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Abstract: In order to ensure the safe operation of adjacent buried pipelines under blast vibration, it is
of great practical engineering significance to accurately predict the peak vibration velocity ofburied
pipelines under blasting loads. Relying on the test results of the buried steel pipe blast model test,
a sensitivity analysis of relevant influencing factors was carried out by using the gray correlation
analysis method. A least squares support vector machine (LS-SVM) model was established to predict
the peak vibration velocity of the pipeline and determine the best parameter combination in the
LS-SVM model through a local particle swarm optimization (PSO), and the results of the PSO-LSSVM
model were predicted. These were compared with BP neural network model and Sa’s empirical
formula. The results show that the fitting correlation coefficient (R2), root mean square error (RMSE),
average relative error (MRE), and Nash coefficient (NSE) of the PSO-LSSVM model for the prediction
of pipeline peak vibration velocity are 91.51%, 2.95%, 8.69%, and 99.03%, showing that the PSO-
LSSVM model has a higher prediction accuracy and better generalization ability, which provides a
new idea for the vibration velocity prediction of buried pipelines under complex blasting conditions.

Keywords: blast load; buried pipeline; vibration velocity prediction; least squares support vector
machine; particle swarm optimization

1. Introduction

The main factor that threatens the safety of buried pipelines from blasting operations
is a blast’s seismic wave, which will cause the deformation and vibration of pipelines,
resulting in different degrees of damage to the pipe’s structure; so, accurately predicting
the vibration effect generated in the blasting process and optimizing the blasting design
parameters are the main methods to reduce the damage of the blast vibration effect on
buried pipelines [1,2]. At present, the main methods used to predict the vibration velocity
of blasting are the empirical formula method [3–7], the BP neural network and its improved
algorithm [8–11], numerical simulation [12–14], etc. Sa’s existing empirical formula or the
improved formula based on it has few factors to consider, and the prediction error under
the influence of multiple factors is significant, so it can only be adapted to specific blasting
projects. The BP neural network needs a large number of training samples to improve
the model’s prediction accuracy, which does not meet the actual needs of engineering.
Numerical simulation methods often require strong numerical computing skills, and can
usually only obtain specific solutions under certain conditions, which are not universal.
Therefore, it is important to explore a method that considers more factors and exhibits
a higher prediction accuracy, which provides a new direction for the prediction of blast
vibration effects under the influence of complex factors, and is of great significance in
seismic disaster mitigation for buried pipelines.

With the development of computer network technology and machine learning meth-
ods, a large number of scientific methods with strong nonlinear processing capabilities and
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real-time learning have gradually emerged. As an emerging machine learning algorithm,
support vector machine (SVM) has a strong optimization ability and can solve practical
problems such as a small number of samples, nonlinearity, and many influencing parame-
ters in blasting engineering [15]. Wei et al. [16], based on the nonlinear regression theory of
support vector machines, proposed an SVM model for predicting blast vibration velocity,
offering a new approach for blast vibration prediction. Peng Fuhua et al. [17] proposed an
SVM model using peak vibration velocity prediction, suggesting that it is feasible to use the
SVM model to predict blast vibration peaks. Zhang Pengfei et al. [18] conducted research
on blast vibration prediction in open-pit coal mines and proposed a gray relational analysis-
based feature selection model using an integrated particle swarm optimization—support
vector machine (GRA-EPSO-SVM) algorithm, which improved the accuracy of peak blast
vibration prediction in open-pit mines. Ke et al. [15] mixed the neural network and support
vector regression models to form a hybrid intelligent model, which improved the prediction
accuracy of ground motion intensity. Yue Zhongwen [19] et al. proposed to optimize the
SVM model by combining principal component analysis and a genetic algorithm. Their
research results show that the convergence speed and prediction accuracy of the model
were improved. Xu et al. [20] combined principal component analysis (PCA) and support
vector machine (SVM) to simplify the input parameters of their model, which was used to
adjust mining blast parameters. Compared to traditional prediction models, the PCA-SVM
model demonstrated higher accuracy in predicting blast vibrations in mining. He Li [21]
et al. established a least squares support vector machine (LS-SVM) model to predict the
vibration speed of mine blasting. The results show that the PSO-LSSVM model has a higher
prediction accuracy and can be used to predict the PPV of mine blasting under the influence
of multiple factors. The least squares support vector machine (LS-SVM) model changes
the inequality constraints in the SVM model into equality constraints, which can greatly
reduce the difficulty and complexity of calculations. Particle swarm optimization (PSO),
as a new type of global search algorithm, has the characteristics of few parameters, fast
convergence speed, and high prediction accuracy, and has been widely used in parameter
optimization. By combining a particle swarm optimization (PSO) algorithm with machine
learning models such as SVM and RF, the accuracy and reliability of vibration prediction
models can be further improved [22].

Based on the results of the underground pipeline blast model test conducted by the
Hubei Provincial Key Laboratory of Blasting Engineering [23–25], this paper established a
buried steel pipe blast vibration velocity prediction model based on PSO-LSSVM. The gray
correlation analysis method was used to conduct sensitivity analysis on various factors
influencing the measured buried steel pipes, and the primary and secondary relationships
between various influencing factors were determined. The PSO algorithm’s local optimiza-
tion was used to determine the best combination of regularization parameters and kernel
function width coefficients in the LS-SVM model, and the experimental and numerical
simulation data were combined to predict the blast vibration speed of buried steel pipes.
By comparing and analyzing the prediction results of the PSO-LSSVM model, the BP neural
network model, and the Sadowsky formula, the results show that the prediction accuracy
of the PSO-LSSVM model is higher. These relevant research results can provide new ideas
for predicting the vibration speed of buried pipelines adjacent to blasting projects.

2. Establishment of LS-SVM Prediction Model Based on PSO
2.1. Basic Principles of PSO-LSSVM

Support vector machine (SVM) is a type of generalized linear classifier that performs
binary classification of data. Its decision boundary is the maximum margin hyperplane that
solves the learning sample. The LS-SVM algorithm is an optimization of the standard SVM
algorithm. The main optimization feature is adding the equality constraints, which turns
solving the inequality constraints into solving linear equations, reducing the complexity of
the algorithm [26]. The final optimization function of LS-SVM is
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f (x) =
n

∑
i = 1

ξiK(x, xi) + b (1)

In the formula: K(x, xi) is the kernel function; b is the bias constant; and ξi is the
Lagrange multiplier.

The kernel function in this article is the Gaussian kernel function, and the expression is

K
(
Xi, Xj

)
= exp

(
−
∥∥Xi − Xj

∥∥2

2σ2

)
(2)

In the formula: σ is the kernel width of the Gaussian kernel function;
∥∥Xi − Xj

∥∥ is the
module of the vector; and Xi, Xj are the two sample sets.

Researchers select the regularization parameter γ and kernel function width coeffi-
cient σ of the LS-SVM model by experience, but the resulting model is often not optimal.
Therefore, the particle swarm algorithm (PSO) is used to iteratively optimize these two
parameters of the LS-SVM model to improve the prediction accuracy and convergence
speed of the model. The particle swarm algorithm is an evolutionary calculation algorithm
proposed by Kennedy and Eberhart [27]. The algorithm is inspired by the social behavior of
organisms, such as bird gatherings and groups of fish. The algorithm consists of a group of
particles that find the best position based on its best solution, including the best individual
position (pbest) and the best global position (gbest). In PSO, the formula of the movement
process of particles according to their position and velocity is

Vnew = w × v + C1·r1(pbest − X) + C2·r2(gbest − X) (3)

Xnew = X + Vnew (4)

In the formula: C1 and C2 are learning factors; V and X represent the speed and
position of the current particle; Vnew and Xnew are the new speed and new position of the
particle; w is the inertial weight; and r1 and r2 are the random numbers in [0, 1].

2.2. The Process of the PSO-LSSVM Model

The LSSVM model is used to establish the nonlinear relationship between the peak
blast vibration speed and its influencing factors to predict the peak blast vibration speed.
The PSO algorithm is used to find the best combination of LSSVM key parameters γ and σ,
and the peak blast vibration based on PSO-LSSVM is constructed. The specific process of
the speed prediction model is shown in Figure 1.Sensors 2024, 24, x FOR PEER REVIEW 4 of 11 
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3. Gray Correlation Analysis of Factors Affecting Vibration Velocity of Buried Pipelines
3.1. Model Test Overview

The test site is located in the open space of Hubei Provincial Key Laboratory of
Explosive Engineering. The soil medium at the site is mainly yellow clay. The test object
uses 20# seamless carbon steel pipes commonly used for oil and gas transportation in urban
construction. The pipe laying method is direct burial. Large excavation machinery was
used to excavate the pipe trench, and the site soil was backfilled after the completion of
pipe laying. In the blast test, 2# Rock Emulsion Explosive was used, made into a spherical
charge bag, adopting a coupled charging method. In the experiment, the TC-4850 blast
vibration meter was used to detect the blast vibration speed of each buried pipeline and
the ground. The test arrangement is shown in Figure 2, and the blast vibration meter
arrangement is shown in Figure 3.
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The parameters changed in the experiment include pipeline internal pressure, ex-
plosion center distance, explosion source burial depth, and charge amount. The control
variable method was used to design the experiment, and the experimental plan was further
optimized according to the orthogonal method. The test parameters and control variable
ranges are shown in Table 1.

Table 1. Test parameters and control variable ranges.

Test Parameters Control Variable Scope

Amount of explosive (g) 50, 75, 100, 125, 150, 175, 200

Explosion source burial depth (m) 0.5, 1, 1.5, 2

Pipe internal pressure (MPa) 0, 0.2, 0.4, 0.6, 0.8

Explosion center distance (m) 2.2, 2.7, 3.2
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The test uses three 20# seamless steel pipes with different nominal diameters as the
research objects. The geometric parameters and material mechanical property parameters
of the steel pipes are shown in Tables 2 and 3.

Table 2. Steel pipe material parameters.

Density
ρs/(kg·m−3)

Young’s Modulus
ES/GPa

Poisson’s Ratio
µs

Strength Limit
σsb/MPa

Yield Limit
σss/MPa

Elongation
ξs/%

7850 210 0.30 410 200 25

Table 3. Steel pipe geometric parameters.

Pipe
Number

Pipe Outer
Diameter
Ds/mm

Pipe Inner
Diameter

ds/mm

Pipe Wall
Thickness

δs/mm

Pipe Length
Ls/m

P1 110 101.5 4.24 4.5
P2 160 149.6 4.7 4.5
P3 300 291.2 4.4 4.5

3.2. Gray Correlation Analysis of Factors Affecting Pipeline Vibration Speed

The basic idea of the gray correlation analysis method is to judge whether the con-
nection is close based on the similarity of the geometric shapes of the sequence curves.
The closer the curves are to one another, the greater the gray correlation between the
corresponding sequences, and vice versa. The gray correlation analysis method is used to
calculate the gray correlation between the system’s characteristic variable data sequences,
establish a gray correlation matrix, use the principle of advantage analysis to obtain the
order of each influencing factor, and finally determine the main influencing factors.

The general expression of correlation coefficient is

γi =
1
n

i = 1

∑
n

εi(k)(k = 1, 2, · · · , n) (5)

In the formula: γi is the correlation coefficient and εi is the correlation coefficient.
In the experiment, 60 data sets suitable for training were obtained; the data sets selected

for the model test are shown in Table 4. These include eight characteristic parameters:
charge quantity Q, explosive burial depth He, blast center distance R, pipeline wall thickness
δ, pipeline burial depth H, pipeline diameter D, pipeline internal pressure P, and pipeline
peak vibration velocity V.

Table 4. Data statistics table.

Number of
Groups V/cm/s Q/g R/m He/m D/mm δ/mm H/m P/MPa

1 20.25 100 2.2 1 110 4.24 0.5 0
2 29.54 150 2.2 0.5 160 4.7 1 0.4
3 29.32 200 2.7 1.5 300 4.4 1.5 0.6
4 15.18 175 3.2 2 160 4.7 1 0.4
5 35.33 200 2.2 1.5 110 4.24 0.5 0.2
6 25.62 150 2.7 1.5 300 4.4 1.5 0.6
7 20.25 100 2.2 1 300 4.4 1.5 0
8 15.89 125 3.2 1 160 4.7 1 0.8
9 23.40 200 2.7 1.5 160 4.7 1 0.4
--- --- --- --- --- --- --- --- ---
60 32.39 300 2.7 2 160 4.7 1 0.6
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Substituting these into Equation (5), the correlation degree of the characteristic param-
eter influencing factor between each parameter and the peak vibration speed V is obtained,
and after sorting, Table 5 is obtained.

Table 5. Characteristic parameters influence factor correlation.

Q R δ P D He H

0.789 0.763 0.703 0.685 0.627 0.618 0.605

It can be seen from Table 5 that the characteristic parameter that has the greatest
influence on the peak vibration velocity of the pipeline is the charge quantity Q, followed
by the blast center distance R, pipeline wall thickness δ, pipeline internal pressure P, and a
smaller influence is exerted by the pipeline diameter D, explosive burial. The depth of the
river and the pipeline depth H are close to each other. This paper selects seven parameters
as the input variables of the model. In actual engineering blasting, by considering issues
such as on-site test costs and the calculation efficiency of the prediction model, the charge
quantity Q, blast center distance R, pipe wall thickness δ, and pipe internal pressure
can be selected. The five characteristic parameters P and pipe diameter D are used as
input variables.

4. Application and Analysis of PSO-LSSVM Prediction Model
4.1. Model Building

Using the MATLAB simulation platform to establish the PSO-LSSVM model, the
model initialization parameters were set as follows: population size q = 20, maximum
number of iterations tmax = 100, learning factors c1 = 1.5, c2 = 1.7, inertia weight coefficient
ω = [0.4, 0.95], regularization parameter γ ∈ [0.1, 100], and kernel function width coeffi-
cient σ ∈ [0.01, 1000]. The 60 normalized data sets were divided into two groups. The first
48 groups are training samples for the model to train and learn on. The last 12 groups are
used as test samples for prediction to obtain the fitness curve of the PSO-LSSVM model.
As shown in Figure 4.
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Figure 4. Fitness curve of PSO-LSSVM model.

It can be seen from Figure 4 that when the evolutionary algebra reaches 70, the fitness
curve has stabilized. The optimal parameter combination at this time is vbest = (21.10, 150.94).
The optimal parameter combination is brought into the model and the training samples are
predicted. The comparison between the true value and the predicted value of the training
sample is shown in Figure 5. As can be seen from Figure 5, the overall training effect
of the PSO-LSSVM model is good. The root mean square error obtained from statistics
between the true value of the training sample and its predicted value is RMSE = 0.05, and
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the correlation coefficient R2 = 0.94, indicating that the regression fitting effect of the
model is good.
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4.2. Comparative Analysis of Forecast Results

The regression fitting of the training samples demonstrates that the PSO-LSSVM
model exhibits robust learning capabilities. To verify whether the PSO-LSSVM model is
also capable of accurate prediction, 12 sets of test sample data were input for prediction and
compared with the BP neural network model and vibration model. Comparative analysis
was carried out using the empirical formula and correction formula for rapid prediction.
The results comparing the predicted values of the pipeline’s peak vibration velocity by the
four models and the actual values are shown in Figure 6.
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The comparative analysis chart indicates that the predicted value obtained from the
PSO-LSSVM model is the closest to the true value, and the effect is significantly better
than the BP neural network model and the empirical formula. In order to further quantify
and compare the prediction accuracy of each model, the model evaluation indicators are
calculated as follows: fitting correlation coefficient (R2), root mean square error (RMSE),
mean relative error (MRE), and Nash coefficient (NSE).
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In order to avoid the outliers in the data sets leading to a decrease in model prediction
accuracy and to make the results more credible, K-fold cross-validation [21] was used to
test the data set and model, and K = 5. The steps are:

(1) Divide the entire data set into five equal parts;
(2) Take one of them as the test set and, in turn, use the remaining four as the training

set to train the model, and calculate the evaluation index of each model prediction result;
(3) The final evaluation index of the model is obtained by averaging the evaluation

indexes obtained from the five predictions.
The final statistical results of each evaluation index of the model after K-fold cross-

validation are shown in Table 6.

Table 6. Table of Model Evaluation Metrics.

Formula Type MRE NSE R2 RMSE

PSO-LSSVM
Model 0.0869 0.9903 0.9151 0.2954

BP neural
network model 0.3476 0.8976 0.8848 0.7601

Sa’s empirical
formula 0.7849 0.2014 0.6286 2.8444

As can be seen from Table 6, when using Sa’s empirical formula to predict the peak
vibration velocity of the pipeline R2 is 0.88, RMSE is 19.68%, and NSE is 33.99%, and the
model has the largest volatility, MRE is 0.78, and it is shown that this formula has the worst
prediction ability in this study. The R2 of the BP neural network model is 0.88 and the
RMSE is 0.76. Compared with the empirical formula, its prediction accuracy is greatly
improved, indicating that the use of computer network technology and machine learning
methods is more suitable for the prediction the physical quantities of blasting engineering
with fewer data set samples. The LS-SVM model optimized by the PSO algorithm has the
smallest RMSE and MRE. The model has the highest prediction accuracy and the smallest
volatility. The values of R2 and NSE are the largest. The model has better fitting effects
and can more accurately predict blast load effects. It can more accurately predict the peak
vibration velocity of buried pipelines under blast load.

5. Conclusions

Based on the least squares support vector mechanism theory, a buried pipeline blast
vibration prediction model based on PSO-LSSVM was constructed. The prediction results
of the PSO-LSSVM model were compared with the prediction results of the BP neural
network model and a traditional empirical formula. The main conclusions are as follows:

(1) An LS-SVM model for predicting the blast vibration velocity of buried pipelines was
established. The parameters of the LS-SVM model were optimized through the PSO algo-
rithm, and the optimal parameter combination of the LS-SVM model Vbest = (21.10, 150.94)
was determined, overcoming the problem of a traditional LS-SVM model’s chosen key
parameters being by experience, which leads to low prediction accuracy. The K-fold test
method was used to test the vibration velocity model prediction results, which effectively
avoids the probability of a reduced model prediction accuracy and improves the reliability
of the model’s prediction results.

(2) The PSO-LSSVM model prediction of the peak vibration velocity of the pipeline
was R2 is 0.92, RMSE is 0.29, MRE is 0.087, and NSE is 0.99. Compared with the BP neural
network model and the traditional empirical formula, for a practical problem in blasting
engineering practice, such as fewer samples from which to predict the peak vibration
velocity of pipelines and a large number of influencing factors due to the higher learning
generalization ability and prediction accuracy of PSO-LSSVM model, it can be a better
optimized artificial intelligence prediction method.
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(3) Due to the limited number of actual blast tests, which resulted in a smaller amount
of effective collected data, and the presence of numerous factors influencing blast vibration
effects—some of which are not primary factors—future research should expand the sample
database to further enhance model accuracy and simplify model calculations.
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