A Sparse Recovery Algorithm for Suppressing Multiple Linear Frequency Modulation Interference in the Synthetic Aperture Radar Image Domain
Abstract
:1. Introduction
2. Signal Model
2.1. Signal Model of LFM Interference in Echo Domain
2.2. Signal Model of LFM Interference in Image Domain
3. Sparse Recovery Algorithm Based on ADMM Optimization
- Optimize the augmented variables :By holding the other variables constant and assuming that they have been pre-estimated, the optimization problem derived from the Lagrangian function, as indicated in Formula (13), can be simplified as
- Optimize :Similarly, by holding the other variables, including the previously estimated , constant, the optimization problems for can be written asBased on the derivation in [39], it is demonstrated that the application of an operator on a matrix leaves its Frobenius norm unaffected. Setting the first-order derivative to zero yields the minimizers of . The results are as follows:
- Update the Lagrange multipliers and penalty parameter :Respectively, the Lagrangian multipliers and the penalty parameter are updated via
- Termination criteria for iterations:The termination criteria for iterations include the following:
- The maximum number of iterations, denoted as , is reached;
- The objective function value between consecutive iterations falls below the predefined threshold, i.e., .
Algorithm 1: Multiple LFM Interference Suppression Algorithm Based on Joint Sparse Regularization |
Input: Complex-valued SAR image Output: Recovered complex-valued SAR image , LFM interference image and 1 Initialize ; 2 Initialize ; 3 Repeat 4 ; 5 calculate by (21)–(23); 6 calculate by (24)–(26); 7 calculate by (27)–(29); 8 calculate by (30); 9 Until or |
4. Experiment and Analysis
4.1. The Extended Target Case
4.2. Robustness Analysis
4.3. Simulation with a Real SAR Image
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrara, W.G.; Goodman, R.S.; Majewski, R.M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms; Artech House: London, UK, 1995. [Google Scholar]
- Shimada, M. L-band radio interferences observed by the JERS-1 SAR and its global distribution. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05, Seoul, Republic of Korea, 29 July 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 4, pp. 2752–2755. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Le, C. Observations and mitigation of RFI in ALOS PALSAR SAR data: Implications for the DESDynI mission. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–6. [Google Scholar]
- Zhou, F.; Tao, M. Research on Methods for Narrow-Band Interference Suppression in Synthetic Aperture Radar Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3476–3485. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, H.; Feng, J.; Li, N.; Chen, J. Detection and suppression of narrow band RFI for synthetic aperture radar imaging. Chin. J. Aeronaut. 2015, 28, 1189–1198. [Google Scholar] [CrossRef]
- Griffiths, H.; Cohen, L.; Watts, S.; Mokole, E.; Baker, C.; Wicks, M.; Blunt, S. Radar Spectrum Engineering and Management: Technical and Regulatory Issues. Proc. IEEE 2015, 103, 85–102. [Google Scholar] [CrossRef]
- Tao, M.; Su, J.; Huang, Y.; Wang, L. Mitigation of Radio Frequency Interference in Synthetic Aperture Radar Data: Current Status and Future Trends. Remote Sens. 2019, 11, 2438. [Google Scholar] [CrossRef]
- Li, N.; Zhang, H.; Lv, Z.; Min, L.; Guo, Z. Simultaneous Screening and Detection of RFI From Massive SAR Images: A Case Study on European Sentinel-1. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5231917. [Google Scholar] [CrossRef]
- Li, N.; Lv, Z.; Guo, Z. Observation and Mitigation of Mutual RFI Between SAR Satellites: A Case Study Between Chinese GaoFen-3 and European Sentinel-1A. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5112819. [Google Scholar] [CrossRef]
- Ulug, B. An Algorithm for Sinusoidal Interference Reduction Using Iterative Maximum Likelihood Estimation Techniques. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 1992. [Google Scholar]
- Vu, V.T.; Sjögren, T.K.; Pettersson, M.I.; Håkansson, L.; Gustavsson, A.; Ulander, L.M. RFI suppression in ultrawideband SAR using an adaptive line enhancer. IEEE Geosci. Remote Sens. Lett. 2010, 7, 694–698. [Google Scholar] [CrossRef]
- Lord, R.T.; Inggs, M.R. Efficient RFI suppression in SAR using LMS adaptive filter integrated with range/Doppler algorithm. Electron. Lett.-IEE 1999, 35, 629–630. [Google Scholar] [CrossRef]
- Mao, Y.; Huang, Y.; Yu, X.; Xin, Y.; Wang, Y.; Hong, W. An Radio Frequency Interference Mitigation Approach for Spaceborne SAR System in Low SINR Condition. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5217414. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. Fast Narrowband RFI Suppression Algorithms for SAR Systems via Matrix-Factorization Techniques. IEEE Trans. Geosci. Remote Sens. 2019, 57, 250–262. [Google Scholar] [CrossRef]
- Lu, X.; Yang, J.; Yu, W.; Su, W.; Gu, H.; Yeo, T.S. Enhanced LRR-Based RFI Suppression for SAR Imaging Using the Common Sparsity of Range Profiles for Accurate Signal Recovery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1302–1318. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Li, J.; Xu, J. Narrowband RFI suppression for SAR system via fast implementation of joint sparsity and low-rank property. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2748–2761. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Tran, T.D. Interference separation for UWB radar signals from entropy-driven robust PCA. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 0389–0393. [Google Scholar]
- Nguyen, L.H.; Tran, T.D. RFI-radar signal separation via simultaneous low-rank and sparse recovery. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Huang, Y.; Liao, G.; Xu, J.; Li, J. Narrowband RFI suppression for SAR system via efficient parameter-free decomposition algorithm. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3311–3322. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, T.; Li, J.; Nguyen, L.H.; Stoica, P. RFI mitigation for UWB radar via hyperparameter-free sparse SPICE methods. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3105–3118. [Google Scholar] [CrossRef]
- Lu, X.; Su, W.; Yang, J.; Gu, H.; Zhang, H.; Yu, W.; Yeo, T.S. Radio frequency interference suppression for SAR via block sparse Bayesian learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4835–4847. [Google Scholar] [CrossRef]
- Liu, H.; Li, D.; Zhou, Y.; Truong, T.K. Joint wideband interference suppression and SAR signal recovery based on sparse representations. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1542–1546. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Dao, M.D.; Tran, T.D. Joint sparse and low-rank model for radio-frequency interference suppression in ultra-wideband radar applications. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 864–868. [Google Scholar]
- Ali, I.; Cao, S.; Naeimi, V.; Paulik, C.; Wagner, W. Methods to Remove the Border Noise From Sentinel-1 Synthetic Aperture Radar Data: Implications and Importance For Time-Series Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 777–786. [Google Scholar] [CrossRef]
- Hodgson, M.E.; Jensen, J.R.; Schmidt, L.; Schill, S.; Davis, B. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens. Environ. 2003, 84, 295–308. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar] [CrossRef]
- Chojka, A.; Artiemjew, P.; Rapiński, J. RFI Artefacts Detection in Sentinel-1 Level-1 SLC Data Based On Image Processing Techniques. Sensors 2020, 20, 2919. [Google Scholar] [CrossRef] [PubMed]
- Kellndorfer, J.; Pierce, L.; Dobson, M.; Ulaby, F. Toward consistent regional-to-global-scale vegetation characterization using orbital SAR systems. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1396–1411. [Google Scholar] [CrossRef]
- Tao, M.; Lai, S.; Li, J.; Su, J.; Fan, Y.; Wang, L. Extraction and Mitigation of Radio Frequency Interference Artifacts Based on Time-Series Sentinel-1 SAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5217211. [Google Scholar] [CrossRef]
- Reigber, A.; Ferro-Famil, L. Interference suppression in synthesized SAR images. IEEE Geosci. Remote Sens. Lett. 2005, 2, 45–49. [Google Scholar] [CrossRef]
- Yang, H.; Tao, M.; Chen, S.; Xi, F.; Liu, Z. On the mutual interference between spaceborne SARs: Modeling, characterization, and mitigation. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8470–8485. [Google Scholar] [CrossRef]
- Yang, H.; He, Y.; Du, Y.; Zhang, T.; Yin, J.; Yang, J. Two-dimensional spectral analysis filter for removal of LFM radar interference in spaceborne SAR imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5219016. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital processing of synthetic aperture radar data. Artech House 2005, 1, 108–110. [Google Scholar]
- Kari, S.S.; Raj, A.A.B.; Balasubramanian, K. Evolutionary Developments of Today’s Remote Sensing Radar Technology—Right From the Telemobiloscope: A review. IEEE Geosci. Remote Sens. Mag. 2023, 12, 67–107. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, X.; Yu, J.; Dai, Z.; Su, W.; Gu, H. Clutter Suppression for Radar via Deep Joint Sparse Recovery Network. IEEE Geoscience and Remote Sensing Letters 2024, 21, 3332035. [Google Scholar] [CrossRef]
- Sturmel, N.; Daudet, L. Signal reconstruction from STFT magnitude: A state of the art. In Proceedings of the International Conference on Digital Audio Effects (DAFx), Paris, France, 19–23 September 2011; pp. 375–386. [Google Scholar]
- Průša, Z.; Balazs, P.; Søndergaard, P.L. A Noniterative Method for Reconstruction of Phase From STFT Magnitude. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1154–1164. [Google Scholar] [CrossRef]
- Kim, B.; Kong, S.H.; Kim, S. Low Computational Enhancement of STFT-Based Parameter Estimation. IEEE J. Sel. Top. Signal Process. 2015, 9, 1610–1619. [Google Scholar] [CrossRef]
- Lu, X.; Yang, J.; Yeo, T.S.; Su, W.; Gu, H.; Yu, W. Accurate SAR Image Recovery From RFI Contaminated Raw Data by Using Image Domain Mixed Regularizations. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5102813. [Google Scholar] [CrossRef]
- Cetin, M.; Karl, W.C.; Castanon, D.A. Evaluation of a regularized SAR imaging technique based on recognition-oriented features. In Proceedings of the Algorithms for Synthetic Aperture Radar Imagery VII. SPIE, Orlando, FL, USA, 24–28 April 2000; Volume 4053, pp. 40–51. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Transmitted waveform | LFM signal | Carrier frequency | 5.405 GHz |
Signal bandwidth | 1 MHz | Pulse repetition frequency | 2500 KHz |
Chirp duration | 5 μs | Range between centre of the flight track and scene center | 887.23 km |
Platform velocity | 7249 m s−1 | Synthetic aperture time | 0.1359 s |
Theoretical range resolution | 150 m | Theoretical azimuth resolution | 25 m |
Signal bandwidth of | 1.7 MHz * | Chirp duration of | 10 μs |
Signal bandwidth of | 1.7 MHz * | Chirp duration of | 10 μs |
Case | Method | TBR (dB) |
---|---|---|
The first-point target case | FNF | 51.9474 |
PCA | 51.4356 | |
RPCA | 69.1947 | |
LFMIS-JointSR | 154.0224 | |
The second-point target case | FNF | 43.8465 |
PCA | 42.0622 | |
RPCA | 56.8874 | |
LFMIS-JointSR | 154.4594 | |
The extended target case | FNF | 50.0983 |
PCA | 54.4416 | |
RPCA | 70.6983 | |
LFMIS-JointSR | 144.1300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, G.; Lu, X.; Yang, J.; Yu, W.; Gu, H.; Su, W. A Sparse Recovery Algorithm for Suppressing Multiple Linear Frequency Modulation Interference in the Synthetic Aperture Radar Image Domain. Sensors 2024, 24, 3095. https://doi.org/10.3390/s24103095
Tong G, Lu X, Yang J, Yu W, Gu H, Su W. A Sparse Recovery Algorithm for Suppressing Multiple Linear Frequency Modulation Interference in the Synthetic Aperture Radar Image Domain. Sensors. 2024; 24(10):3095. https://doi.org/10.3390/s24103095
Chicago/Turabian StyleTong, Guanqi, Xingyu Lu, Jianchao Yang, Wenchao Yu, Hong Gu, and Weimin Su. 2024. "A Sparse Recovery Algorithm for Suppressing Multiple Linear Frequency Modulation Interference in the Synthetic Aperture Radar Image Domain" Sensors 24, no. 10: 3095. https://doi.org/10.3390/s24103095
APA StyleTong, G., Lu, X., Yang, J., Yu, W., Gu, H., & Su, W. (2024). A Sparse Recovery Algorithm for Suppressing Multiple Linear Frequency Modulation Interference in the Synthetic Aperture Radar Image Domain. Sensors, 24(10), 3095. https://doi.org/10.3390/s24103095