Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth and Observation on Fertility
2.2. Scanning Electron Microscopy
2.3. Semi-Thin Section Observation
2.4. Paraffin Sectioning
2.5. Callose Staining Observation
2.6. Meiotic Behavior Observation
2.7. Genetic Analysis and Fine Mapping
2.8. Bioinformatic Analysis
2.9. Subcellular Localization
2.10. RT-qPCR
3. Results
3.1. mabs1 Fertility Identification
3.2. Scanning Electron Microscopy of mabs1 Mutant Anthers
3.3. Semi-Thin Section of mabs1 Anthers
3.4. Callose Staining in mabs1
3.5. Meiotic Chromosome Behavior in mabs1 Mutant
3.6. Fine Mapping of mabs1
3.7. Conservative Analysis of MABS1 Sequence
3.8. Subcellular Localization of MABS1
3.9. Gene Expression Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hochholdinger, F.; Baldauf, J.A. Heterosis in plants. Curr. Biol. 2018, 28, R1089–R1092. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Hu, F.; Ren, J.; Huang, Y.; Liu, C.; Wang, K. Synthetic apomixis: The beginning of a new era. Curr. Opin. Biotechnol. 2023, 79, 102877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Luo, X.; Zhu, L. Cytological analysis and genetic control of rice anther development. J. Genet. Genom. 2011, 38, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Lu, Y.; Liu, X.; Xu, X. Development process and stages of rice pollen. Zhongguo Shuidao Kexue 2001, 15, 21–28. (In Chinese) [Google Scholar] [CrossRef]
- Wilson, Z.A.; Zhang, D.B. From Arabidopsis to rice: Pathways in pollen development. J. Exp. Bot. 2009, 60, 1479–1492. [Google Scholar] [CrossRef]
- Bhatt, A.M.; Canales, C.; Dickinson, H.G. Plant meiosis: The means to 1N. Trends Plant Sci. 2001, 6, 114–121. [Google Scholar] [CrossRef]
- Abbas, A.; Yu, P.; Sun, L.; Yang, Z.; Chen, D.; Cheng, S.; Cao, L. Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications. Front. Plant Sci. 2021, 12, 629314. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Ramm, K.; Shivakkumar, R.; Dennis, E.S.; Upadhyaya, N.M. The ANTHER INDEHISCENCE1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol. 2004, 135, 1514–1525. [Google Scholar] [CrossRef]
- Drews, G.N.; Yadegari, R. Development and function of the angiosperm female gametophyte. Annu. Rev. Genet. 2002, 36, 99–124. [Google Scholar] [CrossRef]
- Bolcun-Filas, E.; Handel, M.A. Meiosis: The chromosomal foundation of reproduction. Biol. Reprod. 2018, 99, 112–126. [Google Scholar] [CrossRef]
- Page, S.L.; Hawley, R.S. Chromosome choreography: The meiotic ballet. Science 2003, 301, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, A.; Treco, D.; Schultes, N.P.; Szostak, J.W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 1989, 338, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Grelon, M.; Vezon, D.; Gendrot, G.; Pelletier, G. AtSPO11-1 is necessary for efficient meiotic recombination in plants. Embo J. 2001, 20, 589–600. [Google Scholar] [CrossRef]
- Bergerat, A.; de Massy, B.; Gadelle, D.; Varoutas, P.C.; Nicolas, A.; Forterre, P. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 1997, 386, 414–417. [Google Scholar] [CrossRef]
- Fayos, I.; Mieulet, D.; Petit, J.; Meunier, A.C.; Perin, C.; Nicolas, A.; Guiderdoni, E. Engineering meiotic recombination pathways in rice. Plant Biotechnol. J. 2019, 17, 2062–2077. [Google Scholar] [CrossRef]
- Shi, X.; Sun, X.; Zhang, Z.; Feng, D.; Zhang, Q.; Han, L.; Wu, J.; Lu, T. GLUCAN SYNTHASE-LIKE 5 (GSL5) plays an essential role in male fertility by regulating callose metabolism during microsporogenesis in rice. Plant Cell Physiol. 2015, 56, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Byun, M.Y.; Kim, W.T. Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.). Plant J. 2014, 79, 256–269. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Q.; Tang, D.; Liu, X.; Du, G.; Shen, Y.; Li, Y.; Cheng, Z. OsDMC1 Is Not Required for Homologous Pairing in Rice Meiosis. Plant Physiol. 2016, 171, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Liu, C.; Shi, W.; Miao, Y.; Shen, Y.; Tang, D.; Li, Y.; You, A.; Xu, Y.; Chong, K.; et al. OsMTOPVIB is required for meiotic bipolar spindle assembly. Proc. Natl. Acad. Sci. USA 2019, 116, 15967–15972. [Google Scholar] [CrossRef]
- Nonomura, K.; Nakano, M.; Fukuda, T.; Eiguchi, M.; Miyao, A.; Hirochika, H.; Kurata, N. The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 2004, 16, 1008–1020. [Google Scholar] [CrossRef]
- Mieulet, D.; Jolivet, S.; Rivard, M.; Cromer, L.; Vernet, A.; Mayonove, P.; Pereira, L.; Droc, G.; Courtois, B.; Guiderdoni, E.; et al. Turning rice meiosis into mitosis. Cell Res. 2016, 26, 1242–1254. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Tang, D.; Zhang, H.; Wang, M.; Li, Y.; Tang, S.; Yu, H.; Gu, M.; Cheng, Z. Central region component1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 2013, 25, 2998–3009. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Tang, D.; Wang, K.; Wang, M.; Che, L.; Li, M.; Cheng, Z. The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. Plant J. 2012, 72, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, D.S.; Liu, H.S.; Yin, C.S.; Li, X.X.; Liang, W.Q.; Yuan, Z.; Xu, B.; Chu, H.W.; Wang, J.; et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 2006, 18, 2999–3014. [Google Scholar] [CrossRef]
- Ma, L.; Sang, X.; Zhang, T.; Yu, Z.; Li, Y.; Zhao, F.; Wang, Z.; Wang, Y.; Yu, P.; Wang, N.; et al. ABNORMAL VASCULAR BUNDLES regulates cell proliferation and procambium cell establishment during aerial organ development in rice. New Phytol. 2017, 213, 275–286. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Mante, J.; Roehner, N.; Keating, K.; McLaughlin, J.A.; Young, E.; Beal, J.; Myers, C.J. Curation Principles Derived from the Analysis of the SBOL iGEM Data Set. ACS Synth. Biol. 2021, 10, 2592–2606. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Ruan, B.; Shang, L.; Zhang, B.; Hu, J.; Wang, Y.; Lin, H.; Zhang, A.; Liu, C.; Peng, Y.; Zhu, L.; et al. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol. 2020, 227, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Panaud, O.; Chen, X.; McCouch, S.R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 1996, 252, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.L.; Zhang, T.; Kao, Y.H.; Huang, T.H.; Wang, C.R.; He, Y. ZmMTOPVIB Enables DNA Double-Strand Break Formation and Bipolar Spindle Assembly during Maize Meiosis. Plant Physiol. 2020, 184, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Mercier, R.; Mezard, C.; Jenczewski, E.; Macaisne, N.; Grelon, M. The molecular biology of meiosis in plants. Annu. Rev. Plant Biol. 2015, 66, 297–327. [Google Scholar] [CrossRef]
- Lipka, V.; Kwon, C.; Panstruga, R. SNARE-ware: The role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev.Biol. 2007, 23, 147–174. [Google Scholar] [CrossRef]
- Luo, C.; Shi, Y.; Xiang, Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. Front. Plant Sci. 2022, 13, 853251. [Google Scholar] [CrossRef]
- Sollner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. SNAP receptors implicated in vesicle targeting and fusion. Nature 1993, 362, 318–324. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, H.; Wan, C.; Sun, Q.; Yan, C.; Zhao, X.; Wang, J.; Li, C.; Zheng, Y.; Shan, S. Genome-wide identification and expression analysis of peanut VAMP gene family. Shandong Agric. Sci. 2019, 51, 42–49. (In Chinese) [Google Scholar] [CrossRef]
- El-Kasmi, F.; Pacher, T.; Strompen, G.; Stierhof, Y.D.; Muller, L.M.; Koncz, C.; Mayer, U.; Jurgens, G. Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity. Plant J. 2011, 66, 268–279. [Google Scholar] [CrossRef]
- Ma, T.; Li, E.; Li, L.S.; Li, S.; Zhang, Y. The Arabidopsis R-SNARE protein YKT61 is essential for gametophyte development. J. Integr. Plant Biol. 2021, 63, 676–694. [Google Scholar] [CrossRef] [PubMed]
- Sugano, S.; Hayashi, N.; Kawagoe, Y.; Mochizuki, S.; Inoue, H.; Mori, M.; Nishizawa, Y.; Jiang, C.J.; Matsui, M.; Takatsuji, H. Rice OsVAMP714, a membrane-trafficking protein localized to the chloroplast and vacuolar membrane, is involved in resistance to rice blast disease. Plant Mol.Biol. 2016, 91, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Chen, D.; Li, W.; Zhou, D.; Luo, T.; Yuan, G.; Zeng, J.; Cao, Y.; He, Z.; Zou, T.; et al. OsSHOC1 and OsPTD1 are essential for crossover formation during rice meiosis. Plant J. 2019, 98, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Ren, L.; Chen, X.; Yu, H.; Liu, C.; Shen, Y.; Shi, W.; Tang, D.; Du, G.; Li, Y.; et al. The OsRR24/LEPTO1 Type-B Response Regulator is Essential for the Organization of Leptotene Chromosomes in Rice Meiosis. Plant Cell 2018, 30, 3024–3037. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ji, J.; Xue, Z.; Zhang, F.; Miao, Y.; Yang, H.; Tang, D.; Du, G.; Li, Y.; Shen, Y.; et al. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. New Phytol. 2021, 230, 585–600. [Google Scholar] [CrossRef]
- Hu, Q.; Tang, D.; Wang, H.; Shen, Y.; Chen, X.; Ji, J.; Du, G.; Li, Y.; Cheng, Z. The Exonuclease Homolog OsRAD1 Promotes Accurate Meiotic Double-Strand Break Repair by Suppressing Nonhomologous End Joining. Plant Physiol. 2016, 172, 1105–1116. [Google Scholar] [CrossRef]
Population | Total Plant Number | Fertile Plants | Sterile Plants | Segregation Ratio | p-Value | χ2 3:1 |
---|---|---|---|---|---|---|
(JH10 × MABS1(Aa)) F2 | 586 | 444 | 142 | 3∶1 | p =0.975 > 0.05 | 0.0012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Liu, X.; Wang, N.; Zeng, Z.; Jiang, Y. Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice. Curr. Issues Mol. Biol. 2024, 46, 12978-12993. https://doi.org/10.3390/cimb46110773
Wan Y, Liu X, Wang N, Zeng Z, Jiang Y. Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice. Current Issues in Molecular Biology. 2024; 46(11):12978-12993. https://doi.org/10.3390/cimb46110773
Chicago/Turabian StyleWan, Yingchun, Xiaoqing Liu, Nan Wang, Zhengming Zeng, and Yudong Jiang. 2024. "Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice" Current Issues in Molecular Biology 46, no. 11: 12978-12993. https://doi.org/10.3390/cimb46110773
APA StyleWan, Y., Liu, X., Wang, N., Zeng, Z., & Jiang, Y. (2024). Identification and Gene Fine Mapping of the Bisexual Sterility Mutant Meiosis Abnormal Bisexual Sterility 1 in Rice. Current Issues in Molecular Biology, 46(11), 12978-12993. https://doi.org/10.3390/cimb46110773