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Abstract: The present study proposes a new, highly efficient fractal antenna with ultra-wideband
(UWB) characteristics. The proposed patch offers a wide simulated operating band that reaches
8.3 GHz, a simulated gain that varies between 2.47 and 7.73 dB throughout the operating range,
and a high simulated efficiency that comes to 98% due to the modifications made to the antenna
geometry. The modifications carried out on the antenna are composed of several stages, a circular
ring extracted from a circular antenna in which four rings are integrated and, in each ring, four other
rings are integrated with a reduction factor of 3/8. To further improve the adaptation of the antenna,
a modification of the shape of the ground plane is carried out. In order to test the simulation results,
the prototype of the suggested patch was built and tested. The measurement results validate the
suggested dual ultra-wideband antenna design approach, which demonstrates good compliance
with the simulation. From the measured results, the suggested antenna with a compact volume of
40 × 24.5 × 1.6 mm3 asserts ultra-wideband operation with a measured impedance bandwidth of
7.33 GHz. A high measured efficiency of 92% and a measured gain of 6.52 dB is also achieved. The
suggested UWB can effectively cover several wireless applications such as WLAN, WiMAX, and C
and X bands.

Keywords: fractal antenna; UWB; efficiency; circular ring; WLAN; low-cost; rings

1. Introduction

Patch antennas have increased in popularity dramatically since the 1970s due to
advances in microelectronics technology in the areas of miniaturization and electronic
integration. In aeronautical, aerospace, and military contexts, antennas that are compact,
lightweight, affordable, highly effective, and easy to install are critical requirements. These
low-profile antennas are necessary to fulfill these needs.

In contemporary communication systems, printed antennas, which are also referred
to as patch antennas or microstrip antennas, are extensively utilized. This is because
commercial wireless applications face the same limitations that were once encountered
in earlier times due to the proliferation of telecommunications. There exists a plethora
of antenna types. In addition, wireless communication devices require more and more
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frequency bands due to the increasing requirements for wireless services. Since these
devices are also intended to be smaller in size for real estate purposes, antennas need to
reduce their size and operate in more than one frequency band while maintaining their
performance.

Multiband and broadband antennas are two types of antennas that are commonly
utilized in different communication systems. A multiband antenna is specifically designed
to function on multiple frequency bands, making them ideal for wireless communication
systems such as cellular networks. These antennas can support various frequency bands,
which enables simultaneous transmission of both voice and data. Conversely, broadband
antennas are designed to operate over an extensive range of frequencies, utilizing broad-
band elements like spiral or log-periodic antennas to cover a broad frequency range. This
type of antenna is typically used in radar systems that require the detection of signals over
a wide frequency range. In conclusion, multiband antennas operate over several frequency
bands, while broadband antennas function across a wide frequency range. Both types of
antennas offer unique advantages and are utilized in various communication and sensing
systems.

An antenna for ultra-wideband (UWB) is a type of antenna that is designed to work
efficiently over a wide range of frequencies, typically from a few hundred megahertz
to several gigahertz. UWB antennas can come in various forms, such as monopoles,
dipoles, patch antennas, and horn antennas. Some popular UWB antenna designs include
the planar inverted F antenna (PIFA), the tapered slot antenna (TSA), and the printed
monopole antenna.

To meet the demands of contemporary wireless communication systems, antennas
with a low profile, compact size, multiband, and wideband features are greatly desired.
Over the past ten years, most modern wire-free communication systems have been de-
veloped remarkably swiftly. In order to achieve high-speed broadband connections with
minimal power consumption, radio networks use ultra-wideband (UWB) telecommunica-
tions technology. UWB was first designed for use with commercial radars. The two primary
uses of UWB technology are in consumer electronics and wireless personal area networks
(WPANs). Since its early successes in the mid-2000s, wireless UWB technology has emerged
as a skill with a small number of smart structures, including the fields of medical engi-
neering, wireless communications, and radar [1]. Owing to its inexpensive cost, reduced
complexity, and increased data transfer rate, UWB technology has gained popularity since
it was first commercialized. The ongoing development of UWB communication systems
has led to a revolution in printed patch design methods [2–4], which now better match the
fundamental criteria for UWB applications.

Due to its broad bandwidth, high data rate capabilities, power efficiency, interference-
free transmissions, effective spectrum usage, secure communication system, and straight-
forward circuitry for implementation, UWB technology has attracted a lot of interest during
the past 10 years [5]. The Federal Commission of Communication, situated in the United
States, has designated a frequency range of 3.1 to 10.6 GHz, with a bandwidth of 7.5 GHz,
for use in UWB applications [6–8]. Due to their simplicity and compactness, UWB antennas
are a crucial component of Internet of Things (IoT) devices and wireless body area networks
(WBAN) [9]. When low-cost wireless sensors are used in wearable or flexible IoT devices
for continuous data transmission and low radiation power characteristics, UWB antennas
find niche applications [10–13].

Recently, several approaches have been reported in the literature to obtain UWB
characteristics [14–28]. The authors of [14] used a fractal slit in tree form to have a UWB op-
eration. In [15], the authors suggested a compact folded patch antenna that operates over an
ultra-wide bandwidth. Marzouk et al. [16] used an FR4 substrate of size 45 × 42 × 1.6 mm3

to construct an octagonal UWB fractal antenna. By using an RT5880 substrate and a CPW
feed, Niamat et al. [17] presented a reconfigurable antenna for UWB operation. The Antipo-
dal Vivaldi (AVA) antenna design is implemented in [18]. The authors used a fractal leaf
structure inspired by ferns in nature. A planar MIMO UWB antenna with a two-port shared
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structure is suggested by [19]. The circular antenna has two tapered slots back-to-back.
In [20], a four-element MIMO antenna for ultra-wideband (UWB) signals is proposed. A
planar patch fed by a coplanar waveguide with ultra-wideband circular polarization is
given in [21]. As reported in reference [22], the researchers employed a flexible UWB
patch prototype with two resonators that have arc-shaped structures etched onto a PDMS
substrate in their study. This design is well-suited for a range of applications that involve
the human body. Fei L. et al. in [23] present a low-profile dual-band printed loop composite
antenna compatible with WLAN and WiMAX systems. Tonmoy et al. in [24] used slots at
the feeder and resonator to ensure UWB operation. The authors of [25] used two triangular
slots and added a semi-circular tip to the patch to achieve UWB operation. The antenna
reported in [26] is a circular patch fed by a coplanar waveguide (CPW). Also, in [27], a
flexible patch is designed on a polyimide substrate. Also, a patch based on nanocompos-
ite material with an impedance of 2–7 GHz and dimensions of 48 × 34.9 × 0.13 mm3 is
proposed by [28].

In comparison to other antenna structures reported in the prior art [10,19,21,29–32], the
proposed antenna has the following design objectives: to construct a new fractal antenna at
a low cost; to obtain the antenna’s most compact zone; to provide UWB operation; to reach
a higher peak gain and a higher radiation efficiency. The authors of [33–35] suggested using
antennas with circular polarization (CP) to emit electromagnetic waves with an electric
field that rotates in a circular pattern. This is done in order to improve signal reception and
ensure better performance. The proposal from [33] suggests using a printed antenna with
CP by utilizing a substrate that has a crescent shape. To achieve CP, Ref. [34] recommends
the use of a square slot antenna. In [35], an inverted L-shaped CP patch was introduced
by Karunesh and co-authors. For transmission and reception of data with higher data
transfer rates, improved signal quality, and increased reliability, several antennas that use
the MIMO technology are proposed in the literature [36–38].

Ultra-wideband (UWB) antennas are a type of antenna that can transmit and receive
signals over a wide frequency range, typically ranging from 3.1 GHz to 10.6 GHz. UWB
antennas have a number of applications in various fields, including computer science,
control and systems engineering, and electrical and electronic engineering.

In computer science, UWB antennas can be used for wireless communication, par-
ticularly for high-speed data transfer between devices. UWB technology can be used for
wireless USB, wireless HDMI, and other similar applications, which can eliminate the need
for cables and connectors.

In control and systems engineering, UWB antennas can be used for real-time location
tracking, particularly in indoor environments. UWB technology allows for very precise
location tracking with an accuracy of a few centimeters, which can be used in robotics,
automation, and other control and monitoring applications.

In electrical and electronic engineering, UWB antennas can be used for radar and
sensing applications. UWB radar can be used for imaging, motion tracking, and other
sensing applications, particularly in harsh environments where other types of sensors may
not be suitable.

Overall, UWB antennas have a broad range of applications in various fields, particu-
larly in wireless communication, real-time location tracking, and sensing applications.

The design of UWB antennas is challenging due to their requirement for high impedance
bandwidth, high radiation efficiency, and low group delay distortion. It is essential to
choose the appropriate antenna for the specific UWB application, based on factors such
as the desired frequency range, power handling capacity, and physical size limitations.
This letter is dedicated to the design and manufacture of a new UWB monopoly patch
printed at cheap prices. The UWB feature is achieved by using a fractal ring shape and
a partial ground plane. With a compact size, the developed patch operates over many
bands with high gain and high radiation efficiency. The antenna developed in this work
has a maximum gain of 7.73 dB and radiation efficiency of 98%. It is constructed on a
cost-effective FR4 substrate with dimensions of 40 × 24.5 × 1.6 mm3. The following is



Sensors 2023, 23, 4172 4 of 15

an over-view of the following sections of the paper: The design process of the proposed
UWB patch is described in Section 2 with the different development steps and size specifi-
cations of the proposed antenna, and the performance characteristics of the antenna are
covered in Section 3, where a parametric study and a surface current distribution study
are established. While the fabrication of the prototype and the discussion of the measured
results are covered in Section 4. The letter is concluded in Section 5, which is followed by
the references.

2. Antenna Design

The UWB fractal patch design suggested by this work, labeled with design dimensions,
is exhibited on Figure 1. A low-cost FR4 substrate with a dielectric constant of 4.4 is used
as the patch’s backing. The proposed fractal shape is compact in size and occupies a
substrate volume of only 40 × 24.5 × 1.6 = 1568 mm3. A 50 Ω feed line powers a circular
fractal resonator on the top face of the substrate. Additionally, to achieve good impedance
matching, on the underside of the substrate, a ground plane composed of a rectangular
and a half-disc-shaped part with a rectangular slot of thickness “ep” is used in place of the
traditional rectangular ground plane to improve the impedance adaptation. Table 1 shows
the final dimensions of the proposed UWB antenna.
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Table 1. Size specifications for the proposed antenna.

Parameters L W Rp Ep Z R1 R2 R3 Lp Wp K

Values (mm) 40 24.5 12.25 0.5 4 12 4.5 1.68 13.08 2.75 2

2.1. A. Planar Fractal Antenna Planned Development Stages

Iteration 0 is composed of a circular antenna of radius 17 mm. The radius of the
initiator patch is calculated for a frequency of 3.58 GHz. The radius (R) is calculated using
the following equation [39,40]:

R =
F√

1 +
(

2h
πεr F

)[
ln
(

πF
2h

)
+ 1.7726

] (1)

where,

F =
8.791× 109

fr
√

εr
(2)
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After adjusting the calculated parameters so the antenna resonates at 3.58 GHz, the
required patch volume is 60 × 60 × 4 mm3. The evolution of the different iteration phases
from the initial antenna to the proposed antenna is shown in Figure 2. Figure 2a represents
the 0th iteration, it is a circular patch fed by a microstrip line. The following iteration given
in Figure 2b is the 1st iteration, in which the initial structure is modified by incorporating
a circular slot to improve impedance matching and increase the operating band of the
patch. The ring of the first iteration is then filled with four rings of smaller radius R2 (as
shown in Figure 2c). The 3rd iteration depicted in Figure 2d is obtained by incorporating
sixteen rings of radius R3 to obtain a very wide operating band. Thus, in the final iteration
shown in Figure 2e, which constitutes the proposed antenna, the traditional ground plane
consisting of a partial rectangular ground plane is replaced by a semi-circular ground plane.
The modifications proposed in Iteration 4 made it possible to obtain a UWB. At each step
of the evolution of the proposed patch, four copper rings are incorporated into each ring of
the previous iteration. The relations that link each ray of an iteration to the previous ones
are the following: R1 = 12 mm, R2 = 3 × R1/8, R3 = 3 × R2/8.
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2.2. B. The Reflection Coefficient (S11) Analysis for Various Development Stages

A fractal is a geometrical figure with a complex structure that requires the use of
fractionation rules. Due to its symmetric nature, the circular antenna is used in this work.
Figure 3 displays the S11 characteristics for each step-by-step design study.
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The 0th iteration antenna is a simple circular shape. The initiator operates on the oper-
ating bands [3.52–3.72] and [6.00–6.60] with bandwidths of 0.2 and 0.60 GHz, respectively.
The structure of the antenna has evolved in Iteration 1 to improve the results and fulfill the
intended applications. The operating bands of Iteration 1 are considerably improved. How-
ever, in this stage, the antenna operates on three impedance bandwidths of 0.49, 0.74, and
0.66 GHz with a gain that reaches 4.97 dB. Thus, in the next iteration, the antenna design is
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modified by the introduction of four annals. The antenna of Iteration 2 has a dual-band
operation with a wide bandwidth that reaches 4.35 GHz. However, the frequency band
(2.70–7.05 GHz) centered on 3.14 GHz is not well suited (low loss return). Then, in the
penultimate iteration, the geometry of the second iteration was modified by integrating
four new rings into each ring. The new shape enables wideband operation from 2.67 to
7.18 GHz as well as a good match with a gain of up to 6.94 dB. However, the antenna
presented in this iteration does not meet the X-band requirement. Thus, to further improve
the antenna matching and widen the operating band to cover the Band X requirements, the
patch is further evolved to Iteration 4, which gives the desired proposed UWB antenna
with an increased operating bandwidth that will cover all frequency bands for the planned
wireless communication applications. In the simulation of this iteration, the antenna has a
UWB characteristic that covers the frequency band (2.70–11.0 GHz) with a gain that exceeds
7.7 dB. Due to this amelioration, the suggested antenna can effectively cover a variety of
wireless communication applications, as listed in Table 2.

Table 2. Frequency bands that the suggested antenna would cover.

Bandwidth [GHz] Covered Commercial Bands

[2.70–11.0]

5.15–5.825 GHz WLAN;
3.4–3.69 GHz, 5.25–5.85 GHz Wi−MAX;

3.6575–3.690 GHz, 5.180–5.825 GHz Wi− Fi;
ITU assigned all C band transmit frequency

(5.85–6.425 GHz, 6.425–6.725 GHz, 6.725–7.025 GHz,
5.975–6.475 GHz, 5.725–6.025 GHz), and receive frequency

(3.625–4.200 GHz, 3.400–3.625 GHz, 3.650–4.150 GHz, 3.7–4.0 GHz)
around the world, and ITU assigned amateur radio (10–10.50 GHz) and

amateur satellite (10.45–10.50 GHz) applications in the X band.

3. Parametric Study

This section is dedicated to the study of the effects of certain structural parameters
through the HFSS simulator. The ideal dimensional specifications of the proposed patch
have an impact on the performance of the antenna. The change in these parameters
results in significant variations in antenna performance. The appropriate dimensions of the
proposed patch can be determined using parametric studies so that it can work effectively
with the best attributes.

3.1. Effect of Feed Line Width “Wp”

The effect of the Wp on the characteristic of the reflection coefficient, keeping all other
dimension parameters unchanged, is illustrated in Figure 4. Figure 4 clearly shows that the
feed line width “Wp” of the proposed antenna results in a UWB operation with the best
return loss characteristic (S11) and the widest operational bandwidth.
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3.2. Effect of Ground Plane Slot Position “Pos”

The ground plane slot position effects on the S11 parameters of the fractal patch
antenna are shown in Figure 5 while keeping all other dimensions invariant. By observing
Figure 5, it is clear that varying the value of “Pos” significantly affects the impedance
matching of the UWB patch and the bandwidth and that the proposed value presents the
best result.
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3.3. Effect of Ground Plane Slot Width “Ep”

This section examines the variations in the width “Ep” of the ground plane slot. This is
another important design factor to see how it affects the reflection coefficient properties of
the suggested patch. Figure 6 presents the fluctuations of the simulated reflection coefficient
as a function of the variation of the slot width to better illustrate the effect of “Ep”. From
Figure 6, it can be observed that the width of the slot at the ground plane “Ep” has a
great influence on the operating bandwidth. The suggested width of Ep = 0.5 mm allows
the proposed patch a great improvement in impedance matching and, consequently, an
operational bandwidth that reaches 8.30 GHz. However, due to the variation of “Ep”, the
operational bandwidth deteriorates. Given this, it can be said that the proposed patch
performs optimally for Ep = 0.5 mm in terms of operational bandwidth and reflection
coefficient.
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3.4. Surface Current Distribution

To properly comprehend how the UWB patch functions, Figure 7 displays the surface
current distributions for the four resonant frequencies (3.17, 5.82, 7.85, and 9.16 GHz,
respectively). It shows that at the upper and lower bands, the current is concentrated on the
different rings, on the feeder, and on the slot at the ground plane. According to the current
distribution, the rectangular ring and the strip are crucial to producing the four resonant
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modes of the UWB. Due to the proposed fractal shape, the resonant behavior of the patch
varies with its surface current distribution. Due to the stretching of the surface currents
around the rings of the fractal antenna, the fractal shape changes the distributions of the
electric and magnetic fields. The way the suggested antenna disturbs the current paths
raises the number of resonant frequencies. The slot at the ground plane, which has a quasi-
circular shape, leads to regulated excitation and the spread of radiated waves throughout
the substrate. The higher antenna bandwidth is thus explained by the interaction of the
patch resonances and the additional resonances created by the new ground plane form.
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4. Results and Discussion

HFSS software was used for antenna design and optimization. After that process, the
suggested optimal patch is manufactured and measured to confirm the simulated results.
The front and back views of the prototype, as well as the measurement setup in the anechoic
chamber, are depicted in Figure 8a–c.
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The S11 of the prototype patch is measured with the use of the vector network analyzer.
Figure 9 compares the S11 parameters measured and simulated using the HFSS software.
The results from simulation and measurement are in good agreement, and they both
support the UWB operating properties with four resonance frequencies. An improvement
in input impedance between 4.0 and 4.8 GHz is noted in the empirical results in comparison
to the simulated ones. Moreover, a slight decrease in the operating band is observed for the
measured results. This drop could be caused by the impact of the high frequency on the
FR4, manufacturing tolerance, simulation frequency width, measurement circumstances,
the dielectric permittivity in the substrate, or the SMA connector’s soldering conditions.
According to the obtained measurement results, the UWB operation is affirmed. The
manufactured prototype can cover the operating band [2.83–10.16] GHz with a measured
bandwidth of 7.33 GHz. The results of S11 obtained by the measurement show that the
suggested fractal patch has a good operation with reliable performance. The suggested
antenna accommodates the bandwidth needs of several wireless protocols, such as WLAN,
Wi-MAX, Wi-Fi, ITU assigned all C band, receive frequency, and radiolocation.
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The radiation properties study of the suggested patch in terms of peak gain, radiation
efficiency, and the radiation pattern is presented in this section. The measurement results
are used to confirm the simulation results. The radiation parameters of the patch are
realized in an anechoic chamber, as shown in Figure 8c. Both Figures 10 and 11 show
the peak gain and radiation efficiency results of the fractal antenna. The results of the
simulation and measurement can be seen to differ slightly. Compared to the simulated
pattern, the measured peak gain pattern is smaller. This difference may be due to the lower
matching level of the manufactured patch than the simulated patch; this mismatch may
be due to manual soldering, the effect of the connector, or impurities in the substrate used
for fabrication. Furthermore, it is clear from Figure 10 that as the frequency increases, the
peak gain also increases. This could be explained by the fact that the size of the patch
becomes larger than its wavelength when the frequency increases. It may be up to 6.52 dB.
However, as shown in Figure 11, the measured radiation efficiency reaches a value of
91%. The effectiveness of an antenna in directing or capturing signals in a particular
direction, compared to an isotropic radiator, is referred to as its gain. Typically, the gain of
an antenna increases as the signal frequency increases up to a certain threshold. However,
at higher frequencies, the gain starts to decrease due to several factors, including losses
in the antenna and the growing difficulty of efficiently directing or capturing the signal.
In contrast, radiation efficiency presents the ability of an antenna to convert the electrical
energy it receives into electromagnetic radiation that can be transmitted through the air. The
radiation efficiency of an antenna also varies with frequency but in the opposite direction
to its gain. With an increase in frequency, the radiation efficiency tends to decrease due to
increased resistive losses and decreased coupling between the antenna and the surrounding
environment. As a result, as the frequency increases, the gain of the antenna will increase
to a maximum, while the radiation efficiency will decrease at those frequencies.
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Figure 11. Radiation efficiency of the suggested patch.

The simulated and measured 2D radiation patterns in the E and H planes at 3.17, 5.82,
7.86, and 9.16 GHz are displayed in Figure 12a. The measured and simulated results display
excellent agreement, as seen in Figure 12a. Effectively radiating across the operating band
is the prototype patch. In the first two resonant frequencies, the radiation pattern in the
H-plane is omnidirectional and quasi-omnidirectional in the high frequencies. In contrast,
in the E-plane, the radiation pattern is bidirectional in the first two resonant frequencies and
quasi-omnidirectional in the other two frequencies. The influence of the high frequencies
on the FR-4 substrate is the cause of the modification of the radiation pattern observed
at high frequencies. Co-polarization and cross-polarization are terms used in the field of
radio communications and electromagnetic waves to describe the relationship between
transmitting and receiving antennas. The former aims to maximize signal strength and
minimize interference, while the latter aims to reduce the interference caused by reflections.
Both are important considerations when designing a communication system. Figure 12b
illustrates co-polarization and cross-polarization.
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Group delay and time domain characteristics are two different measures of an an-
tenna’s performance in the time domain.

The analysis of the behavior of an antenna in the time domain is known as the antenna
time domain study, and it is crucial to comprehend the transient and dynamic behavior
of an antenna [36–38]. This type of analysis can reveal important information about the
antenna’s radiation pattern, polarization, bandwidth, and impedance.



Sensors 2023, 23, 4172 12 of 15

The study of the antenna time domain plays a critical role in understanding how
an antenna behaves when transmitting or receiving signals that change over time. By
examining the antenna’s time–domain behavior, engineers can tailor its design to meet
specific requirements, such as radar, wireless communication, or satellite communication.

Furthermore, time–domain analysis can help detect potential issues with the antenna’s
performance, such as impedance mismatches, noise, or interference. This knowledge can
then be used to enhance the antenna’s design and performance, resulting in improved
signal quality, increased efficiency, and reduced interference.

In summary, studying the antenna time domain is a vital component of antenna engi-
neering, as it provides valuable insights into the antenna’s behavior, leading to optimized
design and performance for specific applications.

In order to demonstrate the time–domain performance of the antenna, a pair of
identical antennas are positioned in front of each other, with one serving as the transmitter
and the other as the receiver, and their faces directed towards each other. These antennas
are positioned at a distance of five times the wavelength of the lowest operating frequency
to establish a far-field environment. The time domain response of the proposed antenna is
depicted in Figure 13. Where i1 indicates the input signal of port 1 of the first antenna, o1 is
the output signal of port 1 of the first antenna, i11 is the input signal of port 1 of the first
and second antennas, and i12 is the input signal of port 1 of the first antenna and port 2 of
the second antenna.
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Figure 13. Time–domain response.

In other words, the time–domain characteristics describe how an antenna reacts to
changes in the input signals over time, while the group delay describes how the antenna
affects the phase of the different frequency components of the signal as they pass through
it. Group delay is depicted in Figure 14.
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Table 3 presents an assessment of the recommended UWB patch antenna as compared
to patch configurations described in the existing literature based on antenna size, substrate
type, operational bandwidth, and peak gain. The antenna highlighted in reference [10]
is relatively large in size and offers a gain that does not exceed 3.78 dB with two narrow
bandwidths. Although the antennas proposed in references [19,21] offer wide bandwidth,
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they have large dimensions that may pose challenges related to space requirements. Despite
their compact physical size, the antennas mentioned in [33–35] have a complex design and
exhibit low gain and low bandwidth. The patch antennas suggested in other references
mentioned in the table are characterized by large sizes and low gain. In contrast, the
patch antenna proposed in this article exhibits a clear competitive edge over prior research.
By utilizing an FR4 substrate, this antenna can be manufactured at a low cost while still
achieving a small form factor of 40 × 24.5 × 1.6 mm3, an impedance bandwidth of 8.3 GHz,
and a high gain of 6.25 dB.

Table 3. Comparative evaluation of the suggested antenna against different published patches in the
literature.

Ref No Electrical Size Subs Type
Band

Operational
(GHz)

Resonant
Frequency

(GHz)

Peak Gain
(dB)

[10] 0.189 λ × 0.189 λ FR4 [2.37–3.78],
[5.15–5.85]

2.65, 3.45,
5.65

1.62 to 3.1
1.74 to 3.78

[19] 110 × 120 (3.66) Rogers
RO4350B [3.00–10.00] 3.00, 6.00 6.00

[21] 75 × 63 (3.2) Rogers
RO4232 [3.10–10.6] 2.4, 3.2 3.50

[29] 0.22 × 0.22 FR4 [2.3–2.6],
[3.3–3.7] 2.46, 3.5 2.61, 2.7

[30] 0.2 λ × 0.13 λ FR4

[2.24–2.5],
[3.6–3.99],
[4.4–4.6],
[5.71–5.9]

2.43, 3.83,
4.48, 5.8 2.2, 2.8, 3.3, 4.2

[32] 0.28 λ × 0.14 λ FR4 [2.2–3.4],
[3.34–4.52] Not specified 2.2 to 2.4

[33] 0.22 λ × 0.22 λ FR4 [4.80–5.99] 5.5 2.5
[34] 0.148 λ × 0.161 λ FR4 [4.65–6.72] 5.2 Not specified
[35] 0.176 λ × 0.176 λ FR4 [3.48–5.86] 5.1 Not specified

This work 0.171 λ × 0.104 λ FR4 [2.70–11.0] 3.17, 5.82,
7.86, 9.16 1.7 to 6.25

5. Conclusions

In this paper, a UWB fractal monopole patch is designed and analyzed for wireless
communication applications. With the aid of HFSS software, the proposed antenna’s
structure was designed and examined. The developed antenna only needs a tiny area
of 40 × 24.5 × 1.6 mm3. A fractal ring resonator and a ground plane made up of a
rectangular part and a half-disk part with a rectangular slot are used to create the UWB
operation. The manufactured prototype’s measured results and simulated results match
up reasonably well. The proposed antenna operates at measured bandwidths of 7.33 GHz
(2.83–10.16 GHz). Additionally, it reports a maximum measured radiation efficiency of
roughly 92% and a measured peak gain of 6.52 dB. The developed patch is lightweight,
small in size, and has good radiation parameters that enable it to compete in a variety of
wireless communication applications, including WLAN, Wi-MAX, Wi-Fi, ITU, C band, and
radiolocation, among others.
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