An Energy Approach to the Modal Identification of a Variable Thickness Quartz Crystal Plate
Abstract
:1. Introduction
2. Mathematical Model
2.1. Basic Equations of Mindlin Plate Theory
2.2. Formulations Based on Modal Truncation
2.3. Energy-Based Modal Identification Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reynders, E. System identification methods for (Operational) modal analysis: Review and comparison. Arch. Comput. Methods Eng. 2012, 19, 51–124. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.Y.; Zhang, T.S. Operational modal analysis for slow linear time-varying structures based on moving window second order blind identification. Signal Process. 2017, 133, 169–186. [Google Scholar] [CrossRef]
- Fan, C.; Shi, J.; Zhao, M.; Yang, J. Trapped thickness-shear modes in a contoured, partially electroded AT-cut quartz resonator. Eur. Phys. J.-Appl. Phys. 2015, 65, 10302. [Google Scholar]
- Lee, P.; Wang, J. Frequency-temperature relations of thickness-shear and flexural vibrations of contoured quartz resonators. In Proceedings of the 1996 IEEE International Frequency Control Symposium, Honolulu, HI, USA, 5–7 June 1996. [Google Scholar]
- Zhao, Z.; Qian, Z.; Wang, B.; Yang, J. Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter. Ultrasonics 2015, 58, 1–5. [Google Scholar] [CrossRef]
- Sekimotoy, H.; Watanabe, Y.; Tanaka, K.; Nakazawa, M. Two-dimensional analysis of coupled thickness-shear and flexural vibrations in rectangular AT-cut quartz resonators using a finite-element method. Electr. Commun. Jpn. 2010, 74, 19–28. [Google Scholar] [CrossRef]
- Tiersten, H.F.; Smythe, R.C. Coupled thickness-shear and thickness-twist vibrations of unelectroded AT-cut quartz plates. J. Acoust. Soc. Am. 1985, 78, 1684–1689. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, B.; Wang, J. Flexoelectric effect on thickness-shear vibration of a rectangular piezoelectric crystal plate. Mater. Res. Express 2021, 8, 115702. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, Y.; Guo, Y.; Huang, B. Size effect on the nonlinear thickness-shear vibration of an elliptical piezoelectric plate. J. Vib. Eng. Technol. 2024, 12, 6549–6566. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, T. Effects of electrode configuration on vibration characteristics of quartz thickness-shear mode trapped-energy resonators. Ferroelectr. Lett. 2014, 41, 44–50. [Google Scholar] [CrossRef]
- Apostolov, A.V.; Slavov, S.H. Frequency spectrum and modes of vibration in circular, convex AT-cut bevelled—Design quartz resonators. Appl. Phys. A 1982, 29, 33–37. [Google Scholar] [CrossRef]
- Jeong, H.W.; Aoki, T.; Hatsuzawa, T. Frequency responses of spherically contoured rectangular AT-cut quartz crystal resonators fabricated by fixed abrasive method. Int. J. Mach. Tools Manuf. 2004, 44, 1143–1149. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Li, J. Energy trapping of thickness-shear vibration modes of elastic plates with functionally graded materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007, 54, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xue, H.; Fang, H.; Hu, Y.; Wang, J.; Shen, L. Effects of electrodes with varying thickness on energy trapping in thickness-shear quartz resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2007, 54, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Mindlin, R.D.; Forray, M. Thickness-shear and flexural vibrations of contoured crystal plates. J. Appl. Phys. 1954, 25, 12–20. [Google Scholar] [CrossRef]
- Yang, J.S.; Batra, R.C. Thickness shear vibrations of a circular cylindrical piezoelectric shell. J. Acoust. Soc. Am. 1995, 97, 309–312. [Google Scholar] [CrossRef]
- Wang, J.; Lee, P.C.Y.; Bailey, D.H. Thickness-shear and flexural vibrations of linearly contoured crystal strips with multiprecision computation. Comput. Struct. 1999, 70, 437–445. [Google Scholar] [CrossRef]
- Slavov, S.H. Equivalent resonance radius of contoured AT-cut quartz resonators. Appl. Phys. A 1987, 43, 111–116. [Google Scholar] [CrossRef]
- Tiersten, H.F.; Lwo, B.J.; Dulmet, B. Transversely varying thickness modes in trapped energy resonators with shallow and beveled contours. J. Appl. Phys. 1996, 80, 1037–1046. [Google Scholar] [CrossRef]
- Tiersten, H.F.; Smythe, R.C. An analysis of contoured crystal resonators operating in overtones of coupled thickness-shear and thickness-twist. J. Acoust. Soc. Am. 1979, 65, 1455–1460. [Google Scholar] [CrossRef]
- Li, P.; Jin, F.; Yang, J. Thickness-shear vibration of an AT-cut quartz resonator with a hyperbolic contour. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2012, 59, 1006–1012. [Google Scholar] [CrossRef]
- Li, P.; Jin, F. The investigation of trapped thickness shear modes in a contoured AT-cut quartz plate using the power series expansion technique. J. Phys. D Appl. Phys. 2017, 51, 015301. [Google Scholar] [CrossRef]
- Wang, W.; Wu, R.; Wang, J.; Du, J.; Yang, J. Thickness-shear modes of an elliptical, contoured AT-cut quartz resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013, 60, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lee, P.C.Y. The effect of cubically varying contours on the thickness-shear and flexural vibrations of quartz plates. In Proceedings of the IEEE Ultrasonics Symposium. Proceedings, San Antonio, TX, USA, 3–6 November 1996. [Google Scholar]
- Lu, F.; Lee, H.P.; Lim, S.P. Energy-trapping analysis for the bi-stepped mesa quartz crystal microbalance using the finite element method. Smart Mater. Struct. 2005, 14, 272. [Google Scholar] [CrossRef]
- He, H.; Liu, J.; Yang, J. Thickness-shear and thickness-twist vibrations of an AT-cut quartz mesa resonator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2011, 58, 2050–2055. [Google Scholar]
- Yong, Y.K.; Stewart, J.T.; Detaint, J.; Zarka, A.; Capelle, N.; Zheng, Y. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator. In Proceedings of the 45th Annual Symposium on Frequency Control, Los Angeles, CA, USA, 29–31 May 1991; pp. 137–147. [Google Scholar]
- Wang, J.; Zhao, W.; Bian, T. A fast analysis of vibrations of crystal plates for resonator design applications. In Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, Montreal, QC, Canada, 23–27 August 2004; pp. 596–599. [Google Scholar]
- Huang, Q.; Wu, R.X.; Wang, L.H.; Xie, L.T.; Du, J.K.; Ma, T.F.; Wang, J. Identification of vibration modes of quartz crystal plates with proportion of strain and kinetic energies. Int. J. Acoust. Vib. 2020, 25, 392–407. [Google Scholar] [CrossRef]
- Yang, J. Analysis of Piezoelectric Devices; World Scientific: Singapore, 2006. [Google Scholar]
No. | Normalized f | TSH (S/K%) | F (S/K%) | FS (S/K%) |
---|---|---|---|---|
1 | 0.9852 | 23.8/11.1 | 75.4/87.7 | 0.8/1.1 |
2 | 0.9877 | 19.8/8.3 | 79.3/91.3 | 0.9/0.4 |
3 | 0.9907 | 13.3/5.2 | 84.7/93.9 | 2/0.9 |
4 | 0.9955 | 5.4/2 | 91.1/96.5 | 3.5/1.4 |
5 | 1.0115 | 7/2.7 | 89.8/96 | 3.2/1.3 |
6 | 1.0125 | 24.7/13.1 | 74.8/86.5 | 0.4/0.4 |
7 | 1.0143 | 0.1/0 | 0.7/1.8 | 99.3/98.2 |
8 | 1.0170 | 17.5/7.2 | 81.3/92.3 | 1.2/0.6 |
9 | 1.0187 | 0.8/0.4 | 0.5/0.8 | 98.7/98.8 |
10 | 1.0205 | 0.1/0.1 | 0.7/1.7 | 99.2/98.2 |
11 | 1.0215 | 98.3/98.3 | 1.7/1.7 | 0.1/0.1 |
12 | 1.0229 | 14.1/5.6 | 84.1/93.6 | 1.8/0.8 |
13 | 1.0281 | 21.3/9.3 | 78.1/90.3 | 0.6/0.4 |
14 | 1.0292 | 28.7/19.8 | 71.1/79.9 | 0.3/0.3 |
15 | 1.0299 | 0.8/0.3 | 0.8/0.5 | 98.4/99.2 |
16 | 1.0309 | 8.5/3.3 | 88.6/95.5 | 2.9/1.2 |
17 | 1.0316 | 22.5/10.4 | 76.9/89.2 | 0.6/0.5 |
18 | 1.0329 | 26.2/14.8 | 73.6/85 | 0.2/0.2 |
19 | 1.0387 | 19.7/8.5 | 79.5/91 | 0.8/0.4 |
20 | 1.0392 | 0.2/0.1 | 0.6/1.5 | 99.2/98.3 |
No. | Normalized f | TSH (S/K%) | F (S/K%) | FS (S/K%) |
---|---|---|---|---|
1 | 1.0090 | 0.5/1.4 | 1.4/2.1 | 98.1/96.5 |
2 | 1.0107 | 0.5/1.4 | 2.4/3.4 | 97.1/95 |
3 | 1.0129 | 3.9/10.5 | 95/87 | 1.1/2.5 |
4 | 1.0132 | 6.1/15.8 | 93.2/82.6 | 0.7/1.5 |
5 | 1.0136 | 7.1/18.3 | 92.4/80.6 | 0.5/1.1 |
6 | 1.0218 | 0/0 | 98.2/95.4 | 1.8/4.6 |
7 | 1.0230 | 0.1/0.2 | 98.1/95.2 | 1.8/4.6 |
8 | 1.0264 | 0.3/0.9 | 98/94.7 | 1.7/4.4 |
9 | 1.0282 | 10.7/23.6 | 87.9/75.5 | 1.4/1.9 |
10 | 1.0304 | 99/99.3 | 1/0.7 | 0/0 |
11 | 1.0322 | 0.7/1.9 | 97.6/93.9 | 1.7/4.2 |
12 | 1.0334 | 0.2/0.4 | 1.3/0.6 | 98.4/99 |
13 | 1.0335 | 8.7/21.4 | 90.9/78 | 0.3/0.6 |
14 | 1.0374 | 4.5/11.7 | 94.6/86 | 1/2.3 |
15 | 1.0387 | 8.4/21.1 | 91.3/78.3 | 0.3/0.6 |
16 | 1.0406 | 1.2/3.1 | 97.3/92.9 | 1.6/4 |
17 | 1.0417 | 9.4/22 | 90.1/77.4 | 0.5/0.6 |
18 | 1.0424 | 10.8/24.8 | 85/72.9 | 4.2/2.3 |
19 | 1.0451 | 7.9/20.9 | 63.2/61.9 | 28.9/17.2 |
20 | 1.0462 | 4.7/13.9 | 33.3/40.3 | 62/45.8 |
No. | Normalized f | TSH (S/K%) | F (S/K%) | FS (S/K%) |
---|---|---|---|---|
1 | 0.9897 | 16.6/6.1 | 82/93.3 | 1.4/0.6 |
2 | 0.9936 | 1.5/0.5 | 2.9/1.8 | 95.6/97.7 |
3 | 0.9954 | 23/9.2 | 76.6/90.5 | 0.4/0.4 |
4 | 0.9962 | 19.2/7.2 | 79.9/92.3 | 0.9/0.4 |
5 | 0.9971 | 4.7/1.7 | 91.6/96.9 | 3.7/1.5 |
6 | 0.9975 | 0.9/0.4 | 1.8/1.7 | 97.3/97.9 |
7 | 1.0064 | 13.1/4.8 | 84.9/94.3 | 2/0.9 |
8 | 1.0081 | 24.1/11.7 | 74.9/86.7 | 1/1.6 |
9 | 1.0097 | 6.2/2.2 | 90.4/96.4 | 3.4/1.4 |
10 | 1.0196 | 99.1/98.9 | 0.8/1.1 | 0/0 |
11 | 1.0203 | 0.6/0.3 | 0.5/1.2 | 98.9/98.5 |
12 | 1.0243 | 21.3/8.2 | 78.1/91.4 | 0.5/0.3 |
13 | 1.0251 | 8/2.9 | 89/95.9 | 3/1.2 |
14 | 1.0265 | 20.3/7.7 | 79.1/92 | 0.7/0.3 |
15 | 1.0343 | 22.1/8.8 | 77.5/90.8 | 0.5/0.4 |
16 | 1.0352 | 13.9/5.2 | 84.3/94 | 1.8/0.8 |
17 | 1.0369 | 24.6/9.4 | 74.6/89.4 | 0.7/1.2 |
18 | 1.0410 | 18.9/7.2 | 80.2/92.4 | 0.9/1.4 |
19 | 1.0418 | 24/9.4 | 74.3/87.5 | 1.7/3.1 |
20 | 1.0426 | 1.2/0.4 | 1.9/1.4 | 96.8/98.2 |
No. | Normalized f | TSH (S/K%) | F (S/K%) | FS (S/K%) |
---|---|---|---|---|
1 | 1.0064 | 1.6/0.5 | 3.9/2.7 | 94.5/96.8 |
2 | 1.0067 | 15.4/5.3 | 78.8/87.1 | 5.8/7.6 |
3 | 1.0077 | 0/0 | 95/98.1 | 5/1.9 |
4 | 1.0081 | 22.5/8.6 | 75.7/88.3 | 1.8/3.1 |
5 | 1.0083 | 11.2/3.9 | 85.7/94.3 | 3.1/1.8 |
6 | 1.0085 | 0.2/0.1 | 94.8/98 | 5/1.9 |
7 | 1.0095 | 20/6.7 | 74.2/83.7 | 5.8/9.6 |
8 | 1.0101 | 7.4/1.7 | 26.5/20 | 66/78.2 |
9 | 1.0111 | 21.9/8.1 | 77/90.3 | 1.1/1.6 |
10 | 1.0114 | 0.8/0.3 | 94.5/97.9 | 4.7/1.8 |
11 | 1.0121 | 99.9/99.4 | 0.1/0.6 | 0/0 |
12 | 1.0123 | 1.1/0.3 | 1.7/1.1 | 97.2/98.6 |
13 | 1.0154 | 25.8/8.5 | 74/91.3 | 0.2/0.2 |
14 | 1.0160 | 1.7/0.6 | 93.8/97.6 | 4.6/1.8 |
15 | 1.0217 | 23/8.6 | 76.4/90.5 | 0.6/0.9 |
16 | 1.0224 | 19.9/7.4 | 79.2/92.2 | 0.9/0.4 |
17 | 1.0225 | 6.3/2 | 90.1/96.5 | 3.6/1.5 |
18 | 1.0227 | 24.2/8.4 | 75.4/91 | 0.5/0.6 |
19 | 1.0262 | 23.2/8.4 | 75.7/89.9 | 1.1/1.7 |
20 | 1.0303 | 12/4.3 | 85.5/94.6 | 2.5/1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Huang, B.; Guo, Y.; Jiang, Y.; Khan, A. An Energy Approach to the Modal Identification of a Variable Thickness Quartz Crystal Plate. Sensors 2024, 24, 6707. https://doi.org/10.3390/s24206707
Wang Z, Huang B, Guo Y, Jiang Y, Khan A. An Energy Approach to the Modal Identification of a Variable Thickness Quartz Crystal Plate. Sensors. 2024; 24(20):6707. https://doi.org/10.3390/s24206707
Chicago/Turabian StyleWang, Zhe, Bin Huang, Yan Guo, Yanan Jiang, and Asif Khan. 2024. "An Energy Approach to the Modal Identification of a Variable Thickness Quartz Crystal Plate" Sensors 24, no. 20: 6707. https://doi.org/10.3390/s24206707
APA StyleWang, Z., Huang, B., Guo, Y., Jiang, Y., & Khan, A. (2024). An Energy Approach to the Modal Identification of a Variable Thickness Quartz Crystal Plate. Sensors, 24(20), 6707. https://doi.org/10.3390/s24206707