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Abstract: In beyond fifth-generation networks, millimeter wave (mmWave) is considered a promising
technology that can offer high data rates. However, due to inter-cell interference at cell boundaries, it is
difficult to achieve a high signal-to-interference-plus-noise ratio (SINR) among users in an ultra-dense
mmWave network environment (UDmN). In this paper, we solve this problem with the cooperative
transmission technique to provide high SINR to users. Using coordinated multi-point transmission
(CoMP) with the joint transmission (JT) strategy as a cooperation diversity technique can provide
users with higher data rates through multiple desired signals. Nonetheless, cooperative transmissions
between multiple base stations (BSs) lead to increased energy consumption. Therefore, we propose a
multi-agent Q-learning-based power control scheme in UDmN. To satisfy the quality of service (QoS)
requirements of users and decrease the energy consumption of networks, we define a reward function
while considering the outage and energy efficiency of each BS. The results show that our scheme can
achieve optimal transmission power and significantly improved network energy efficiency compared
with conventional algorithms such as no transmit power control and random control. Additionally,
we validate that leveraging channel state information to determine the participation of each BS in
power control contributes to enhanced overall performance.

Keywords: millimeter wave; cooperative transmission; B5G; power control; multi-agent Q-learning

1. Introduction

In beyond fifth-generation (B5G) networks, millimeter wave (mmWave) technology is
expected to be crucial due to its ability to support exceptionally high data rates and its vast
spectrum availability [1]. The integration of mmWave with conventional low-frequency
communications can offer both high performance and reliability, necessitating significant
architectural and protocol adaptations across different network layers [2]. It is crucial
to take this sort of holistic approach to ensure continuous and reliable connectivity in
dense and highly mobile environments, a critical requirement for emerging applications
such as Industry 4.0, vehicle-to-everything (V2X), and augmented reality (AR) [3]. Fur-
ther, in mmWave networks, densely deploying multiple small base stations (mSBSs) can
significantly enhance network capacity [4]. However, in ultra-dense mmWave networks
(UDmNs), the dense proximity of mSBSs leads to overlapping coverage areas where signals
from neighboring cells can interfere with each other, potentially degrading overall network
performance [5]. The effective management of intercell interference (ICI) is crucial for
maintaining the high data rates and reliability promised by UDmN [6].

In this context, Coordinated Multi-Point with Joint Transmission (CoMP-JT) in UDmN
involves multiple BSs working together to serve users, particularly at cell edges where ICI
is the most problematic [7]. By coordinating their transmissions, BSs can turn interference
into desired signals, where the user coherently receives the desired signal from not only its
serving BS but also an adjacent BS [8]. This approach is considered particularly valuable
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in densely deployed networks, where the potential for interference is high due to the
proximity of the BSs [9].

Although CoMP-JT in UDmN can provide high data rates, it requires efficient energy
management due to the additional cooperative transmissions between multiple mSBSs [10].
Therefore, in this paper, we propose a power control scheme that uses a cooperative
transmission technique to enhance the energy efficiency of UDmN.

2. Related Work and Main Contribution

Several previous studies have attempted to improve the energy efficiency of mSBS
with cooperative transmission in ultra-dense networks (UDNs). For example, refs. [11–15]
have shown that the cooperative transmission-based mmWave network architecture can
significantly improve not only the signal to noise and interference ratio (SINR) for the target
user but also the energy efficiency of mSBSs. In [11,12], the authors proposed a user-centric
cloud-based mmWave network in ultra-dense deployment scenarios, where each user can
receive service from different BSs depending on their location. They also provided an
analytical model based on the cooperative transmission. Kim et al. [13] showed the impact
of energy saving for network architectures with multiple BSs using CoMP. Meanwhile,
the authors in [14,15] proposed a power allocation scheme in a CoMP-enabled mmWave
network, where BSs can use both renewable power and grid power to maximize the system
energy efficiency. In [14], BSs can perform cooperative transmission when they have
sufficient energy levels. In [15], mSBSs selectively perform cooperative transmission based
on the behavior of neighboring mSBSs to minimize grid power.

Additionally, within a dense network, several algorithms have been proposed in [16–20] to
obtain policies that maximize the energy efficiency. To elaborate, Liu et al. [16] proposed
an energy-efficient cooperative transmission scheme in the mmWave network, where a
user can select the joint transmission reception point (TRP) based on imperfect channel
state information and delay constraints. In that scheme, the Kuhn–Munkres algorithm
is used to find TRP. The authors in [17] introduced an optimization model for CoMP
transmission in a dense mmWave network, where user association and power allocation
are considered, and Lagrangian dual decomposition is adopted to solve the optimization
model. Meanwhile, Sana et al. [18] proposed a distributed solution based on multi-agent
reinforcement learning (RL), where UEs learn by experience to maximize the reward
function with network sum rate. Then, Ju et al. [19] introduced an energy-efficient BS
selection scheme in UDN, where each BS determines its operation mode, such as active
or sleep, based on a policy obtained from deep RL, with the aim of maximizing the
cumulative reward while minimizing the total power consumption of the network. Lastly,
Iqbal et al. [20] proposed a cooperative Q-Learning (QL) algorithm for efficient joint radio
resource management in UDN to handle interferences by adaptive power allocation while
considering the minimum quality of service requirements. The optimal transmission power
of mSBSs using the cooperative transmission technique is one of the most significant
problems hindering performance enhancements in the energy efficiency of UDmN.

The multi-agent QL approach has been applied to energy-efficient solutions [21–23].
For example, Lim et al. [21] proposed a QL-based cooperative algorithm to maximize
network performance, such as sum rate and individual rate in multicell networks, where
each agent learns and collaborates to identify the optimal BS positions for deployment.
This method is applicable in scenarios with limited link capacity and power at the BS.
Lee et al. [22] presented a collaborative QL approach for managing multiple UAVs in a
wireless network. To minimize energy consumption, this approach considers dynamic user
demand, interference among UAVs, and maintaining network coverage. In [23], the authors
proposed a multi-agent deep QL approach to maximize energy efficiency performance by
considering both grid power and renewable energy. This method enables IoT devices to
make offloading decisions in time-varying environments.

However, no previous work has optimized the energy efficiency and outage probability
for UDmN using CoMP-JT in a distributed manner. Although CoMP technology can
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provide not only the improved SINR but also the network requisite capacity, it may lead to
the increased energy consumption of mSBSs. As an example, consider a situation where
several mSBSs with the same transmission power conducting CoMP-JT to the user. In this
situation, if it is assumed that the user has a sufficient SINR, then even if some mSBSs
transmit signals with lower transmission power, the energy efficiency of these mSBSs will
be decreased. Therefore, in our scheme, the cooperative mSBSs conduct transmission power
control in a distributed manner that considers the energy consumption and user outages
of mSBSs. To optimize the trade-off between energy consumption and user outages, we
use a distributed RL approach in UDmN. Moreover, to implement an algorithm with low
complexity, a multi-agent tabular QL approach is adopted. The results demonstrate that
our scheme can achieve optimal transmission power and significantly improve network
energy efficiency compared to conventional algorithms, such as those without transmit
power control or with random control.

The main contributions of our paper can be summarized as follows: (1) we propose an
energy-efficient cooperative transmission power control scheme in UDmN using CoMP-JT,
in which the cooperative mSBSs conduct the transmission power control in a distributed
manner; (2) unlike conventional centralized approaches, we develop a policy that employs a
multi-agent tabular QL-based cooperative transmission power control strategy; (3) through
intensive simulations, the proposed scheme is demonstrated to outperform benchmarks in
various environments. The rest of the paper is organized as follows: Section 3 describes the
UDmN using CoMP-JT. Section 4 presents the formulation of the multi-agent QL model.
Section 5 provides numerical examples, and concluding remarks are provided in Section 6.

3. System Model

Figure 1 shows the scenario of power control for UDmN, wherein the user can re-
ceive the desired multiple signals from cooperative mSBSs (e.g., mSBS1, mSBS2, mSBS3,
and mSBS4). For our scenario, we consider mSBSs with varying transmission power levels,
where each mSBS should control its own transmission power level to provide the user with
sufficient SINR and minimize the energy consumption in UDmN.

( )

( )

max ( )

+ 1

Figure 1. System model for a multi-agent Q-learning-based power control scheme in UDmN.

3.1. SINR Model of User

We consider a propagation model consisting of a path loss component and a small-
scale fading component, wherein Nakagami fading is applied to mmWave links [15].
The received signal power at a user from an mSBS i, i.e., mSBSi, is expressed as

Pi = Ptr
−ς
i hi, (1)
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where r−ς
i denotes path loss with path loss exponent ς at a distance ri between mSBS i and

a user. hi, as small-scale fading, is a normalized Gamma random variable with parameter
m, i.e., hi ∼ Γ(m, 1/m). Furthermore, Pt is the transmit power of mSBS, which is divided
into discrete powers as follows:

Pt = {p1, p2, . . . , pL}, (2)

where p1 < p2 < · · · < pL, and L represents the number of the power level. In our scheme,
the transmit power of the mSBS is adjusted by its own power control policy.

For n neighboring mSBSs that can conduct cooperative transmission, based on Equa-
tion (1), the SINR of the average power received at a user is as follows:

SINR =
∑n

i=1 Pi

∑ I + σ2 , (3)

where ∑ I and σ2 respectively denote the sum of the interference power and the addi-
tive noise.

3.2. Outage and Power Efficiency Gain Model

To evaluate the system performance, we consider the outage and power efficiency
of mSBS. An outage occurs when the SINR of the user is under threshold γth. The power
efficiency gain, Pg, for an mSBS, defined as the ratio of the deference between the maximum
transmission power and controlled transmission power to the maximum transmission
power, can be calculated as follows:

Pg =
(pL − pk)

pL
, (4)

where pL and pk are the maximum transmission power and kth transmission power of
mSBS, respectively.

4. Multi-Agent Q-Learning Framework

The power control strategy of cooperative transmission can be modeled as a Markov
decision process (MDP) and solved using an RL approach [21,24]. Note that in our system,
each mSBS selects an action based on the current state, and the environment then transitions
to the next state. The next state only depends on the action and the current state and is
not related to previous states and actions. In our system, a centralized RL algorithm
requires a central controller with complete information about multiple mSBSs, which
leads to increased algorithmic complexity as the number of cooperative mSBSs grows.
Extra connections between the central controller and the mSBSs are required to collect
information on the BSs. To overcome these limitations of the centralized approach, we
propose a multi-agent distributed QL approach to individually control the transmission
power of the cooperative mSBSs.

For the proposed multi-agent QL framework as shown in Figure 1, agents, states,
actions, and rewards are defined as follows:

Agent: Each cooperative mSBS is considered an agent in the proposed multi-agent RL
framework. In an ever-changing environment, the agent takes action a(t) ∈ A in consid-
eration of its current state s(t) ∈ S at each iteration t, and then obtains the corresponding
reward R(t) and moves into the next state s(t+1).

State (S): We define the transmission power levels of mSBS as the state s(t) of the
proposed framework. From Equation (2), the state of mSBS i can be represented as

s(t) = pk, pk ∈ pt. (5)

Action (A): As mentioned in Section 2, each mSBS can control the transmission power
within the entire state set represented by the transmission power levels. In our system, each
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agent has L options when taking an action, i.e., a(t) = pk, pk ∈ pt. Moreover, to obtain the
optimal policy for the power control, we utilize a decayed-epsilon greedy policy in which
an action is randomly selected with a probability of ϵ. ϵ can be obtained as

ϵ = ϵ0(1 − ϵ0)
ei

ξNa , (6)

where ϵ0 is the initial value of ϵ, ei is the current episode index, ξ is the exploration
parameter, and Na is the total number of actions.

Reward (R): The reward is related to whether the outage and power efficiency gain
are satisfied by dynamically adjusting the transmission power level of each mSBS for
given interferences. Therefore, the reward function at each iteration t is defined as the
weighted sum of the outage probability, P(t)

out, and the power efficiency gain, P(t)
g . It can be

evaluated by

R(t) = β(1 − P(t)
out) + (1 − β)P(t)

g , (7)

where β is the importance weight.
Q-table (Q): A Q-table, Q(t), reflects the value of the reward when the agent takes

an action in each state at each iteration t. It represents a policy of which action the agent
should choose in a given state. For QL, Q(t) is calculated using the following iterative
procedure:

Q(t+1)(s(t), a(t)) = (1 − α)Q(t)(s(t), a(t))

+ α
[

R + γ max
a(t+1)∈A

Q(t)(s(t+1), a(t+1))
]
, (8)

where α is the learning rate and γ is the discount factor. We apply the QL approach
described above in our system as illustrated in Figure 1. As described previously, since the
state represents the selected action, namely, the transmission power level, the Q-table is
denoted by Q(t)(a(t)), which indicates the preference transmission power of each mSBS
in the transmission power level a(t) at iteration t. The new Q-value, i.e., Q(t+1)(a(t)), is
updated based on the previous Q-value and the current reward obtained from Equation (7).
It can be represented as

Q(t+1)(a(t)) = (1 − α)Q(t)(a(t)) + α{R(t) − Q(t)(a(t+1))}. (9)

Optimal policy (π∗): The transmission power control problem, which aims to find
the optimal transmission power that maximizes the reward R, is formulated as follows:

Problem : max
a(t)

R(t)

Subject to : a(t) ∈ {p1, p2, . . . , pL}. (10)

For this optimization problem, each agent exploits Q(a(t)), which represents the
expected cumulative sum of rewards, as follows:

Q(a(t)) = E
[ ∞

∑
t′=t

γR(t′)|a(t), π
]
. (11)

As mentioned earlier, each mSBS can obtain an optimal policy π∗ by choosing an action
based on a decayed-epsilon greedy policy. Algorithm 1 presents the detailed procedure of
the proposed multi-agent QL algorithm for UDmN. At every iteration, mSBS i in state s(t)

chooses action a(t) based on a decayed-epsilon greedy policy. Then, mSBS i calculates the
reward, and the Q-tables are updated.
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Algorithm 1 Multi-agent QL algorithm.

1. Initialize Q(t)(a(t)) of each mSBS.
2. for Every iteration do
3. for i = 1 : N do
4. mSBS i at state s(t) choose an action a(t) based on a decayed-epsilon greedy policy.
5.

a(t) =
{

arg maxa(t)∈A Q(t)(a(t)), with 1 − ϵ(ei)
random action, with ϵ(ei).

6. Calculate the reward, R(t)

7. Based on the reward, update Q-table as Equation (9)
8. end
9. end

5. Numerical Examples

For the performance evaluation of the proposed system, we build a simulation pro-
gram using MATLAB R2020a. In the network topology, the number of mSBSs that can
conduct cooperative transmission is set to 4, and the number of interfering mSBSs is set
to 15. The distance between the user and the mSBSs conducting cooperative transmis-
sion, rc, is 200 m, while the distance between the user and the interfering mSBSs, ri, is
500 m, as shown in Figure 2. In this model, we consider the rectangle model for the
blockage effect model as [25]. For the channel model, we consider that each mSBS has an
independent and identically distributed Nakagami fading channel and m = 3. Moreover,
ς = 2, σ2 = −174 dBm/Hz + 10log10(Bs + 10 dB), Bs = 1 GHz, and γth = −1. For the
hyperparameters, α = 0.1, γ = 0.95, ϵ0 = 0.99, and ξ = 50. The parameters chosen in our
framework are listed in Table 1. Our system is also compared with the following three
schemes: (1) Random Action (Random): mSBS randomly chooses an action in each itera-
tion. (2) Reward-Optimal (Op): The optimal solution can be obtained by the exhaustive
search algorithm, where all possible states are considered. (3) No cooperative transmission
scheme (No Cooper): mSBSs do not conduct cooperative transmission.

Figure 2. System topology.



Sensors 2024, 24, 7750 7 of 13

Table 1. Simulation and hyperparameters.

Parameter Value

σ2 −174 dBm/Hz + 10log10(Bs + 10 dB)
Bs 1 GHz
ς 2
rc 200 m
ri 500 m
m 3

γth −1
pL 30 dBm
L 5
α 0.1
β 0.9, 0.95
γ 0.95
ϵ0 0.99
ξ 50

Figure 3 shows the accumulated reward of multiple agents, i.e., mSBSs, for β = 0.9
and N = 8 in a multi-agent environment, where β denotes the importance weight between
the outage and the power efficiency gain. To obtain the results, we perform 1000 episodes.
For Op, it shows the results of finding the optimal transmission power by exhaustively
considering all possible cases. This method theoretically provides the highest average
reward. Random denotes the approach where the transmission power is selected randomly
without considering Q-values. This method is expected to have a lower average reward
and exhibit greater variability, indicating the inefficiency of the random policy in adapt-
ing to the environment. RL represents the results based on the reinforcement learning
algorithm described earlier, where each agent adjusts its transmission power based on its
own distributed Q-table. Initially, the RL algorithm may yield lower rewards, but with an
increasing number of episodes, the average reward from the RL approaches the reward
obtained from the Op. This pattern indicates that the agents are learning better power ad-
justment strategies through their interactions with the environment. The non-cooperation
transmission scheme (i.e., No cooper) shows a low reward due to the insufficient handling
of outage.

100 200 300 400 500 600 700 800 900 1000

Episode

0

0.2

0.4

0.6

0.8

1

R
e
w

a
rd

RL

Random

Op

No Cooper

Figure 3. Accumulated average reward (β = 0.9).

Figure 4 shows the accumulated reward of mSBSs for β = 0.95. Similar to Figure 3,
the results are obtained over 1000 episodes. In Figure 4, because the β value is higher,
more weight is given to outage, thus reflecting its increased importance in the reward
calculation. As a result, the accumulated reward in Figure 4 is relatively higher than that
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in Figure 3. This is because a higher β value emphasizes the more significant reduction of
outage, ultimately leading to a higher overall reward. The overall trend in Figure 4 remains
consistent with that presented in Figure 3.

100 200 300 400 500 600 700 800 900 1000

Episode

0

0.2

0.4

0.6

0.8

1

R
e
w

a
rd

RL

Random

Op

No Cooper

Figure 4. Accumulated average reward (β = 0.95).

Figure 5 shows the relationship between the number of cooperative mSBSs and two
key performance metrics: reward (R) and power efficiency gain (Pg). As the number of
cooperative mSBSs increases, there is a notable trend where decreased power is required for
transmission due to enhanced cooperation among the mSBSs. Simultaneously, the energy ef-
ficiency of the system improves as the number of cooperative mSBSs increases. The increase
in energy efficiency is a direct result of the reduced power consumption, which is achieved
through cooperative behavior among the mSBSs. This trend demonstrates that by increas-
ing the number of cooperative mSBSs, it is possible to achieve significant improvements in
energy efficiency while maintaining or even enhancing the overall system reward.

4 4.5 5 5.5 6 6.5 7 7.5 8

# of cooperative mSBSs

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

R

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
gReward

Power efficiency gain

Figure 5. Accumulated average reward and power efficiency gain versus N.

Figure 6 represents the effect of β in the reward function. As β increases, the reward
function places greater weight on the outage probability, while a decrease in β emphasizes
the energy efficiency. When β approaches 0, the reward is determined mainly by energy
efficiency, which is ideal for minimizing power consumption. As β approaches 1, the reward
is more influenced by the outage probability, making it more suitable for scenarios where
the service reliability is prioritized. For instance, when β = 0.7, the reward reaches its
lowest value, reflecting the greater impact of outage probability. As β increases up to 0.7, all
values decrease, focusing on the outage probability. However, after this point, the reward
begins to increase while the outage probability drops sharply. At β = 0.5, the reward
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function shows a balanced trade-off between the outage probability and energy efficiency,
resulting in a moderate reward.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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1
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e
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Reward

Power efficiency

Outage Pro.

Figure 6. Performance of reward, power efficiency gain, and outage probability versus β

Figure 7 shows the variation in reward values as the path loss exponent is adjusted to
values of 2, 3, and 4, where the path loss exponent determines the rate of signal attenuation
over distance. For example, higher exponent values result in faster signal decay, which
can lead to improved SINR due to reduced interference. In our approach, power control is
applied to maximize reward by optimizing SINR, thereby reducing outage probability and
enhancing energy efficiency. From this figure, we can see that higher path loss exponent
values lead to fewer episodes required for learning convergence and ultimately yield higher
reward values.

100 200 300 400 500 600 700 800 900 1000

Episode
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0.2
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0.8

1
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w
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rd :2

:3

:4

Figure 7. Accumulated average reward for path loss exponents.

Figure 8 illustrates the effects of varying key RL parameters on the reward. Specifically,
each subfigure shows the impact of distinct parameter adjustments: Figure 8a the discount
factor, Figure 8b the learning rate, and Figure 8c the exploration parameter. From this
figure, we can see that changes in each parameter affect the number of iterations required
for the reward to converge, with higher values of these parameters typically resulting in a
longer convergence time. For instance, as the discount factor increases, reflecting a greater
emphasis on future rewards, the number of iterations required for convergence increases
as shown in Figure 8a. However, the ultimate converged reward value remains largely un-
changed. Similarly, in Figure 8b, a higher learning rate accelerates the convergence process,
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while the final reward value is minimally affected. Lastly, adjustments to the exploration
parameter, as depicted in Figure 8c, demonstrate that a higher exploration rate slightly
increases the convergence time, yet the overall performance outcome remains consistent.
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(a) Discount Factor
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:50
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Figure 8. Effects of varying key RL parameters on the reward; (a) discount factor, (b) learning rate,
and (c) exploration parameter.

Figure 9 shows the accumulated reward of mSBSs considering blockage effects as
shown in Figure 2. In this figure, Interfering 1 and Interfering 2 represent scenarios
where one and two interfering signals pass through walls, respectively, each experiencing
a 20 dB penetration loss due to the blockage effect [25]. In the case of Interfering 2,
the two interfering signals experience cumulative attenuation, which further reduces
the interference levels, improves SINR, reduces outage, and consequently increases the
reward value. Conversely, Cooperative 1 and Cooperative 2 involve cooperative signals
passing through one and two walls, respectively, with each signal experiencing a 20 dB
loss. In Cooperative 2, both cooperative signals are attenuated by 20 dB, weakening the
cooperative signal strength. This reduction in SINR increases the outage, resulting in a
decrease in the reward value. From these results, we can see that the QL-based power
control effectively adjusts the transmission power to balance the energy efficiency and QoS
requirements by accounting for the blockage effect on both interfering and cooperative
signals as they pass through walls.

Figure 10 shows the performance of an algorithm that determines whether to par-
ticipate in a QL approach based on channel state information (CSI) (e.g., received signal
strength indicator, or RSSI), considering blockage effects due to walls [26]. The performance
metrics evaluated are reward, outage probability, and energy efficiency. In this environ-
ment, we assume that the network consists of eight cooperative mSBSs, of which two are
affected by wall blockage. In the Perfect CSI scenario, wall effects are accurately identified,
allowing cooperative mSBSs affected by the wall to opt out of power control, thereby
improving overall energy efficiency. Conversely, Imperfect CSI fails to distinguish wall
penetration accurately, leading all signals to participate in power control, which increases
the total transmission power. However, due to the significant signal attenuation by the
wall, the outage probability remains unaffected in both Perfect and Imperfect CSI cases.
Consequently, the reward value is higher under Perfect CSI conditions.
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Figure 9. Accumulated average reward for blockage effects.
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Figure 10. Effects of channel state information on the performance; (a) reward, (b) outage probability,
and (c) energy efficiency.

6. Conclusions

In this paper, we have presented a novel approach to enhancing energy efficiency in
ultra-dense millimeter-wave network (UDmN) environments by leveraging coordinated
multi-point transmission with joint transmission (CoMP-JT). Our approach integrates a
multi-agent Q-learning-based power control scheme to optimize the trade-off between
energy consumption and user outage probability. The key findings of our study can be
summarized as follows: (1) Energy-efficient cooperative transmission: We demonstrated
that cooperative transmission among multiple small base stations (mSBSs) using CoMP-JT
can significantly reduce the power required for transmission while maintaining high signal-
to-interference-noise ratio (SINR) for users at cell edges. (2) Multi-agent Q-learning-based
power control: Utilizing a multi-agent tabular Q-learning (QL) approach, the proposed
scheme allows each mSBS to adjust its transmission power in a distributed manner, while
considering both energy consumption and user outage. (3) Simulation results: Through
extensive simulations, we showed that our proposed scheme achieves optimal transmission
power control, resulting in significantly improved network energy efficiency compared to
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conventional algorithms, such as those without transmit power control or with random
control. In particular, our approach demonstrates higher accumulated rewards, reflecting
better power efficiency and reduced user outages. Additionally, we validated the perfor-
mance of an algorithm that determines whether each mSBS participates in power control
based on channel state information (CSI), achieving further improvements in network effi-
ciency. For future work, we plan to investigate a Q-learning approach that considers beam
misalignment to mitigate blockage effects, aiming to further enhance energy efficiency in
UDmNs.
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