Cooperative Networked PIR Detection System for Indoor Human Localization †
Abstract
:1. Introduction
2. Related Works
2.1. The Measurement Structure
2.2. The Sensing Structure
2.2.1. Thermal Sensor Array
2.2.2. PIR Sensing
3. Pyroelectric Infrared Detection
The Design of PIR Detector
4. Indoor Human Localization System
4.1. The Deployment of the Detection Area
4.2. The Operation of the System
Algorithm 1: The Inputs of TBM |
Denote as the feature PIR signal of mth frame. Denote as the kth input of TBM. ► Initialization: 1: k ← 1 2: Z ← 25 3: thr ← 4 4: ▷ Record the number of times of each signal type appearing in the mth frame. 5: ▷ Record the number of observations of each signal type 6: ▷ It is used for signal type comparison. ► Start: ➤ Get sk 7: if then 8: 9: for z ← 1 to Z do 10: if then 11: if then 12: 13: ➤ Resetting 14: 15: break 16: else 17: 18: break 19: end if 20: end if 21: end for 22: end if 23: |
4.3. Transferable Belief Model (TBM)
4.3.1. Credal Level
4.3.2. Pignistic Level
4.3.3. Accuracy Performance
4.4. Kalman Filter
4.4.1. Prediction (Time Update)
4.4.2. Correction (Measurement Update)
4.5. Implementation of the Localization System
5. Experimental Results
- Route 01: slash walking from the bottom left corner to the top right corner, e.g., or ;
- Route 01*: slash walking from the top left corner to the bottom right corner, e.g.,
- Route 02: walking along horizontal zones, e.g., or ;
- Route 03: walking along the boundary line between two neighboring zones, e.g., ;
- Route 04: walking along a V-shaped route from the top right corner to the bottom center to the top left corner, e.g., ;
- Route 05: walking along a square route in a clockwise direction, e.g., .
5.1. Experiment 1: Validation of Parameters
5.2. Experiment 2: Qualitative Analysis of TBM Tracking
5.3. Experiment 3: Quantitative Analysis
5.3.1. Kalman Filter Tracking
- ➢
- Route 01: ;
- ➢
- Route 02: ;
- ➢
- Route 03: .
- ➢
- Route 04: ;
- ➢
- Route 05: .
5.3.2. TBM Tracking
5.3.3. TBM-Based Hybrid Approach
5.3.4. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, K.-C.; Ku, B.-H.; Wen, C.-Y. Using cooperative PIR sensing for human indoor localization. In Proceedings of the 2018 27th Wireless and Optical Communication Conference (WOCC), Hualien, Taiwan, 30 April–1 May 2018; pp. 1–5. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Smets, P.; Kennes, R. The transferable belief model. Artif. Intell. 1994, 66, 191–234. [Google Scholar] [CrossRef]
- Naseri, H.; Koivunen, V. A Bayesian Algorithm for Distributed Network Localization Using Distance and Direction Data. IEEE Trans. Signal Inf. Process. Netw. 2018, 5, 290–304. [Google Scholar] [CrossRef]
- Zhong, W.; Luo, X.; Li, X.; Yan, J.; Guan, X. Lower Bound Accuracy of Bearing-Based Localization for Wireless Sensor Networks. IEEE Trans. Signal Inf. Process. Netw. 2020, 6, 556–569. [Google Scholar] [CrossRef]
- Keskin, M.F.; Erdem, O.; Gezici, S. Cooperative Localization in Hybrid Infrared/Visible Light Networks: Theoretical Limits and Distributed Algorithms. IEEE Trans. Signal Inf. Process. Netw. 2018, 5, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Mautz, R.; Tilch, S. Survey of optical indoor positioning systems. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Guimaraes, Portugal, 21–23 September 2011; pp. 1–7. [Google Scholar]
- Tyndall, A.; Cardell-Oliver, R.; Keating, A. Occupancy Estimation Using a Low-Pixel Count Thermal Imager. IEEE Sens. J. 2016, 16, 3784–3791. [Google Scholar] [CrossRef]
- Walmsley-Eyre, L.; Cardell-Oliver, R. Hierarchical Classification of Low Resolution Thermal Images for Occupancy Estimation. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops), Singapore, 9–12 October 2017; pp. 9–17. [Google Scholar]
- Savazzi, S.; Rampa, V.; Kianoush, S.; Minora, A.; Costa, L. Occupancy Pattern Recognition with Infrared Array Sensors: A Bayesian Approach to Multi-body Tracking. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4479–4483. [Google Scholar]
- Naser, A.; Lotfi, A.; Zhong, J. Adaptive Thermal Sensor Array Placement for Human Segmentation and Occupancy Estimation. IEEE Sens. J. 2020, 21, 1993–2002. [Google Scholar] [CrossRef]
- Fanti, M.P.; Faraut, G.; Lesage, J.-J.; Roccotelli, M. An Integrated Framework for Binary Sensor Placement and Inhabitants Location Tracking. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 154–160. [Google Scholar] [CrossRef]
- Yang, B.; Lei, Y.; Yan, B. Distributed Multi-Human Location Algorithm Using Naive Bayes Classifier for a Binary Pyroelectric Infrared Sensor Tracking System. IEEE Sens. J. 2015, 16, 216–223. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, M. Credit-Based Multiple Human Location for Passive Binary Pyroelectric Infrared Sensor Tracking System: Free From Region Partition and Classifier. IEEE Sens. J. 2016, 17, 37–45. [Google Scholar] [CrossRef]
- Luo, X.; Liu, T.; Shen, B.; Chen, Q.; Gao, L.; Luo, X. Human Indoor Localization Based on Ceiling Mounted PIR Sensor Nodes. In Proceedings of the 13th IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016; pp. 868–874. [Google Scholar]
- Zappi, P.; Farella, E.; Benini, L. Tracking Motion Direction and Distance with Pyroelectric IR Sensors. IEEE Sens. J. 2010, 10, 1486–1494. [Google Scholar] [CrossRef]
- Henni, A.H.; Bachouch, R.B.; Bennis, O.; Ramdani, N. Enhanced Multiplex Binary PIR Localization Using the Transferable Belief Model. IEEE Sens. J. 2019, 19, 8146–8159. [Google Scholar] [CrossRef]
- Brady, D.J.; Pitsianis, N.P.; Sun, X. Reference structure tomography. J. Opt. Soc. Am. A 2004, 21, 1140–1147. [Google Scholar] [CrossRef]
- Shen, B.; Wang, G. Distributed target localization and tracking with wireless pyroelectric sensor networks. Int. J. Smart Sens. Intell. Syst. 2013, 6, 1400–1418. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, T.; Hu, F.; Hao, Q. Preprocessing Design in Pyroelectric Infrared Sensor-Based Human-Tracking System: On Sensor Selection and Calibration. IEEE Trans. Syst. Man, Cybern. Syst. 2016, 47, 1–13. [Google Scholar] [CrossRef]
- Odon, A. Modelling and Simulation of the Pyroelectric Detector Using MATLAB/Simulink. Meas. Sci. Rev. 2010, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Zhang, H.-J.; Jiang, H. Content analysis for audio classification and segmentation. IEEE Trans. Speech Audio Process. 2002, 10, 504–516. [Google Scholar] [CrossRef] [Green Version]
- Ballardini, A.L.; Ferretti, L.; Fontana, S.; Furlan, A.; Sorrenti, D.G. An Indoor Localization System for Telehomecare Applications. IEEE Trans. Syst. Man Cybern. Syst. 2015, 46, 1445–1455. [Google Scholar] [CrossRef]
- DFRobot Bluno. Available online: https://www.dfrobot.com/product-1044.html (accessed on 10 September 2021).
- Bluno Mega 2560. Available online: https://www.dfrobot.com/product-1075.html (accessed on 10 September 2021).
- Wei, W.; He, T.; Bisdikian, C.; Goeckel, D.; Jiang, B.; Kaplan, L.; Towsley, D. Impact of In-Network Aggregation on Target Tracking Quality Under Network Delays. IEEE J. Sel. Areas Commun. 2013, 31, 808–818. [Google Scholar] [CrossRef]
- Yang, T.; Liu, X.; Tang, S.; Niu, J.; Guo, P. A new PIR-based method for real-time tracking. arXiv 2019, arXiv:1901.10700. [Google Scholar]
- Yun, J.; Woo, J. A Comparative Analysis of Deep Learning and Machine Learning on Detecting Movement Directions Using PIR Sensors. IEEE Internet Things J. 2019, 7, 2855–2868. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Srirangarajan, S.; Kar, S. Modeling the analog response of passive infrared sensor. Sens. Actuators A Phys. 2018, 279, 65–74. [Google Scholar] [CrossRef]
- Narayana, S.; Prasad, R.V.; Rao, V.S.; Prabhakar, T.V.; Kowshik, S.S.; Iyer, M.S. PIR sensors: Characterization and novel localization technique. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (IPSN ‘15), Seattle, DC, USA, 13–16 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 142–153. [Google Scholar]
Works | Sensor Location | Processing Techniques | Observation Space | Average RMSE (m) |
---|---|---|---|---|
[1] with Kalman Filter | Ceiling | Short-Time Energy, Spatial Segmentation | 5 m × 5 m | 0.508 |
[15] with Kalman Filter | Ceiling | Spatial Segmentation | 5 m × 5 m | 0.68 |
Naive Bayes Method [13] | Floor | Training/Classifier, Spatial Segmentation | 10 m × 10 m | 0.49 |
Credit-Based Method [14] | Floor | Crossing Location | 10 m × 10 m | 0.384 |
Sensor Selection and Calibration Method [20] | Wall | Probability Model-based Calibration | 6 m × 6 m | 0.35 |
The Proposed System with Kalman Filter | Ceiling | Feature Signal Extraction | 5 m × 5 m | 0.254 |
The Proposed System with TBM-based Hybrid Method | Ceiling | Feature Signal Extraction | 5 m × 5 m | 0.219 |
Route 01* | |||||||
s1 | s2 | s4 | s5 | ||||
Input i | |||||||
Input 01 | cov1 | cov7 | cov25 | X | |||
Input 02 | cov1 | cov7 | cov13 | ||||
Input 03 | cov1 | cov7 | cov13 | cov19 | cov25 | X | |
Route 02 | |||||||
cov16 | cov17 | cov18 | cov19 | cov20 | X | ||
Route 03 | |||||||
cov5 | X | X | X | ||||
cov5 | X | X |
Sampling | |||||
---|---|---|---|---|---|
first | (0.4569) | (0.2376) | (0.1937) | (0.2049) | (0.3939) |
second | (0.0517) | (0.0837) | (0.0393) | (0.0946) | (0.0904) |
third | (0.0517) | (0.0837) | (0.0393) | (0.0556) | (0.0528) |
Experimental Route | Avg. RMSEx | Avg. RMSEy | Avg. RMSE (m) |
---|---|---|---|
Route 01 | 0.157 | 0.148 | 0.216 |
Route 02 | 0.207 | 0.080 | 0.222 |
Route 03 | 0.185 | 0.266 | 0.324 |
Route 04 | 0.199 | 0.205 | 0.286 |
Route 05 | 0.551 | 0.372 | 0.665 |
Experimental Route | Avg. RMSEx | Avg. RMSEy | Avg. RMSE (m) |
---|---|---|---|
Route 01 | 0.219 | 0.265 | 0.344 |
Route 02 | 0.266 | 0.060 | 0.273 |
Route 03 | 0.292 | 0.295 | 0.415 |
Route 04 | 0.152 | 0.279 | 0.318 |
Route 05 | 0.384 | 0.334 | 0.509 |
Experimental Route | Avg. RMSEx | Avg. RMSEy | Avg. RMSE (m) |
---|---|---|---|
Route 01 | 0.126 | 0.149 | 0.195 |
Route 02 | 0.141 | 0.072 | 0.158 |
Route 03 | 0.232 | 0.196 | 0.304 |
Route 04 | 0.111 | 0.251 | 0.274 |
Route 05 | 0.232 | 0.238 | 0.332 |
Experimental Route | Kalman Filter | TBM | Hybrid |
---|---|---|---|
Route 01 | 0.883 | 0.823 | 0.743 |
Route 02 | 1.053 | 0.673 | 0.712 |
Route 03 | 0.712 | 0.471 | 0.410 |
Route 04 | 0.802 | 0.727 | 0.703 |
Route 05 | 0.884 | 0.724 | 0.766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-M.; Chen, X.-Y.; Wen, C.-Y.; Sethares, W.A. Cooperative Networked PIR Detection System for Indoor Human Localization. Sensors 2021, 21, 6180. https://doi.org/10.3390/s21186180
Wu C-M, Chen X-Y, Wen C-Y, Sethares WA. Cooperative Networked PIR Detection System for Indoor Human Localization. Sensors. 2021; 21(18):6180. https://doi.org/10.3390/s21186180
Chicago/Turabian StyleWu, Chia-Ming, Xuan-Ying Chen, Chih-Yu Wen, and William A. Sethares. 2021. "Cooperative Networked PIR Detection System for Indoor Human Localization" Sensors 21, no. 18: 6180. https://doi.org/10.3390/s21186180
APA StyleWu, C. -M., Chen, X. -Y., Wen, C. -Y., & Sethares, W. A. (2021). Cooperative Networked PIR Detection System for Indoor Human Localization. Sensors, 21(18), 6180. https://doi.org/10.3390/s21186180