of the bow and position of the optical sensors (see Section 2.2). The sensors from
S4 to S1 are placed, respectively, about L/14, 3/13 L, 3/4 L, and 24/25 L from the frog using a cable
tie (see the detailed view reported for sensor S2). The blue dot represents the section of the string in
contact with the bow hair. Sensor outcomes depend on the position (x(t)) of the contact point.

Since our aim was to demonstrate the feasibility of using a new interface in a specific
application, we decided to involve a few healthy adult volunteers to simulate the final
application scenarios, as explained in the following sections. When designing protocols for
assessing the feasibility of a technology to be used with human subjects, it is of paramount
importance to select commercial devices approved for use with humans, thus making it
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easier to obtain the approval of the institutional review board. In case it is necessary to
integrate some ad hoc solution, it is also important to provide all technical information
about safety, allowing the ethical committee to make an informed decision. This study was
preliminarily approved by the ethics committee of the Università Campus Bio-Medico di
Roma, and informed consent was obtained from all subjects involved in the study.

2.1. Measuring Bow–Violin Orientation

To estimate the orientation of the bow with respect to the violin body, we used two
XsensDots produced by Xsens Inc, small and light enough to be easily embedded on the
violin and on the bow. One sensor was mounted on the violin body between the tailpiece
and the bridge, with the box edge in contact and aligned with the bridge surface, and the
x-axis pointing in the direction of the strings (see SENS_V in Figure 3). The other one was
positioned on the frog, with its x-axis pointing in the direction of the bow hair (i.e., SENS_B
in Figure 3). Sensors were configured in data fusion mode to return their orientation with
respect to a local earth reference frame. With sensors in the XsensDots docking station, we
performed a heading reset operation to guarantee the alignment of the local earth reference
frame of each sensor and compensate for a possible noise source. We labeled this common
reference frame Rre f . We expressed the orientation of the bow with respect to the violin
body in terms of the orientation matrix (RV

B ) as

RV
B =

[
x̂V

B ŷV
B ẑV

B
]
, (1)

where the columns of the matrix are the projections of the unit vectors of the bow reference
frame in the violin reference frame. This matrix was derived from the orientation of the
sensors with respect to the common reference frame, as in Figure 3:

RV
B =

(
Rre f

V

)T
∗ Rre f

B = RV
re f Rre f

B (2)

Figure 3. Arrangement of sensors on the violin and on the bow. Rre f
V expresses the orientation of the

violin with respect to the reference triad, represented in black. Rre f
B expresses the orientation of the

bow with respect to the reference triad, represented in black.
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Knowing the relative orientation of the bow with respect to the violin body (1–2), it is
possible to estimate the α and β angles as follows (Figure 1):

‖x̂V
B × x̂V‖= ‖x̂V

B ‖ ‖x̂V‖ sin α ≡ sin α (3)

x̂V
B · x̂V= ‖x̂V

B ‖ ‖x̂V‖ cos α ≡ cos α (4)

α = arctg

(
‖x̂V

B × x̂V‖
x̂V

B · x̂V

)
(5)

‖x̂V
B × ẑV‖= ‖x̂V

B ‖ ‖ẑV‖ sin β (6)

x̂V
B · ẑV= ‖x̂V

B ‖ ‖ẑV‖ cos β (7)

β = arctg

(
‖x̂V

B × ẑV‖
x̂V

B · ẑV

)
(8)

To validate the use of MIMUs in estimating bowing angles, we decided to compare
the orientations obtained using this technology with the ones obtained using an optical
motion capture system (Motive Optitrack, Natural Point Inc., Corvallis, OR, USA) used
as the gold standard. Figure 4 shows the reference triads defined for the bow and the
violin, as well as the global reference frame of Motive Optitrack (in yellow). We used eight
passive reflective markers, four on the violin and four on the bow, placed in a non-aligned
way. The system was equipped with six cameras configured with a sample frequency of
120 Hz. The rotation matrix RV

B , which expresses the bow orientation with respect to the
violin, was obtained as in Equation (2) using the orientation data derived from the optical
motion capture system. Data from XsensDots and Motive Optitrack were synched with
a manual procedure: at the beginning of each acquisition, the subject placed the bow on
the violin strings and rotated it around the z-axis of the SENS_B reference frame (Figure 3)
three times. This operation produced three peaks in the β angle traces, which were used to
align the two data sources. Additionally, the sound produced was registered by a digital
audio recorder (H4nPro, Zoom). Data were obtained from 9 violin beginners (2 females
and 7 males) aged 33.4± 7.7 years (mean ± SD). After the manual synch, subjects were
requested to assume the correct pose, with the bow approximately perpendicular to the
strings and parallel to the soundboard at the beginning of each trial. They had to maintain
this initial reference position for about 5 s. The subjects were then requested to perform a
simple exercise: to repeat twice a full bow stroke on each open string (starting from the tip,
passing through the frog, and returning to the tip), beginning with the E string.

Figure 4. Motive triads on the violin and the bow. The triad in yellow is the Motive Optitrack
reference triad.
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To compensate the misalignment between reference frames of XsensDots and Motive
Optitrack, the bow–violin orientation (α and β angles) measured with the two systems was
referred to the initial reference position assumed at the beginning of the open string exercise.
Figure 5 reports an example of computation for the β angle. The angular displacement
with respect to the reference position was defined as

∆α = α− α0
∆β = β− β0

Here, α0 and β0 are the 1 s averages of the α angle and the β angle, respectively, which
are measured in the central portion of the reference position interval. The orientation error
was measured as the absolute value of the difference between the angular displacement
estimated with the XsenDots sensors and the one obtained with Motive Optitrack. This
value was subsequently averaged for each string in order to obtain a mean absolute error
(MAE). We used Matlab R2021a for the analysis.

Figure 5. Example of computation of angular displacement ∆β with respect to the reference position.

The estimation of the orientation angle between the bow and the violin also helps
to derive useful information about the actual string played. In fact, since the same note
(except for the low G) can be obtained by playing different strings with different fingerings,
playing a specific note on a string requires the bow to be properly tilted. Learning how
to tilt the bow in order to play a specific string is a fundamental skill to be acquired by
beginners. Open string exercises are designed properly to practice this skill: students have
to progressively reduce the tilt angle moving from the E to the G string. We averaged the β
angle measured during each stroke, thus obtaining 16 repeated measures for each subject
(4 measures per string). In order to verify the relation between the tilt angle (dependent
variable) and the string frequency (independent variable) we performed a repeated measure
correlation between them using the R software, Vienna, Austria, ver. 4.1.1 [16].

2.2. Estimating the Bow Section

We mounted four optical proximity sensors (VCNL4040, Vishay) on a 4/4 bow stick
(L = 650 mm) to measure the distance between the bow hair and the stick. This distance
(hi(x) with i as the sensor index, varying between 1 and 4) depends on the position of
the sensors on the stick and the contact point between the bow hair and the violin string
(x, Figure 2). Each sensor was calibrated using a micrometric screw (Newport M-460P
Series) to finely tune the distance. The sensors, at the I2C interface, were connected to a
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control unit (PIC16F887, Microchip Technology Inc., Chandler, AZ, USA) by means of a
multiplexer (PCA9548A, Texas Instruments) and sampled at 100 Hz (Figure 6). We placed
sensors 45, 151, 485, and 624 mm from the frog (Figure 2), as in [8,9], and firmly fixed them
with a cable tie.

Figure 6. Communication architecture to manage data from optical proximity sensors. Because
VCNL4040 sensors are provided with only one I2C address, an I2C multiplexer was added to allow
the contemporary use of more than one sensor on the same bus.

In a pilot test, we asked an expert musician to perform 30 strokes in each section
of the bow. The musician had to repeat the exercise at three different tempos for each
string: slow (i.e., 60 bpm), medium (i.e., 80 bpm), and fast (i.e., 100 bpm). Section limits
were clearly marked with a tape placed on the bow stick, while the velocity was paced
by a metronome (see Supplementary Materials Video S1). Overall, 1080 bowings were
performed: 30 (strokes) × 3 (speeds) × 3 (sections) × 4 (strings). We also acquired the bow
stick–hair distances even when the bow was not in contact with the string. Because no
actions were performed in this condition, we terminated the acquisition when 30 beats
were counted in the three velocity modalities. Proximity data were used to train a classifier
for identifying the section of the bow used. Among all the possible classifiers, we selected
the decision tree (DT) and the linear discriminant (LD), mainly for their fast prediction
speed and small memory usage. The DT classifier uses a tree structure from the root
(beginning) node down to a leaf node. The leaf node contains the response. To predict a
response, the algorithm starts from the top node, and at each decision, it checks the values
of the predictors to decide which branch to follow. When the branches reach a leaf node,
data are classified. In particular, the DT classifier used in this work allows a maximum of
100 splits [17,18]. Because our aim was to provide online support, we carefully tested the
most efficient way to feed the classifier in order to provide timely feedback. We used the
distances measured by the four sensors. Data were normalized with respect to the full scale
of the sensors and were divided by using a moving window for which we tested different
widths (50, 100, 150, and 200 ms) and shifting intervals (with 50 ms steps and the maximum
duration equal to the width of the window) in order to identify the configuration with
the best performance. We computed the average of the data within the moving window
and used these averaged normalized distances to train a machine learning classifier to
estimate the bow section used, as described previously. We used the Classification Learner
application of Matlab R2021a for the analysis.
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3. Results
3.1. Measuring Bow–Violin Orientation

Figure 7 reports the mean (boxes) and the standard error (bars) of the MAE obtained
for the nine subjects involved in the bow–violin orientation test. The G-string shows the
maximum MAE for both angles. In particular, we obtained an error equal to 1.4◦ for the α
angle and 0.9◦ for the β angle. In all the conditions tested, the MAE remained below 2◦

(Figure 7).

Figure 7. Mean absolute error (MAE) computed on each string for both α and β angles. Bars represent
the standard error.

We further assessed whether the information about bow orientation can be exploited
to provide students with additional feedback on the effective string played. In particular,
we performed a correlation analysis between the string played and the bow tilt to determine
whether the β angle can be exploited to derive information about the string played. The
upper box of Figure 8 reports the β angle measured by MIMUs during the task for one
representative subject. The second plot represents the audio track recorded during the
exercise, which clearly shows how the subject performed the four strokes for each string
(tip–frog and frog–tip two times). The last plot represents the time–frequency analysis
of the audio track, and it shows the frequency characterizing each string: about 660 Hz
for the E-string, about 440 Hz for the A-string, about 294 Hz for the D-string, and about
196 Hz for the G-string (see Supplementary Materials File S1). In particular, for the last two
strings, it is also possible to visualize the second harmonics (D-string and G-string) and the
third one (only G-string). We identified the string played, thanks to this plot, as subjects
were requested to perform an open-string exercise, and thus, we could match the string
with frequency. Figure 9 reports the β angle (dependent variable) vs. the frequency of
the string played (independent variable), as measured for all subjects. We verified the
assumptions for a repeated measures correlation analysis [19] and tested whether there was
any correlation between the β angle and the frequency of the string played. The repeated
measures correlation confirmed a high negative correlation between the tilt angle and the
string frequency (r(134) = −0.973, 95% CI [−0.981,−0.962], p < 0.001).
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Figure 8. From the top: plot (a), β angle measured by Xsens; plot (b), audio track; plot (c), time–
frequency analysis.

Figure 9. The plot shows the β angle averaged in each stroke vs. the corresponding string frequency.
Data from each subject are identified with a different color. The dashed gray line represents the
overall regression line ignoring the subject variable.

3.2. Estimating the Bow Section

Data from the four optical proximity sensors were normalized with respect to their
full scale. Exploratory data analysis was performed to identify any possible simplification
strategy in order to reduce the hardware complexity and computational effort. Considering
all the possible combinations of sensor couples (Figure 10), we observed that the S1–S3
couple produces well-defined clusters of points for the four investigated conditions: lower
section, middle section, upper section, and bow raised. For this reason, we focused on
the data gathered from these two sensors. Data were split into moving windows. For
each window, the normalized distance measured was averaged and used to train the two
classifiers considered. The performance of the algorithms was evaluated for all the window
widths and for the shifting intervals considered, with a hold-out method, considering 25%
of the data as the test data set.

Figure 11 shows the accuracy of the two classifiers when trained using different
combinations of window width and shifting intervals. In all conditions, the DT classifier
outperformed the LD classifier. The maximum accuracy (94.2%) was obtained for the DT
classifier when trained with a window width of 200 ms and a shifting interval of 150 ms.
These settings brought about an overlapping between two consecutives windows of 50 ms
and provided students with feedback every 150 ms (i.e., with a frequency of 8 Hz).
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Figure 10. Clusters of points for all the possible combinations of sensor couples: S1–S2, S1–S3, S1–S4,
S2–S3, S2–S4, and S3–S4. The S1–S3 couple produced well-defined clusters of points for the four
investigated conditions. Lower section (blue), middle section (orange), upper section (yellow), and
bow raised (violet).

Figure 11. Accuracy of the two classifiers estimated for different combinations of window width and
shifting interval.
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4. Discussion

Learning to play the violin is a complex motor task that forces learners to perform
uncomfortable movements in order to obtain a good sound. In this process, the hand–arm
unit plays a crucial role both for technical and expressive purposes [20] and is therefore
responsible for most of the musical outcomes. Therefore, it is of paramount importance
to carefully monitor beginners’ motions and promptly correct them, when necessary. In
this regard, although several technological systems have been developed ad hoc [4–13],
only a few are specifically devoted to the training of beginners [5,13]. Additionally, the
effectiveness of technology-enhanced practice in instrumental music teaching is still de-
bated [21]. For instance, Tuuri and Koskela [22] observed that technology is often perceived
as something unnatural and distant from how musicians live and contextually develop
experience. In this respect, Leman and Nijs [21] underlined the importance of considering
the cognitive workload the learners face to process information: good technology-enhanced
practice should make it easier to process this information. Taking into account such issues,
we proposed an instrument-centered interface directly embedded into the violin. Such a
design has the advantage of not providing the students with additional information to
manage; rather, it reinforces what is usually provided as feedback by the teacher, allowing
students to correct themselves, even when the teacher is not present. Our system is based
on the use of magneto-inertial measurement units and optical proximity sensors coupled
with a classification algorithm to monitor the orientation of the bow with respect to the
violin and the bow section used, respectively. These are two of the main parameters a
beginner must learn to control when performing bowing-on-open-string exercises.

To validate the use of MIMUs to measure bow–violin orientation, we compared the
reconstruction of the bow orientation obtained by commercial magneto-inertial sensors
with the one obtained by an optical motion capture system, considered the gold stan-
dard. The results showed an orientation error less than 2◦. A repeated measure analysis
showed a high negative correlation between the tilt angle β and the string frequency
(r(134) = −0.973, 95% CI [−0.981,−0.962], p < 0.001). Taken together, these results justify
the use of magneto-inertial sensors to help beginners learn to control bow orientation with
respect to the violin and the string. However, different sensors have been recently used
to monitor bowing. For example, Di Tocco et al. [23] presented a wearable system based
on piezoresistive sensors to monitor the wrist and elbow movements of a double-bass
player. The system allowed the identification of string changes and bow strokes. However,
although lightweight and adaptable, the system has to be mounted on a musician’s right
arm, which may impact the ability of the musician to perform bowing movements in
a natural way. In contrast, the interface we proposed is instrument centered, i.e., it is
external to the user and therefore does not limit the user’s range of movements, nor can
it be perceived as uncomfortable by the user. Moreover, our interface is not sensitive to
different users’ anthropometries, thus increasing the reliability of the results. This also
widens the potential usability of the system with both adults and children outside the lab
in less structured and controlled contexts. Therefore, we chose MIMU technology, which
does not require a structured environment and can be easily integrated into the instrument.
Finally, since the interface proposed is deeply integrated into the instrument, it will not
increase the level of discomfort for the musician.

We also exploited an instrument-centered approach in order to estimate the bow
section in contact with the strings. We designed and developed an I2C network of four
proximity sensors, which we distributed on the bow. While these sensors have been
effectively used in the past [8], our experimental setup evidenced the need to address the
problem of the large number of cables these sensors require. Our exploratory data analysis
suggested that we can obtain reliable data from two out of the four sensors mounted on
the bow, resulting in a considerable reduction in the hardware complexity. In fact, using
only the S1–S3 couple and a decision tree classifier, we reached a classification accuracy
of 94.2% with a window width of 200 ms and a shifting interval of 150 ms. This result
needs to be confirmed with additional tests on a larger number of subjects. In fact, even
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if we used 75% of the data for training and the remaining 25% for testing, the data were
not independent as they were obtained from the same subject. This single subject 75/25
train/test split increases the accuracy obtained compared to when these models are applied
to other individuals. Despite this limitation, the results seem to suggest the possibility
of providing students with online feedback at 8 Hz, compatible with the requirements of
the application.

In the future, we plan to further reduce the hardware complexity by developing a
modular architecture that will allow more efficient management of the cables and exploit
wireless Bluetooth communication to exchange data with a remote laptop.

5. Conclusions

This feasibility study focuses on the possibility of developing a technology-enhanced
tool to help violin beginners learn two fundamental skills of the bowing technique, the
ability to control the relative orientation between the bow and the violin and the ability
to properly use different sections of the bow. Among the different possible technological
solutions available, we chose the magneto-inertial technology and optical proximity sensors
using an instrument-centered approach. This allows the system to be used out of the lab
in a minimally structured environment and reduces the computational workload of the
student, improving the chances of the student learning the instrument.

The results of our preliminary validation confirmed that MIMUs are suitable to
measure bow–violin orientation. The optical proximity sensors can be integrated in the bow
to extract the section of the bow played. We verified the possibility of reducing the number
of sensors with respect to previous studies [8,9] but additional tests are needed to confirm
our preliminary results regarding the accuracy of classification. These preliminary results,
if confirmed, could pave the way for a new class of instrumented tools for music, such as
smart interfaces, to monitor human movement outside the lab, which could provide large
data sets for research studies as well as real-time feedback to improve students’ behavior
and learning curves.

Supplementary Materials: The following are available online: at https://www.mdpi.com/article/
10.3390/s21175817/s1, Video S1: Section Bowing Estimation-Pilot Test; at https://www.mdpi.com/
article/10.3390/s21175817/s2, Audio File S1: bow–violin orientation test, audio track. Video S1
shows the expert musician performing strokes in the first third of the bow at slow tempo during the
pilot trial. Audio File S1 is the audio recording corresponding to data reported in Figure 8.
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