Recent Advances in Smart Epidural Spinal Needles
Abstract
:1. Introduction
2. Anatomy and Physiology of Spinal Cord
3. History of Lumbar Puncture and Spinal Needles
4. Mechanical Approaches and Haptic Simulators
5. Optical Approaches
6. Comparison
7. Standards and Approval Procedures
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Iwanaga, J.; Simonds, E.; Yilmaz, E.; Schumacher, M.; Patel, M.; Tubbs, R. Anatomical and Biomechanical Study of the Lumbar Interspinous Ligament. Asian J. Neurosurg. 2019, 14, 1203–1206. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, H.; Sonny, A.; Chin, K.J. Localization of Epidural Space: A Review of Available Technologies. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Neuman, M.D.; Feng, R.; Carson, J.L.; Gaskins, L.J.; Dillane, D.; Sessler, D.I.; Sieber, F.; Magaziner, J.; Marcantonio, E.R.; Mehta, S.; et al. Spinal Anesthesia or General Anesthesia for Hip Surgery in Older Adults. N. Engl. J. Med. 2021, 385, 2025–2035. [Google Scholar] [CrossRef] [PubMed]
- Mcgrath, J.M.; Schaefer, M.P.; Malkamaki, D.M. Incidence and Characteristics of Complications from Epidural Steroid Injections. Pain Med. 2011, 12, 726–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Kim, H.; Jeong, S.J.; Lee, J.H.; Choi, S.S.; Lee, C.H. Spinal Cord Injury and Postdural Puncture Headache Following Cervical Interlaminar Epidural Steroid Injection: A Case Report. Medicina 2022, 58, 1237. [Google Scholar] [CrossRef]
- Khlebtovsky, A.; Weitzen, S.; Steiner, I.; Kuritzky, A.; Djaldetti, R.; Yust-Katz, S. Risk Factors for Post Lumbar Puncture Headache. Clin. Neurol. Neurosurg. 2015, 131, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Ambastha, S.; Umesh, S.; Dabir, S.; Asokan, S. Spinal Needle Force Monitoring during Lumbar Puncture Using Fiber Bragg Grating Force Device. J. Biomed. Opt. 2016, 21, 117002. [Google Scholar] [CrossRef]
- Ambastha, S.; Umesh, S.; Dabir, S.; Asokan, S. Comparison of Force Required for Lumbar Puncture with Different Gauges of Spinal Needle Using Fiber Bragg Grating Force Device. IEEE Sens. J. 2018, 18, 8028–8033. [Google Scholar] [CrossRef]
- Sénac, T.; Lelevé, A.; Moreau, R.; Novales, C.; Nouaille, L.; Pham, M.T.; Vieyres, P. A Review of Pneumatic Actuators Used for the Design of Medical Simulators and Medical Tools. Multimodal Technol. Interact. 2019, 3, 47. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.Y.; Kashlan, O.N.; Singh, R.; Rane, R.; Adsul, N.M.; Jung, S.C.; Yi, J.; Cho, H.S.; Kim, H.S.; Jang, I.-T.; et al. Advantages of the Combination of Conscious Sedation Epidural Anesthesia Under Fluoroscopy Guidance in Lumbar Spine Surgery. J. Pain Res. 2020, 13, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Doherty, C.M.; Forbes, R.B. Diagnostic Lumbar Puncture. Ulster Med. J. 2014, 83, 93. [Google Scholar]
- Wang, C.; Calle, P.; Reynolds, J.C.; Ton, S.; Yan, F.; Donaldson, A.M.; Ladymon, A.D.; Roberts, P.R.; de Armendi, A.J.; Fung, K.M.; et al. Epidural Anesthesia Needle Guidance by Forward-View Endoscopic Optical Coherence Tomography and Deep Learning. Sci. Rep. 2022, 12, 9057. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, N.; Dubey, V.N.; Wee, M.Y.K.; Isaacs, R. Towards a Realistic in Vitro Experience of Epidural Tuohy Needle Insertion. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2013, 227, 767–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carotenuto, B.; Ricciardi, A.; Micco, A.; Amorizzo, E.; Mercieri, M.; Cutolo, A.; Cusano, A. Smart Optical Catheters for Epidurals. Sensors 2018, 18, 2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pui, C.H.; Mullighan, C.G.; Evans, W.E.; Relling, M.V. Pediatric Acute Lymphoblastic Leukemia: Where Are We Going and How Do We Get There? Blood 2012, 120, 1165–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dongen, R.M.; Onderwater, G.L.J.; Pelzer, N.; Zielman, R.; van Oosterhout, W.P.J.; van Zwet, E.W.; Ferrari, M.D.; Terwindt, G.M. The Effect of Needle Size on Cerebrospinal Fluid Collection Time and Post-Dural Puncture Headache: A Retrospective Cohort Study. Headache J. Head Face Pain 2021, 61, 329–334. [Google Scholar] [CrossRef]
- Hrishi, A.P.; Sethuraman, M. Cerebrospinal Fluid (CSF) Analysis and Interpretation in Neurocritical Care for Acute Neurological Conditions. Indian J. Crit. Care Med. 2019, 23, S115–S119. [Google Scholar] [CrossRef]
- Rosenberg, G.A. Cerebrospinal Fluid: Formation, Absorption, Markers, and Relationship to Blood-Brain Barrier. Formation, Absorption, Markers, and Relationship to Blood-Brain Barrier. In Primer on Cerebrovascular Diseases, 2nd ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Zaphiratos, V.; George, R.B.; Macaulay, B.; Bolleddula, P.; McKeen, D.M. Epidural Volume Extension During Combined Spinal-Epidural Labor Analgesia Does Not Increase Sensory Block. Surv. Anesthesiol. 2017, 61, 43. [Google Scholar] [CrossRef]
- BruceBlaus Epidural Anesthesia. Available online: https://commons.wikimedia.org/w/index.php?curid=44921905 (accessed on 17 May 2023).
- Patel, V.V.; Patel, A.; Harrop, J.S.; Burger, E. Spine Surgery Basics; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Bican, O.; Minagar, A.; Pruitt, A.A. The Spinal Cord. A Review of Functional Neuroanatomy. Neurol. Clin. 2013, 31, 1–18. [Google Scholar] [CrossRef]
- Frederiks, J.A.; Koehler, P.J. The First Lumbar Puncture. J. Hist. Neurosci. 1997, 6, 147–153. [Google Scholar] [CrossRef]
- Zambito Marsala, S.; Gioulis, M.; Pistacchi, M. Cerebrospinal Fluid and Lumbar Puncture: The Story of a Necessary Procedure in the History of Medicine. Neurol. Sci. 2015, 36, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Capogna, G. Epidural technique. In Epidural Technique In Obstetric Anesthesia; Springer: Cham, Switzerland, 2020; p. 130. [Google Scholar]
- Skaftason, J.F.; Kristinsson, J.; Johannesson, T. Injection Medicines: Historical Notes on Their Use and Development, with Special Reference to Icelandic Conditions. Laeknabladid 2011, 97, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- What Happens during a Lumbar Puncture (Spinal Tap)? National Library of Medicine. Available online: https://www.ncbi.nlm.nih.gov/books/NBK367574/ (accessed on 19 June 2023).
- Tsen, L.C.; Hepner, D.L. Needles Used for Spinal Anesthesia. Expert Rev. Med. Devices 2006, 3, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Fournet-Fayard, A.; Malinovsky, J.-M. Post-Dural Puncture Headache and Blood-Patch: Theoretical and Practical Approach. Ann. Fr. Anesth. Reanim. 2013, 32, 325–338. [Google Scholar] [CrossRef]
- Zorrilla-Vaca, A.; Healy, R.; Zorrilla-Vaca, C. Finer Gauge of Cutting but Not Pencil-Point Needles Correlate with Lower Incidence of Post-Dural Puncture Headache: A Meta-Regression Analysis. J. Anesth. 2016, 30, 855–863. [Google Scholar] [CrossRef]
- Souki, F.G.; Zbeidy, R. Efficacy and Ease of Use of a Newly Designed Pencil-Point Epidural Needle Compared to Conventional Tuohy Epidural Needle: A Randomized Single-Blind Pilot Study. Cureus 2022, 14, e30473. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Muñoz, L.; Godoy-Casasbuenas, N.; Ciapponi, A.; Arevalo, J.J.; Boogaard, S.; Roquéi Figuls, M. Needle Gauge and Tip Designs for Preventing Post-Dural Puncture Headache (PDPH). Cochrane Database Syst. Rev. 2017, 4, CD010807. [Google Scholar] [CrossRef]
- Niazi, A.U.; Chin, K.J.; Jin, R.; Chan, V.W. Real-Time Ultrasound-Guided Spinal Anesthesia Using the SonixGPS Ultrasound Guidance System: A Feasibility Study. Acta Anaesthesiol. Scand. 2014, 58, 875–881. [Google Scholar] [CrossRef]
- Perlas, A.; Chaparro, L.E.; Chin, K.J. Lumbar Neuraxial Ultrasound for Spinal and Epidural Anesthesia: A Systematic Review and Meta-Analysis. Reg. Anesth. Pain Med. 2016, 41, 251–260. [Google Scholar] [CrossRef]
- Jayanth, M.N.; Arumulla, S.P.; Kesana, P.; Kandukuru, K.C.; Basireddy, H.R.; Peddi, S. Preprocedural Ultrasonography as an Adjunct to Landmark Technique for Identification of Epidural Space in Parturients for Labor Analgesia. Saudi J. Anaesth. 2023, 17, 18–22. [Google Scholar] [CrossRef]
- Lin, S.P.; Mandell, M.S.; Chang, Y.; Chen, P.T.; Tsou, M.Y.; Chan, K.H.; Ting, C.K. Discriminant Analysis for Anaesthetic Decision-Making: An Intelligent Recognition System for Epidural Needle Insertion. Br. J. Anaesth. 2012, 108, 302–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Liang, C.-P.; Wu, K.; Sandler, A.; Chen, Y. Real-Time Epidural Anesthesia Guidance Using Optical Coherence Tomography Needle Probe. Quant. Imaging Med. Surg. 2015, 5, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Sofia, K.O.; Jones, L. Mechanical and Psychophysical Studies of Surface Wave Propagation during Vibrotactile Stimulation. IEEE Trans. Haptics 2013, 6, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Simpson, B.S.; Burns, M.; Dick, R.P.; Saager, L. Epidural Needle Guidance Using Viscoelastic Tissue Response. IEEE J. Transl. Eng. Health Med. 2022, 10, 4900611. [Google Scholar] [CrossRef]
- Coles, T.R.; Meglan, D.; John, N.W. The Role of Haptics in Medical Training Simulators: A Survey of the State of the Art. IEEE Trans. Haptics 2011, 4, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, F.H.; Elle, O.J.; Fosse, E. Simulators in Surgery. Minim. Invasive Ther. Allied Technol. 2005, 14, 214–223. [Google Scholar] [CrossRef]
- Lee, R.A.; Van Zundert, T.C.R.V.; Van Koesveld, J.J.M.; Van Zundert, A.A.J.; Stolker, R.J.; Wieringa, P.A.; Gatt, S.P. Evaluation of the Mediseus® Epidural Simulator. Available online: https://journals.sagepub.com/doi/10.1177/0310057X1204000215?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub++0pubmed (accessed on 22 April 2023).
- Elks, K.N.; Riley, R.H. The Mediseus Epidural Simulator–Does It Replicate Real Patients. Anaesth. Intensive Care 2007, 35, 818. [Google Scholar]
- DiMaio, S.P.; Salcudean, S.E. Interactive Simulation of Needle Insertion Models. IEEE Trans. Biomed. Eng. 2005, 52, 1167–1179. [Google Scholar] [CrossRef]
- Hill, K.O.; Meltz, G. Fiber Bragg Grating Technology Fundamentals and Overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Beisenova, A.; Issatayeva, A.; Molardi, C.; Tosi, D. Fiber Bragg Grating Sensor-Based Optical Guidance System for Epidural Catheter. In Proceedings of the 2018 IEEE Sensors, New Delhi, India, 28–31 October 2018. [Google Scholar] [CrossRef]
- Carotenuto, B.; Micco, A.; Ricciardi, A.; Amorizzo, E.; Mercieri, M.; Cutolo, A.; Cusano, A. Optical Guidance Systems for Epidural Space Identification. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 371–379. [Google Scholar] [CrossRef]
- Carotenuto, B.; Ricciardi, A.; Micco, A.; Amorizzo, E.; Mercieri, M.; Cutolo, A.; Cusano, A. Optical Fiber Technology Enables Smart Needles for Epidurals: An in-Vivo Swine Study. Biomed. Opt. Express 2019, 10, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- De Tommasi, F.; Romano, C.; Lo Presti, D.; Massaroni, C.; Carassiti, M.; Schena, E. FBG-Based Soft System for Assisted Epidural Anesthesia: Design Optimization and Clinical Assessment. Biosensors 2022, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- ISO—ISO 80369-6:2016—Small Bore Connectors for Liquids and Gases in Healthcare Applications—Part 6: Connectors for Neuraxial Applications. Available online: https://www.iso.org/standard/50734.html (accessed on 24 March 2023).
- Appropriate Use of Voluntary Consensus Standards in Premarket Submissions for Medical Devices|FDA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/appropriate-use-voluntary-consensus-standards-premarket-submissions-medical-devices (accessed on 24 March 2023).
- Medical Device Connectors|FDA. Available online: https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/medical-device-connectors (accessed on 24 March 2023).
- Food and Drug Administration Public Health Service US Department Of Health And Human Services. FDA Boxed Warning for Immediate-Release Opioids. J. Pain Palliat. Care Pharmacother. 2016, 30, 141–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Part B: Supplementary Information Sheet. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfStandards/detail.cfm?standard__identification_no=34074 (accessed on 18 May 2023).
- CFR—Code of Federal Regulation 21CFR868.5120. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=868.5120 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR868.5140. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=868.5140 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR868.5150. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=868.5150 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR868.5440. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=880.5440 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR868.5860. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=880.5860 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR882.1620. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=882.1620 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR882.4060. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=882.4060 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR882.5550. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=882.5550 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation 21CFR882.4100. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=882.4100 (accessed on 19 June 2023).
- CFR—Code of Federal Regulation21CFR882.5560. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=882.5560 (accessed on 19 June 2023).
Technology | Merits | Drawbacks |
---|---|---|
Ultrasound-guided epidural needle |
|
|
Haptic feedback-based devices |
|
|
Epidural pressure measurement-based devices |
|
|
FBG-based devices |
|
|
OCT-based devices |
|
|
# | Regulation # | Device Name | Device Identification | Device Class | Ref. |
---|---|---|---|---|---|
1 | 868.5120 | Anesthesia conduction catheter | A pliable tubular tool called an anesthesia conduction catheter is used to continuously administer regional anesthesia while injecting patients with local anesthetics. | Class II | [55] |
2 | 868.5140 | Anesthesia conduction kit | A tool used to deliver conduction, local, or regional anesthesia to a patient is an anesthesia conduction kit. Syringes and medications may be present in the apparatus. | Class II | [56] |
3 | 868.5150 | Anesthesia conduction needle | A patient receives regional anesthesia by having local anesthetics injected into them using an anesthesia conduction syringe. | Class II | [57] |
4 | 880.5440 | Intravascular administration set | With the aid of a needle or catheter introduced into a vein, a patient’s vascular system can receive fluids from a receptacle using an intravascular administration set. The device might consist of a needle or catheter, tubing, a flow regulator, a drip chamber, an infusion line filter, an I.V. set stopcock, fluid delivery tubing, connectors between set components, a side tube with a cap to act as an injection site, and a hollow spike to pierce and attach the tubing to an I.V. bag or other infusion fluid container. | Class II | [58] |
5 | 880.5860 | Piston syringe | A piston syringe is a tool with a calibrated hollow cylinder and a movable plunger that is used in medicine. A male connection (nozzle) for attaching the female connector (hub) of a hypodermic single-lumen needle is located at one end of the barrel. The apparatus is used to infuse or remove fluid from the body. | Class II | [59] |
6 | 882.1620 | Intracranial pressure monitoring device. | An instrument used for recording and short-term monitoring of intracranial pressures and pressure trends is known as an intracranial pressure monitoring system. The transducer, monitor, and connecting components are all part of the apparatus. | Class II | [60] |
7 | 882.4060 | Ventricular cannula | The brain’s ventricles can be punctured with a ventricular cannula in order to aspirate or introduce substances. The term “ventricular needle” is commonly used to describe this object. | Class I | [61] |
8 | 882.5550 | Central nervous system fluid shunt and components | A device or set of devices called a central nervous system fluid shunt is used to divert fluid away from the brain or another area of the central nervous system and into an internal delivery location or an external container in order to lower intracranial pressure or fluid volume (e.g., due to hydrocephalus). Catheters, valved catheters, valves, connectors, and other accessory parts are included in central nervous system shunts as well as other parts that help with shunt use or patient assessment. | Class II | [62] |
9 | 882.4100 | Ventricular catheter | A ventricular catheter is a tool used to reach the brain’s cavities so that material can be injected into or removed from the brain. | Class II | [63] |
10 | 882.5560 | Cerebrospinal fluid shunt system. | To prevent spinal cord ischemia or injury during procedures that call for lowering central nervous system pressure, a cerebrospinal fluid shunt system is a prescription device used to monitor and divert fluid from the brain or other part of the central nervous system to an internal delivery site or an external receptacle. Catheters, valved catheters, valves, connectors, and pressure sensors may be part of a cerebrospinal fluid shunt system. These components are designed to make using the shunt or evaluating a patient with a shunt easier. | Class II | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althobaiti, M.; Ali, S.; Hariri, N.G.; Hameed, K.; Alagl, Y.; Alzahrani, N.; Alzahrani, S.; Al-Naib, I. Recent Advances in Smart Epidural Spinal Needles. Sensors 2023, 23, 6065. https://doi.org/10.3390/s23136065
Althobaiti M, Ali S, Hariri NG, Hameed K, Alagl Y, Alzahrani N, Alzahrani S, Al-Naib I. Recent Advances in Smart Epidural Spinal Needles. Sensors. 2023; 23(13):6065. https://doi.org/10.3390/s23136065
Chicago/Turabian StyleAlthobaiti, Murad, Sajid Ali, Nasir G. Hariri, Kamran Hameed, Yara Alagl, Najwa Alzahrani, Sara Alzahrani, and Ibraheem Al-Naib. 2023. "Recent Advances in Smart Epidural Spinal Needles" Sensors 23, no. 13: 6065. https://doi.org/10.3390/s23136065
APA StyleAlthobaiti, M., Ali, S., Hariri, N. G., Hameed, K., Alagl, Y., Alzahrani, N., Alzahrani, S., & Al-Naib, I. (2023). Recent Advances in Smart Epidural Spinal Needles. Sensors, 23(13), 6065. https://doi.org/10.3390/s23136065