A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments
Abstract
:1. Introduction
2. Related Works
3. Mathematical Models of Orthogonal Polynomials and Moments
3.1. Orthogonal Polynomials
3.2. Orthogonal Moments
4. The Proposed Methodology for Handwritten Numeral Recognition
4.1. Feature Extraction Process
4.2. Classification Process
5. Experimental Results and Discussion
5.1. Database Description
5.2. Characterizing the Performance of the Proposed Numeral Recognition Using Different Kernels Methods
5.3. Comparing Performances of the Proposed Method and the Existing State-of-the-Art Methods for Numeral Recognition
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OCR | optical character recognition |
SVM | support vector machine |
NIST | national institute of standards and technology |
MNIST | modified NIST |
CMATER | Center for Microprocessor Applications for Training Education and Research |
CNN | convolutional neural network |
HOPP | Histogram of Oriented Pixel Positions |
PLSS | Point-Light Source-based Shadow |
KP | Krawtchouk polynomials |
TP | Tchebichef polynomials |
SKTP | squared Krawtchouk–Tchebichef polynomial |
COM | continuous orthogonal moment |
OM | orthogonal moment |
LOM | low-order moments |
HOM | high-order moments |
SKTM | squared Krawtchouk–Tchebichef moment |
FV | feature vector |
References
- Ahamed, P.; Kundu, S.; Khan, T.; Bhateja, V.; Sarkar, R.; Mollah, A.F. Handwritten Arabic numerals recognition using convolutional neural network. J. Ambient Intell. Humaniz. Comput. 2020, 11, 5445–5457. [Google Scholar] [CrossRef]
- Tuba, E.; Tuba, M.; Simian, D. Handwritten Digit Recognition by Support Vector Machine Optimized by Bat Algorithm; Václav Skala-UNION Agency: Plzen, Czech Republic, 2016. [Google Scholar]
- Qiao, J.; Wang, G.; Li, W.; Chen, M. An adaptive deep Q-learning strategy for handwritten digit recognition. Neural Netw. 2018, 107, 61–71. [Google Scholar] [CrossRef]
- Aradhya, V.M.; Kumar, G.H.; Noushath, S. Robust Unconstrained Handwritten Digit Recognition using Radon Transform. In Proceedings of the 2007 International Conference on Signal Processing, Communications and Networking, Chennai, India, 22–24 February 2007; pp. 626–629. [Google Scholar] [CrossRef]
- Bag, S.; Harit, G. A survey on optical character recognition for Bangla and Devanagari scripts. Sadhana 2013, 38, 133–168. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.K.; Sarkar, R.; Nasipuri, M. A study of moment based features on handwritten digit recognition. Appl. Comput. Intell. Soft Comput. 2016, 2016, 2796863. [Google Scholar] [CrossRef]
- Gorgevik, D.; Cakmakov, D. Handwritten digit recognition by combining SVM classifiers. In Proceedings of the EUROCON 2005—The International Conference on “Computer as a Tool”, Belgrade, Serbia, 21–24 November 2005; Volume 2, pp. 1393–1396. [Google Scholar]
- Chen, X.; Liu, X.; Jia, Y. Learning handwritten digit recognition by the max-min posterior pseudo-probabilities method. In Proceedings of the Ninth International Conference on Document Analysis and Recognition (ICDAR 2007), Parana, Brazil, 23–26 September 2007; Volume 1, pp. 342–346. [Google Scholar]
- Garris, M.D.; Blue, J.L.; Candela, G.T.; Grother, P.J.; Janet, S.; Wilson, C.L. NIST Form-Based Handprint Recognition System; US Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1997.
- Shi, M.; Fujisawa, Y.; Wakabayashi, T.; Kimura, F. Handwritten numeral recognition using gradient and curvature of gray scale image. Pattern Recognit. 2002, 35, 2051–2059. [Google Scholar] [CrossRef]
- Labusch, K.; Barth, E.; Martinetz, T. Simple method for high-performance digit recognition based on sparse coding. IEEE Trans. Neural Netw. 2008, 19, 1985–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Cruz, R.M.; Cavalcanti, G.D.; Ren, T.I. Handwritten digit recognition using multiple feature extraction techniques and classifier ensemble. In Proceedings of the 17th International Conference on Systems, Signals and Image Processing, Rio de Janeiro, Brazil, 17–19 June 2010; pp. 215–218. [Google Scholar]
- Lauer, F.; Suen, C.Y.; Bloch, G. A trainable feature extractor for handwritten digit recognition. Pattern Recognit. 2007, 40, 1816–1824. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.X.; Suen, C.Y. A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognit. 2012, 45, 1318–1325. [Google Scholar] [CrossRef]
- Goltsev, A.; Gritsenko, V. Investigation of efficient features for image recognition by neural networks. Neural Netw. 2012, 28, 15–23. [Google Scholar] [CrossRef]
- LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 24 January 2021).
- Alani, A.A. Arabic handwritten digit recognition based on restricted Boltzmann machine and convolutional neural networks. Information 2017, 8, 142. [Google Scholar] [CrossRef] [Green Version]
- Ashiquzzaman, A.; Tushar, A.K. Handwritten Arabic numeral recognition using deep learning neural networks. In Proceedings of the 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Dhaka, Bangladesh, 13–14 February 2017; pp. 1–4. [Google Scholar]
- Gunawan, T.S.; Noor, A.F.R.M.; Kartiwi, M. Development of english handwritten recognition using deep neural network. Indones. J. Electr. Eng. Comput. 2018, 10, 562–568. [Google Scholar] [CrossRef]
- Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Papa, J.P.; Scheirer, W.; Cox, D.D. Fine-tuning deep belief networks using harmony search. Appl. Soft Comput. 2016, 46, 875–885. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef]
- Deng, Y.; Bao, F.; Kong, Y.; Ren, Z.; Dai, Q. Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 653–664. [Google Scholar] [CrossRef]
- Ghosh, S.; Chatterjee, A.; Singh, P.K.; Bhowmik, S.; Sarkar, R. Language-invariant novel feature descriptors for handwritten numeral recognition. Vis. Comput. 2020. [Google Scholar] [CrossRef]
- Das, N.; Reddy, J.M.; Sarkar, R.; Basu, S.; Kundu, M.; Nasipuri, M.; Basu, D.K. A statistical–topological feature combination for recognition of handwritten numerals. Appl. Soft Comput. 2012, 12, 2486–2495. [Google Scholar] [CrossRef]
- Maitra, D.S.; Bhattacharya, U.; Parui, S.K. CNN based common approach to handwritten character recognition of multiple scripts. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 1021–1025. [Google Scholar] [CrossRef]
- Singh, P.K.; Das, S.; Sarkar, R.; Nasipuri, M. Recognition of offline handwriten Devanagari numerals using regional weighted run length features. In Proceedings of the 2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, India, 16–17 December 2016; Volume 110, pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ahlawat, S.; Choudhary, A.; Nayyar, A.; Singh, S.; Yoon, B. Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN). Sensors 2020, 20, 3344. [Google Scholar] [CrossRef]
- Radeaf, H.S.; Mahmmod, B.M.; Abdulhussain, S.H.; Al-Jumaeily, D. A steganography based on orthogonal moments. In Proceedings of the International Conference on Information and Communication Technology—ICICT’19, Baghdad, Iraq, 15–16 April 2019; ACM Press: New York, NY, USA, 2019; pp. 147–153. [Google Scholar] [CrossRef]
- Mahmmod, B.M.; Ramli, A.R.; Baker, T.; Al-Obeidat, F.; Abdulhussain, S.H.; Jassim, W.A. Speech Enhancement Algorithm Based on Super-Gaussian Modeling and Orthogonal Polynomials. IEEE Access 2019, 7, 103485–103504. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Mahmmod, B.M.; Saripan, M.I.; Al-Haddad, S.; Jassim, W.A. A New Hybrid form of Krawtchouk and Tchebichef Polynomials: Design and Application. J. Math. Imaging Vis. 2019, 61, 555–570. [Google Scholar] [CrossRef]
- Mahmmod, B.M.; bin Ramli, A.R.; Abdulhussain, S.H.; Al-Haddad, S.A.R.; Jassim, W.A. Signal compression and enhancement using a new orthogonal-polynomial-based discrete transform. IET Signal Process. 2018, 12, 129–142. [Google Scholar] [CrossRef]
- Alsabah, M.; Vehkapera, M.; O’Farrell, T. Non-Iterative Downlink Training Sequence Design Based on Sum Rate Maximization in FDD Massive MIMO Systems. IEEE Access 2020, 8, 108731–108747. [Google Scholar] [CrossRef]
- Naser, M.A.; Alsabah, M.; Mahmmod, B.M.; Noordin, N.K.; Abdulhussain, S.H.; Baker, T. Downlink Training Design for FDD Massive MIMO Systems in the Presence of Colored Noise. Electronics 2020, 9, 2155. [Google Scholar] [CrossRef]
- Abdulhasan, M.Q.; Salman, M.I.; Ng, C.K.; Noordin, N.K.; Hashim, S.J.; Hashim, F.B. Approximate linear minimum mean square error estimation based on channel quality indicator feedback in LTE systems. In Proceedings of the 2013 IEEE 11th Malaysia International Conference on Communications (MICC), Kuala Lumpur, Malaysia, 26–28 November 2013; pp. 446–451. [Google Scholar]
- Abdulhasan, M.Q.; Salman, M.I.; Ng, C.K.; Noordin, N.K.; Hashim, S.J.; Hashim, F. An adaptive threshold feedback compression scheme based on channel quality indicator (CQI) in long term evolution (LTE) system. Wirel. Pers. Commun. 2015, 82, 2323–2349. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Al-Haddad, S.A.R.; Mahmmod, B.M.; Jassim, W.A. Fast Recursive Computation of Krawtchouk Polynomials. J. Math. Imaging Vis. 2018, 60, 285–303. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Al-Haddad, S.A.R.; Mahmmod, B.M.; Jassim, W.A. On Computational Aspects of Tchebichef Polynomials for Higher Polynomial Order. IEEE Access 2017, 5, 2470–2478. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Al-Haddad, S.A.R.; Saripan, M.I.; Mahmmod, B.M.; Hussien, A. Fast Temporal Video Segmentation Based on Krawtchouk-Tchebichef Moments. IEEE Access 2020, 8, 72347–72359. [Google Scholar] [CrossRef]
- Mukundan, R.; Raveendran, P.; Jassim, W. New orthogonal polynomials for speech signal and image processing. IET Signal Process. 2012, 6, 713–723. [Google Scholar] [CrossRef]
- Thung, K.H.; Paramesran, R.; Lim, C.L. Content-based image quality metric using similarity measure of moment vectors. Pattern Recognit. 2012, 45, 2193–2204. [Google Scholar] [CrossRef]
- Jassim, W.; Paramesran, R.; Zilany, M. Enhancing noisy speech signals using orthogonal moments. IET Signal Process. 2014, 8, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Mizel, A.K.E. Orthogonal Functions Solving Linear functional Differential EquationsUsing Chebyshev Polynomial. Baghdad Sci. J. 2008, 5, 143–148. [Google Scholar]
- Abdulhussain, S.H.; Ramli, A.R.; Mahmmod, B.M.; Saripan, M.I.; Al-Haddad, S.A.R.; Jassim, W.A. Shot boundary detection based on orthogonal polynomial. Multimed. Tools Appl. 2019, 78, 20361–20382. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Hussain, A.J.; Mahmmod, B.M.; Jassim, W.A. Orthogonal polynomial embedded image kernel. In Proceedings of the International Conference on Information and Communication Technology—ICICT’19, Baghdad, Iraq, 15–16 April 2019; ACM Press: New York, NY, USA, 2019; pp. 215–221. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Department of Computer Science and Information Engineering: Taipei, Taiwan, 2003. [Google Scholar]
- Byun, H.; Lee, S.W. A survey on pattern recognition applications of support vector machines. Int. J. Pattern Recognit. Artif. 2003, 17, 459–486. [Google Scholar] [CrossRef]
- Awad, M.; Motai, Y. Dynamic classification for video stream using support vector machine. Appl. Soft Comput. 2008, 8, 1314–1325. [Google Scholar] [CrossRef] [Green Version]
- Nigam, S.; Deb, K.; Khare, A. Moment invariants based object recognition for different pose and appearances in real scenes. In Proceedings of the 2013 International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 17–18 May 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27. [Google Scholar] [CrossRef]
- CMATERdb: The Pattern Recognition Database Repository. 2020. Available online: https://code.google.com/archive/p/cmaterdb/ (accessed on 27 January 2021).
Dataset | Sample Size | The Size of the Training Set | The Size of the Testing Set |
---|---|---|---|
Roman | 10,000 | 5000 (50%) | 5000 (50%) |
Arabic | 10,000 | 5000 (50%) | 5000 (50%) |
Devanagari | 20,000 | 10,000 (50%) | 10,000 (50%) |
Dataset | Kernel | C | Degree | Accuracy | ||
---|---|---|---|---|---|---|
Roman | RBF | - | - | 99.80 | ||
Polynomial | 0 | 4 | 100 | |||
Arabic | RBF | - | - | 98.94 | ||
Polynomial | −0.15 | 4 | 99.32 | |||
Devanagari | RBF | - | - | 99.12 | ||
Polynomial | −0.16 | 4 | 99.28 |
Method | Classifier Type | Dataset | Accuracy % |
---|---|---|---|
MF [6] | MLP | MNIST | 99.77 |
MF [6] | SVM | MNIST | 98.75 |
STFC [26] | SVM | MNIST | 98.90 |
CNN-5 [27] | CNN | MNIST | 99.10 |
IHRS-CNN [29] | CNN | MNIST | 99.77 |
Proposed | SVM | MNIST | 100.00 |
Method | Classifier Type | Dataset | Accuracy % |
---|---|---|---|
SF [25] | random forest | CMATERDB 3.3.1 | 98.40 |
SF [25] | MLP | CMATERDB 3.3.1 | 98.20 |
MF [6] | MLP | CMATERDB 3.3.1 | 98.92 |
MF [6] | SVM | CMATERDB 3.3.1 | 97.95 |
STFC [26] | SVM | CMATERDB 3.3.1 | 98.40 |
IHRS-CNN [29] | CNN | CMATERDB 3.2.1 | 98.42 |
CNN [19] | CNN | CMATERDB 3.3.1 | 97.40 |
Proposed | SVM | CMATERDB 3.3.1 | 99.32 |
Method | Classifier Type | Dataset | Accuracy % |
---|---|---|---|
SF [25] | Random Forest | CMATERDB 3.2.1 | 98.01 |
SF [25] | MLP | CMATERDB 3.2.1 | 97.40 |
MF [6] | MLP | CMATERDB 3.2.1 | 99.30 |
MF [6] | SVM | CMATERDB 3.2.1 | 97.98 |
RWRLF [28] | SVM | CMATERDB 3.2.1 | 95.03 |
RWRLF [28] | MLP | CMATERDB 3.2.1 | 94.47 |
STFC [26] | SVM | CMATERDB 3.2.1 | 98.70 |
IHRS-CNN [29] | CNN | CMATERDB 3.2.1 | 97.60 |
Proposed | SVM | CMATERDB 3.2.1 | 99.28 |
Roman | Arabic | Devanagari | ||||||
---|---|---|---|---|---|---|---|---|
Environment | Proposed | IHRS-CNN [29] | Environment | Proposed | IHRS-CNN [29] | Environment | Proposed | IHRS-CNN [29] |
Clean | 100.00 | 99.77 | Clean | 99.32 | 98.42 | Clean | 99.23 | 97.6 |
Gaussian noise | 100.00 | 97.08 | Gaussian noise | 99.12 | 97.78 | Gaussian noise | 99.17 | 97.32 |
Gaussian noise | 96.68 | 90.00 | Gaussian noise | 99.00 | 94.76 | Gaussian noise | 98.66 | 95.69 |
Salt & Pepper noise (d = ) | 100.00 | 93.68 | Salt & Pepper noise (d = ) | 99.08 | 97.68 | Salt & Pepper noise (d = ) | 99.22 | 97.4 |
Salt & Pepper noise (d = ) | 99.90 | 90.76 | Salt & Pepper noise (d = ) | 99.12 | 93.84 | Salt & Pepper noise (d = ) | 99.14 | 96.69 |
Blur (filter size = ) | 100.00 | 96.88 | Blur (filter size = ) | 99.02 | 98.08 | Blur (filter size = ) | 99.23 | 97.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.Q.; Ali, R.; Al-Haddad, S.A.R. A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments. Sensors 2021, 21, 1999. https://doi.org/10.3390/s21061999
Abdulhussain SH, Mahmmod BM, Naser MA, Alsabah MQ, Ali R, Al-Haddad SAR. A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments. Sensors. 2021; 21(6):1999. https://doi.org/10.3390/s21061999
Chicago/Turabian StyleAbdulhussain, Sadiq H., Basheera M. Mahmmod, Marwah Abdulrazzaq Naser, Muntadher Qasim Alsabah, Roslizah Ali, and S. A. R. Al-Haddad. 2021. "A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments" Sensors 21, no. 6: 1999. https://doi.org/10.3390/s21061999