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Abstract: Recently, realistic services like virtual reality and augmented reality have gained popularity.
These realistic services require deterministic transmission with end-to-end low latency and high relia-
bility for practical applications. However, for these real-time services to be deterministic, the network
core should provide the requisite level of network. To deliver differentiated services to each real-time
service, network service providers can classify applications based on traffic. However, due to the
presence of personal information in headers, application classification based on encrypted application
data is necessary. Initially, we collected application traffic from four well-known applications and
preprocessed this data to extract encrypted application data and convert it into model input. We
proposed a lightweight transformer model consisting of an encoder, a global average pooling layer,
and a dense layer to categorize applications based on the encrypted payload in a packet. To enhance
the performance of the proposed model, we determined hyperparameters using several performance
evaluations. We evaluated performance with 1D-CNN and ET-BERT. The proposed transformer
model demonstrated good performance in the performance evaluation, with a classification accuracy
and F1 score of 96% and 95%, respectively. The time complexity of the proposed transformer model
was higher than that of 1D-CNN but performed better in application classification. The proposed
transformer model had lower time complexity and higher classification performance than ET-BERT.

Keywords: transformer model; application classification; wireless LAN; deep learning

1. Introduction

Since the COVID-19 epidemic, non-face-to-face activities have become more prevalent,
leading to a surge in popularity for network-based real-time online services like video
conferencing programs, augmented reality (AR), and virtual reality (VR). Furthermore,
the demand for virtual environments where numerous real-life activities can be performed
has also increased. In particular, the metaverse is gaining popularity because it enables
economic and social activities that are not constrained by time or geography. By 2030,
the market for virtual environments such as the metaverse, valued at USD 38.85 billion in
2021, is anticipated to grow at an average annual rate of 39.4%, reaching USD 772.24 bil-
lion [1]. To support hyper-realistic services such as the metaverse, real-time online services,
and AR/VR applications, deterministic transmission with end-to-end ultra-low latency
and high reliability is required.

To offer deterministic transmission, technological development across a variety of
network stacks is necessary. At the data link layer, the wireless time-sensitive network
(TSN) has been introduced to provide ultra-low latency and high-reliability transmission
in WLAN and 5G [2]. Techniques such as orthogonal frequency division multiple access
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(OFDMA) are used to facilitate wireless TSN [3–5] in WLAN. The 3rd Generation Partner-
ship Project (3GPP) has proposed 5G technologies for TSN to provide ultra-low latency
and high reliability in mobile networks. For integration with TSN, the 5G system (5GS)
defines translator functionality [6]. Periodic deterministic QoS and time synchronization
provided by 5GS support scheduled traffic and per-stream filtering and policing (PSFP),
as described by IEEE 802.1Q. For hyper-realistic service at the transport layer, several
schemes have been proposed to provide partial reliability, application-aware data forward-
ing, and multi-path transmission. Reliability is ensured by retransmission offered by TCP or
QUIC; however, this introduces additional transmission latency. Partial reliability performs
selective retransmission depending on the data deadline, decreasing transmission delay
by avoiding retransmission of pointless data [7,8]. For processing efficiency improvement,
burst forwarding transmits data in units handled by applications rather than path MTU en-
abling simultaneous utilization of several processors and reducing contention overhead [9].
As a multi-path retransmission mechanism, XLINK suggests a priority-based re-injection
technique to decrease latency [10]. If MPTCP, a representative multipath transmission pro-
tocol, encounters sporadic disconnection and reconnection, a quick re-injection approach is
suggested for fast retransmission [11].

Although several schemes have been proposed to achieve low latency and high
reliability, practical challenges exist in implementing the schemes to real services because
each real-time application has different network performance requirements. Table 1 lists
the network specifications for each realistic service application, including downlink and
uplink bandwidth, latency, and transmission reliability [12]. Cloud gaming requires a delay
of 10 to 30 ms, whereas VR and AR require a latency of 5 to 20 ms. Cloud gaming and
VR require less uplink bandwidth than 2 Mbps, but AR needs an uplink bandwidth of
2–20 Mbps. Cloud gaming, VR, and AR demand more downlink than uplink bandwidth,
but download bandwidth requirements for AR, cloud gaming, and VR are 2–60 Mbps,
8–30 Mbps, and 30–100 Mbps, respectively. All services require transmission reliability
of 99.9% or greater. For real-time applications to operate successfully, different network
requirements must be satisfied for each application. Using technologies like network
function virtualization (NFV), the network core can deliver customizable performance
for each application. Therefore, application classification is required to support network
performance for each application.

Table 1. Network specifications for each realistic service application [12].

Downlink (Mbps) Uplink (Mbps) Latency (ms) Reliability (%)

Cloud gaming 8–30 0.3 10–30 ≥99
VR 30–100 <2 5–20 ≥99
AR 2–60 2–20 5–50 ≥99

Real-time application users prefer not to disclose application information they are
using for application classification to network administrators due to privacy concerns.
As as result, applications have been categorized based on network traffic. Traditionally,
the information in the packet header such as port number has been used for this purpose,
but this method potentially exposes personal information from the packet header [13].
If the packet header information is encrypted to protect personal information, categorizing
the application becomes impossible because the encrypted information cannot be used. Re-
gardless of whether the packet header information is encrypted or not, artificial intelligence
is used to categorize applications.

To categorize applications using deep learning, models such as ET-BERT and 1D-CNN
have been proposed [14,15]. Both models can categorize applications even when packet
header information is encrypted. However, the risk of personal information disclosure
still exists because encrypted header information is used. Therefore, it is crucial to achieve
application classification using application data without relying on a header. CNN can
be used for traffic classification, but it should be supplemented with other methods, such
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as long short-term memory (LSTM) or ant-lion meta-heuristic algorithm (ALO) to obtain
good classification performance. ET-BERT, which uses multilayer bidirectional transformer
blocks, requires substantial computational resources for application classification. Given
that applications have a simpler structure than natural languages and require faster classifi-
cation performance, the complexity of ET-BERT increases, but the classification performance
remains constant.

In this study, for application categorization, we aimed to propose a lightweight trans-
former model that meets the following requirements. The requirements are as follows.
(1) We use encrypted payload omitting encrypted or unencrypted header. (2) We achieve
low computational overhead. First, in the wireless LAN, we gathered wireless packets
from four different applications: Instagram, Tving, Netflix, and YouTube. The data were
preprocessed to omit header data before being used as model input. To classify applica-
tions, we proposed a lightweight transformer model composed of an encoder, a pooling
layer, and a dense layer. Finally, we evaluated the performance of our proposed model
and compared it with other deep learning models, such as 1D-CNN and ET-BERT [14,15].
The proposed model achieved a classification accuracy of over 96% in the evaluation results,
outperforming the other models.

The remainder of this paper is organized as follows: In Section 2, we present back-
ground and related works. In Section 3, we discuss the dataset collected from four appli-
cations in WLAN and propose a transformer model for mobile application classification.
In Section 4, we evaluate the performance of the proposed application classification model.
Finally, Section 5 concludes the paper.

2. Background and Related Works

Application classification using machine learning has long been researched. The most
frequently utilized features were flow features, such as flow duration and flow bytes per
second, packet features, such as packet size and inter-packet duration, or combinations
of flow and packet features [16–20]. Recently, deep learning methodologies have been
used for application classification [14,15,21–23]. Convolution neural networks (CNNs) and
transformers among deep learning models have good accuracy in classification applications.

A convolutional neural network (CNN) is a neural network that simulates the struc-
ture of the human optic nerve. A kernel (filter) can be used to generate feature maps,
and kernel learning can improve feature map extraction. Consequently, a 2D-CNN per-
forms well for object identification or image classification, and a 1D-CNN performs well
for text classification in natural language processing. In [14], 1D-CNN is also utilized in
application categorization due to the structure of network traffic, which is composed of
bytes, packets, and flows, comparable to natural language patterns such as characters,
words, and sentences. The 1D-CNN model consists of three phases: preprocessing, training,
and test phases. The preprocessing phase proceeds with traffic split, traffic cleaning, image
generation, and IDX conversion. Traffic split divides the traffic based on session and flow,
and the first 784 bytes of the traffic are extracted through traffic cleaning. The retrieved
traffic is then transformed into an idx3 format for image generation. The idx3 data pro-
duced during the training phase are used for mini-batch stochastic gradient descent (SGD)
training. The performance of the trained model is assessed during the test phase. In [24],
end-to-end representation learning is used to classify network traffic. First, LSTM is utilized
to examine the temporal dependency of traffic. Then, to classify traffic, local patterns are
extracted using CNN. In [25], network traffic types such as chat, ftp, and mail are identified
using a combination of CNN, ALO, and a self-organized map (SOM). CNN is used to extract
network traffic features, and ALO chooses the features required to determine the traffic
type. SOM is used to determine traffic type based on the selected features. To improve
classification performance, CNN studies involve image conversion from network traffic
and integration with other techniques. The proposed model, however, requires payload
extraction and does not require the use of other techniques.
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The transformer model [26], which is based on the attention mechanism and does
not require recurrent neural networks (RNN) or CNN, presents improved performance in
translation. The encoder–decoder structure is used in the transformer model. Positional
encoding is used to add location information as the attention mechanism does not store
it for each input token. The encoder and decoder of the transformer model utilizes three
multihead attentions with scaled dot-product attention serving as their core component.
Scaled dot-product attention indicates the association between a given query and key.
For this purpose, the inner product of the query and key vectors is applied to the softmax
function. To produce an attention value vector that represents the association for each
word, the result of the softmax function is multiplied by the value vector. The multihead
attention of the encoder and decoder conducts H-scaled dot-product attention, sums each
vector, and outputs a value multiplied by a weight matrix. To prevent references to padding
values or future data, the masked multihead attention of the decoder performs a mask on
the scaled dot-product attention.

Bidirectional encoder representations from the transformer (BERT), which uses a
transformer encoder, is a pre-trained model that can comprehend language representations
using a sizable text corpus [27]. By fine-tuning the pre-trained models, tasks such as word
prediction, problem generation, and sentiment analysis can be performed. A pretrained
model called ET-BERT was developed by applying a BERT-like technique to packets [15]. ET-
BERT employs two unsupervised learning techniques for learning packet representations:
one that involves masking 15% tokens of the input sequence and predicting the mask tokens,
and another that involves determining whether the same application packet is present.
ET-BERT encodes a packet as a hexadecimal sequence composed of two consecutive bytes to
tokenize the byte data in the packet. The model size of the ET-BERT base is the same as BERT,
and the network structure of ET-BERT is composed of multilayer bidirectional transformer
blocks. However, due to the enormous size of the ET-BERT model, the computational cost
is considerable; however, the proposed model has a lightweight structure, and therefore,
the computational overhead is low.

3. Proposed Scheme

In this section, we describe the dataset gathered for application classification, data
preprocessing, and the structure of the suggested transformer model.

3.1. Dataset

We gathered mobile traffic from a total of four applications: YouTube, Netflix, In-
stagram, and Tving. Tving is the leading over-the-top (OTT) streaming service in Korea.
Instagram, Netflix, and YouTube are well-established international services. From Decem-
ber 2020 to March 2021, we constructed and ran a wireless LAN environment as well as
gathered wireless LAN traffic using Wireshark [28]. To produce the dataset, the application
traffic of smart devices with Android or iOS was categorized using MAC address-based
filtering, and only application traffic was extracted based on IP address and port number.
Figure 1 displays a screenshot of the data collection process. We ensured that no personal
information was used because the collected application data were encrypted using TLS,
as indicated in the figure, and headers are excluded from the collected traffic. Application
data packets for YouTube, Netflix, Instagram, and Tving were extracted from the collected
data. In total, 430,920 packets totalling 558 MB were gathered for four applications, as listed
in Table 2. The number and total size of packets for each application were adjusted equally
to avoid bias when learning the application classification model based on the transformer.
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Figure 1. Screenshot for dataset collection.

Table 2. Number and total size of packets gathered by applications.

Application The Number of Packets Size (MB)

Instagram 130,972 148
Netflix 100,000 151
Tving 100,000 135

Youtube 99,948 124

Total 430,920 558

3.2. Data Preprocessing

We preprocessed the dataset because the gathered traffic includes a payload and
several headers. As the payload is encrypted using TLS, personal information is protected.
However, headers can expose personal information. Therefore, we conducted preprocessing
to utilize the encrypted application payload without headers. Figure 2 illustrates the two
phases of dataset preprocessing: extracting payload bytes from collected packets and
transforming them into input vectors. First, we used Scapy to decode the packets stored in
the pcap file, as the traffic was captured using Wireshark [29]. From the collected packets,
we removed headers such as MAC, IP, TCP, and etc., and extracted the payload. Each
payload then had a label applied. The second step is to tokenize the payload into 2 bytes
and then convert each token to an integer. Because the payload has a variable length,
the payload size must be modified to be the same for the transformer model. For all
payload lengths, the mode is determined during the transformation of tokens into input
vectors, and the mode value was 1360 in this study. If the payload is shorter than the mode,
it is padded to match the length of the mode, as depicted in Figure 3. NaN represents the
padded part in the figure that corresponds to the mode. If the payload length exceeds the
mode, the surplus portion of the payload is excluded.

Figure 2. Data preprocessing.
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Figure 3. Example of token padding.

3.3. Transformer Model

For application classification, we employed a transformer model. The architecture
and structure of the proposed transformer model are depicted in Figure 4 and Table 3,
respectively. Input embedding is performed on preprocessed data to produce inputs for the
proposed model. Input embedding employs input and output vectors with a dimension
of 1360 × 1. Position embedding is used to add positional information to tokens. Token
embedding is then performed to produce an input vector with 512 fixed-size dimensions.
For position embedding and token embedding, the token and position embedding layer
was employed, and an output vector with a dimension of 1360 × 512 was produced. Be-
cause packets have a simpler structure than natural language, the proposed model uses one
transformer encoder to reduce complexity. The encoder, which is composed of a multihead
attention and feed-forward network, receives the vector obtained during the embedding
process as an input vector. The transformer encoder consists of two components: multihead
attention and a feed-forward network. Multihead attention is composed of four layers,
each of which performs an attention process. The attention vector is obtained by applying
the attention score to the softmax function and multiplying the outcome by the value vector.
The attention vectors calculated for each layer are concatenated to provide the multihead at-
tention result, which is a vector with a dimension of 1360 × 512. The feed-forward network
includes two fully connected dense layers, each containing 512 nodes. The GeLU activation
function is employed after the first dense layer. To prevent gradient vanishing, residual con-
nection and layer normalization are performed after multihead attention and feed-forward
network. The transformer encoder produces a vector of the dimensions 1360 × 512. While
ET-BERT employs 12 transformer encoders with 12 heads [15], we employ one transformer
encoder with four heads for the lightweight transformer model. Global average pooling
was used to reduce the dimensionality of the output value of the feed-forward network,
resulting in an output vector with dimension of 512 × 1. The output value of the pooling
layer is utilized as the input for a dense layer that classifies applications. The dense layer
uses the softmax function as an activation function to describe probability for each of the
four application types.
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Figure 4. Architecture of the transformer model.

Table 3. Structure of the transformer model.

Model Layer Input Vector Output Vector

Input layer 1360 × 1 1360 × 1
Token and position embedding 1360 × 1 1360 × 512

Transformer block Multihead attention (head = 4) 1360 × 512 1360 × 512
Feed forward network 1360 × 512 1360 × 512

Gloval average pooling 1360 × 512 512 × 1
Dense 512 × 1 4 × 1

4. Evaluation

In this section, we assessed the performance of the proposed transformer model. First,
we present the metrics used to assess the performance of the proposed model. Then we
determine hyperparameters including the learning rate, epoch, and the number of feed-
forward networks to enhance the performance of the proposed model. Finally, we compare
the performance of the proposed model to those of ID-CNN and ET-BERT.

We evaluated the performance of the model using four metrics: accuracy, precision,
recall, and F1 score. Accuracy is the percentage of accurate forecasts among all predictions,
as demonstrated by Equation (1).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

where TP (true positive) and TN (true negative) represent actual positive and negative
values, respectively, which are accurately predicted to be positive and negative. FP (false
positive) represents an actual negative value that is mistakenly forecasted as positive,
and FN (false negative) represents an actual positive value that is mistakenly anticipated as
negative. For instance, TP predicts a YouTube packet as emerging from YouTube, whereas
FP incorrectly predicts a YouTube packet as not originating from YouTube. In addition,
TN predicts a non-YouTube packet as not originating from YouTube, and FN incorrectly
predicts a non-YouTube packet as originating from YouTube. According to Equation (2),
precision is defined as the ratio of actual positives to predicted positives.

Precision =
TP

TP + FP
(2)

In Equation (3), the proportion of expected positives to actual positives is referred to
as recall.

Recall =
TP

TP + FN
(3)
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The F1 score, which is the harmonic average of precision and recall, is used to consider
both precision and recall simultaneously. The equation for the F1 score is as follows:

F1score =
2 × Precision × Recall

Precision + Recall
(4)

Here, the proposed model was evaluated on a server with a Xeon CPU, 128GB RAM,
and two GTX 1080 Ti GPUs. The operating system was Ubuntu 20.04 LTS, and the frame-
work was Tensorflow 2.5.0 with CUDA version 11.04. We determine the hyperparameters
such as learning rate, epoch, and etc. to enhance the performance of the proposed model.
Table 4 specifies the hyperparameters for the proposed transformer model. In the table,
the number of feed-forward networks and the number of heads indicate the number of
nodes in the feed-forward network sub-layer and the number of heads in multihead at-
tention, respectively. The embedding dimension denotes the input size for multihead
attention. We determined the learning rate by performing evaluations for each learning
rate to enhance the performance of the proposed model. Figure 5 shows the results of
measuring accuracy, precision, recall, and F1 score while increasing the learning rate by
0.0005 from 0.001 to 0.0025. We used the sklearn.metrics module to obtain the evaluation
results for each performance metric [30]. The results showed that the learning rate of 0.001
performed the worst across all metrics. The performance of all measuring metrics was at
its peak when the learning rate was 0.0015, and it declined as the learning rate increased.
Therefore, the learning rate for this study was set at 0.0015.
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Figure 5. Performance measurement for each learning rate.
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Table 4. Hyperparameters for the proposed model.

Hyperparameters Values

batch size 64
epoch 20

number of feed-forward networks 512
number of head 4

embedding dimension 512
dropout 0.3

learning rate 0.0015

Then, we measured the accuracy and loss of the training and validation datasets for
each epoch. The results are shown in Figure 6. Figure 6a represents the measurement
results of the accuracy for each epoch. Despite sporadic fluctuations after the fifth epoch,
the accuracy for the training and validation datasets is relatively stable. The loss for
each period is shown in Figure 6c. In contrast to accuracy, the training and validation
loss experiences fluctuation, and the loss for both the training and validation datasets
stabilizes from the 15th epoch onwards. Therefore, the epoch for this study was set at 20.
We evaluated performance with various numbers of nodes to determine the number of
nodes in the feed-forward network. Figure 6b,d show the accuracy and loss for each epoch
when the number of nodes in the feed-forward network is 1024. As shown in the figures,
the accuracy and loss at the 20th epoch are similar to those observed when the feed-forward
network consists of 512 nodes. However, the accuracy of the validation dataset remains
variable, and the loss function is unstable for both the training and validation datasets. We
compared the performance of feed-forward networks with 512 and 1024 nodes. Figure 7
represents the results. When using 512 nodes and 1024 nodes, the accuracy is approximately
95.5% and 95.1%, respectively. The loss for 512 and 1024 nodes is approximately 0.118 and
0.126, respectively. Even if the number of nodes in the feed-forward network increases,
there is no gain in accuracy and loss, and the complexity of the proposed model increases as
the number of nodes increases. Therefore, we set the number of nodes in the feed-forward
network at 512.

We compared the performance of the proposed transformer model with those of the 1D-
CNN and ET-BERT models. We implemented the 1D-CNN and ET-BERT models with pa-
rameters specified in [14,15]. We measured the performance of 1D-CNN and ET-BERT using
the sklearn.metrics module and the evaluation function of ET-BERT, respectively, [30,31].
Each model’s accuracy, precision, recall, and F1 score are shown in Figure 8. The accuracy
of successfully classifying the application among all predictions is shown in Figure 8a.
The accuracy of the proposed model is 96% compared to 86% and 90% for ET-BERT and
1D-CNN, respectively. Precision indicates the percentage of correctly predicted results
among all the results predicted for a specific application. The precision results for each
model are shown in Figure 8b. With a precision of 96%, the proposed model outperformed
the other two models. Recall indicates the percentage of applications that can be reliably
predicted based on the traffic of a particular application. The results shown in Figure 8c
demonstrate that the recall performance of the ET-BERT and 1D-CNN models was less than
90%, whereas the recall performance of the proposed model was 96%. The proposed model,
with an F1 score of 95%, demonstrated the highest classification performance, as shown
in Figure 8d, whereas ET-BERT and 1D-CNN had F1 values of 80% and 90%, respectively.
For application classification, ET-BERT and 1D-CNN require both the payload and the
header. However, because the proposed model uses the application payload, it outperforms
the other two models in performance evaluation.

In addition to the four metrics of accuracy, precision, recall, and F1 score, practicability
is an important factor in evaluating model performance. Assuming the input size of n,
the time complexity of the transformer and CNN is O(n2) and O(n), respectively, [26,32].
Because the proposed model and ET-BERT theoretically have the same time complexity, we
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measured the execution time for training and evaluation to compare the time complexity of
the proposed transformer model with other models. Table 5 shows the measurement results.
Because the transformer has a more complex model structure than CNN, ET-BERT and
the proposed model requires longer training time than 1D-CNN. However, because image
conversion is required, 1D-CNN requires more time than the measured training time. Since
the proposed model has a lighter structure than ET-BERT, one epoch of the proposed
model takes around 2695 s, whereas ET-BERT takes about 4674 s. The evaluation time
of the proposed model is approximately 451 s, which is longer than 1D-CNN but shorter
than ET-BERT. However, the proposed model outperformed the others in classification
performance. If the dataset is increased for higher classification accuracy, not only the
classification accuracy but also the execution time of training and evaluation will increase,
and only time complexity will increase after obtaining the maximum accuracy. As a result,
the appropriate dataset size will vary based on the number of applications to be classified
and the quality of the dataset.
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Figure 6. Performance measurement for each epoch with different nodes of feed-forward net-
work. (a) Accuracy with 512 nodes of feed-forward network; (b) accuracy with 1024 nodes of
feed-forward network; (c) loss with 512 nodes of feed-forward network; (d) loss with 1024 nodes of
feed-forward network.
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Table 5. Execution time measurement.

Proposed ET-BERT 1D-CNN

training 2695.2 4674.3 70.0
evaluation 451.2 794.7 25.5
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Figure 8. Performance comparison for each model.

We analyzed the classification performance of the proposed model in terms of appli-
cation. Figure 9 shows the measured precision, recall, and F1 score for each application.
According to the results, Instagram and YouTube performed between 99% and 100% across
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all metrics. This indicates that the proposed transformer model appropriately classifies
YouTube and Instagram applications. With an F1 score of 92% and 90% for Netflix and
Tving, respectively, the proposed model demonstrated good classification ability. However,
compared to Instagram and YouTube, the classification performance of the suggested model
is relatively poor for the Netflix and Tving applications. When classifying applications
based on traffic, the traffic of other applications may be incorrectly determined to be their
traffic because Netflix and Tving, which are OTT service applications, belong to the same
service category. Compared to Tving, Netflix has a high recall value and a low precision
value. This result indicates that traffic from Netflix is correctly categorized as Netflix,
but some traffic from Tving, a non-Netflix application, is categorized as Netflix. In contrast,
because some of the traffic on Tving is categorized as Netflix, Tving has a low recall value
and high precision.
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Figure 9. Classification performance for each application.

5. Conclusions

We proposed a lightweight transformer model for classifying applications based on
traffic. To construct a dataset for application classification, we collected encrypted traffic
from four well-established applications. During data preprocessing, we removed headers
and extracted the encrypted application data from the collected traffic, ensuring personal in-
formation protection, and converted it into model input. We proposed a transformer model
with a transformer encoder, a pooling layer, and a dense layer to achieve a lightweight
model structure. Various evaluations were performed to determine the hyperparameters.
In terms of application classification, the proposed transformer model outperformed both
1D-CNN and ET-BERT.
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The following abbreviations are used in this manuscript:

AR Augmented reality
VR Virtual reality
TSN Time sensitive network
OFDMA Orthogonal frequency division multiple access
3GPP 3rd Generation Partnership Project
5GS 5G system
PSFP Per-stream filtering and policing
ABR Adaptive bit rate
NFV Network function virtualization
CNN Convolution veural network
SGD Stochastic gradient descent
RNN Recurrent neural network
BERT Bidirectional encoder representations from transformer
OTT Over the top
LSTM Long short term memory
ALO Ant-lion meta-heuristic algorithm
SOM Self-organized map
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