Force Identification Based on Response Signals Captured with High-Speed Three-Dimensional Digital Image Correlation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Force Identification Methods
2.2. Inversion of the FRF Matrix Method
2.3. Modal Filtration Method
- Modal filtration of the system response vector Y(ω), i.e., the transition from physical to modal coordinates η(ω).
- Determination of the number of uncorrelated excitation forces.
- Location of these unknown forces.
- Determination of the force spectra from the matrix equation:
2.4. Dynamic Stiffness Method
2.5. Method Based on the Mutual Energy Theorem
2.6. Digital Image Correlation (DIC) Background
2.7. Experimental Arrangements
3. Research Methodology
4. Results of Force Identification
4.1. Identification with Use of FRF Inversion Method
4.2. Identification with Use of Modal Filter Method
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mendrok, K.; Dworakowski, Z. A review of methods for excitation force reconstruction. Diagnostyka 2019, 20, 11–19. [Google Scholar] [CrossRef]
- Sanchez, J.; Benaroya, H. Review of force reconstruction techniques. J. Sound Vib. 2014, 333, 2999–3018. [Google Scholar] [CrossRef]
- Dobson, B.J.; Rider, E. A Review of the Indirect Calculation of Excitation Forces from Measured Structural Response Data. Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci. 1990, 204, 69–75. [Google Scholar] [CrossRef]
- Lee, H.; Park, Y.-S. Error analysis of indirect force determination and a regularisation method to reduce force determination error. Mech. Syst. Signal Process. 1995, 9, 615–633. [Google Scholar] [CrossRef]
- Feng, D.; Feng, M.Q. Identification of structural stiffness and excitation forces in time domain using noncontact vision-based displacement measurement. J. Sound Vib. 2017, 406, 15–28. [Google Scholar] [CrossRef]
- Baqersad, J.; Poozesh, P.; Niezrecki, C.; Avitabile, P. Photogrammetry and optical methods in structural dynamics—A review. Mech. Syst. Signal Process. 2017, 86, 17–34. [Google Scholar] [CrossRef]
- Ehrhardt, D.A.; Allen, M.S.; Yang, S.; Beberniss, T.J. Full-field linear and nonlinear measurements using Continuous-Scan Laser Doppler Vibrometry and high speed Three-Dimensional Digital Image Correlation. Mech. Syst. Signal Process. 2017, 86, 82–97. [Google Scholar] [CrossRef]
- Srivastava, V.; Baqersad, J. An optical-based technique to obtain operating deflection shapes of structures with complex geometries. Mech. Syst. Signal Process. 2019, 128, 69–81. [Google Scholar] [CrossRef]
- Srivastava, V.; Baqersad, J. A multi-view optical technique to extract the operating deflection shapes of a full vehicle using digital image correlation. Thin-Walled Struct. 2019, 145, 106426. [Google Scholar] [CrossRef]
- Bharadwaj, K.; Sheidaei, A.; Afshar, A.; Baqersad, J. Full-field strain prediction using mode shapes measured with digital image correlation. Measurement 2019, 139, 326–333. [Google Scholar] [CrossRef]
- Molina-Viedma, A.; Felipe-Sesé, L.; López-Alba, E.; Díaz, F. High frequency mode shapes characterisation using Digital Image Correlation and phase-based motion magnification. Mech. Syst. Signal Process. 2018, 102, 245–261. [Google Scholar] [CrossRef]
- Molina-Viedma, A.; Felipe-Sesé, L.; López-Alba, E.; Díaz, F. 3D mode shapes characterisation using phase-based motion magnification in large structures using stereoscopic DIC. Mech. Syst. Signal Process. 2018, 108, 140–155. [Google Scholar] [CrossRef]
- Patil, K.; Srivastava, V.; Baqersad, J. A multi-view optical technique to obtain mode shapes of structures. Measurement 2018, 122, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Molina-Viedma, Á.J.; Felipe-Sesé, L.; López-Alba, E.; Díaz, F.A. Comparative of conventional and alternative Digital Image Correlation techniques for 3D modal characterisation. Measurement 2019, 151, 107101. [Google Scholar] [CrossRef]
- Huňady, R.; Pavelka, P.; Lengvarský, P. Vibration and modal analysis of a rotating disc using high-speed 3D digital image correlation. Mech. Syst. Signal Process. 2018, 121, 201–214. [Google Scholar] [CrossRef]
- Wang, W.; Mottershead, J.E.; Ihle, A.; Siebert, T.; Schubach, H.R. Finite element model updating from full-field vibration measurement using digital image correlation. J. Sound Vib. 2011, 330, 1599–1620. [Google Scholar] [CrossRef]
- Cuadrado, M.; Pernas-Sanchez, J.; Artero-Guerrero, J.; Varas, D. Model updating of uncertain parameters of carbon/epoxy composite plates using digital image correlation for full-field vibration measurement. Measurement 2020, 159, 107783. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, D.; Yu, Q.; Jiang, Y.; Arola, D. Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation. Mech. Syst. Signal Process. 2019, 130, 470–483. [Google Scholar] [CrossRef]
- Molina-Viedma, Á.J.; Pieczonka, L.; Mendrok, K.; López-Alba, E.; Díaz, F.A. Damage identification in frame structures using high-speed digital image correlation and local modal filtration. Struct. Control Health Monit. 2020, 27, e2586. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, W.; Zhu, W.; Xu, Y. Local damage detection of membranes based on Bayesian operational modal analysis and three-dimensional digital image correlation. Mech. Syst. Signal Process. 2019, 131, 633–648. [Google Scholar] [CrossRef]
- Otsuka, T.; Okada, T.; Ikeno, T.; Shiomi, K.; Okuma, M. Force identification of an outboard engine by experimental means of linear structural modeling and equivalent force transformation. J. Sound Vib. 2007, 308, 541–547. [Google Scholar] [CrossRef]
- Parloo, E.; Verboven, P.; Guillaume, P.; Van Overmeire, M. Force identification by means of in-operation modal models. J. Sound Vib. 2003, 262, 161–173. [Google Scholar] [CrossRef]
- Rust, A.; Edlinger, I. Active path tracking for vehicle noise source identification. Sound Vib. 2002, 36, 14–19. [Google Scholar]
- Zhang, Q.; Allemang, R.J.; Brown, D.L. Modal filter: Concept and applications. In Proceedings of the 8th International Modal Analysis Conference, Kissimmee, FL, USA, 29 January–1 February 1990; pp. 487–496. [Google Scholar]
- Shih, C.Y.; Zhang, Q.; Allemang, R.J. Force identification by using principle and modal coordinate transformation method. Am. Soc. Mech. Eng. Des. Eng. Div. 1989, 18, 303–309. [Google Scholar]
- Mendrok, K.; Kurowski, P. Operational modal filter and its applications. Arch. Appl. Mech. 2012, 83, 509–519. [Google Scholar] [CrossRef] [Green Version]
- Mendrok, K. Force identification with use of spatial filter based on ODS. Diagnostyka 2015, 16, 23–28. [Google Scholar]
- Wyckaert, K.; Van der Auweraer, H. Operational Analysis, Transfer Path Analysis, Modal Analysis: Tools to Understand Road Noise Problems in Cars; SAE Technical Paper; SAE International: Warrendale, PA, USA, 1995. [Google Scholar] [CrossRef]
- Li, J. Application of mutual energy theorem for determining unknown force sources. In Proceedings of the International Conference on Noise Control Engineering, Avignon, France, 30 August–1 September 1988. [Google Scholar]
- Nelson, P.; Curtis, A.; Elliott, S.; Bullmore, A. The minimum power output of free field point sources and the active control of sound. J. Sound Vib. 1987, 116, 397–414. [Google Scholar] [CrossRef]
- Schreier, H.; Orteu, J.-J.; Sutton, M.A. Image Correlation for Shape, Motion and Deformation Measurements; Springer: Boston, MA, USA, 2009. [Google Scholar]
- Heideman, M.; Johnson, D.; Burrus, C. Gauss and the history of the fast fourier transform. IEEE ASSP Mag. 1984, 1, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Peeters, B.; Van Der Auweraer, H.; Guillaume, P.; Leuridan, J. The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation? Shock Vib. 2004, 11, 395–409. [Google Scholar] [CrossRef]
Mode No. | NF [Hz] | MDC [%] |
---|---|---|
1 | 12.53 | 2.74 |
2 | 70.05 | 0.59 |
3 | 110.95 | 1.03 |
4 | 128.15 | 0.42 |
5 | 182.93 | 2.01 |
6 | 232.41 | 0.77 |
Identification Method | Compared Spectrum | Pearson’s Correlation Coefficient | Average Value of Spectrum Magnitude | Relative Error [%] |
---|---|---|---|---|
FRF matrix inversion | Measured force | 0.80 | 0.0027 | 29.6 |
Identified force | 0.0035 | |||
Modal filter | Measured force | 0.96 | 0.0027 | 3.7 |
Identified force | 0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendrok, K.; Molina-Viedma, Á.J.; López-Alba, E.; Díaz Garrido, F.A.; Pieczonka, L. Force Identification Based on Response Signals Captured with High-Speed Three-Dimensional Digital Image Correlation. Sensors 2023, 23, 799. https://doi.org/10.3390/s23020799
Mendrok K, Molina-Viedma ÁJ, López-Alba E, Díaz Garrido FA, Pieczonka L. Force Identification Based on Response Signals Captured with High-Speed Three-Dimensional Digital Image Correlation. Sensors. 2023; 23(2):799. https://doi.org/10.3390/s23020799
Chicago/Turabian StyleMendrok, Krzysztof, Ángel J. Molina-Viedma, Elias López-Alba, Francisco A. Díaz Garrido, and Lukasz Pieczonka. 2023. "Force Identification Based on Response Signals Captured with High-Speed Three-Dimensional Digital Image Correlation" Sensors 23, no. 2: 799. https://doi.org/10.3390/s23020799
APA StyleMendrok, K., Molina-Viedma, Á. J., López-Alba, E., Díaz Garrido, F. A., & Pieczonka, L. (2023). Force Identification Based on Response Signals Captured with High-Speed Three-Dimensional Digital Image Correlation. Sensors, 23(2), 799. https://doi.org/10.3390/s23020799