Characteristics of Urinary Tract Infections in Patients with Diabetes from Timișoara, Romania: Prevalence, Etiology, and Antimicrobial Resistance of Uropathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Population
2.2. Study Protocol
2.3. Identification of Isolated Microorganisms and AST
- –
- Methicillin-resistant S. aureus (MRSA) were identified as isolates with a minimum inhibitory concentration of (MIC) > 2 mg/L to oxacillin;
- –
- Extended-spectrum beta-lactamases (ESBLs) producing Gram-negative bacilli (GNB) were defined as resistant to all penicillins/cephalosporins;
- –
- Carbapenem-resistant organisms (CROs) were defined as Enterobacterales and non-fermentative GNB with MIC ≥ 4 mg/L to imipenem and ≥ 8 mg/L to meropenem;
- –
- Multidrug-resistant bacteria (MDR) were defined as possessing acquired resistance mechanisms to at least one antibiotic from three or more classes of active antibiotics for a given species;
- –
- Extensively drug-resistant bacteria (XDR) were defined as resistant to at least one agent from all antimicrobial classes except one or two classes.
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Group and the Prevalence of UTIs
3.2. Characteristics of Patients with UTIs Compared by Type of DM
3.3. Diversity of Uropathogens Isolated from UTIs
3.4. Antimicrobial Resistance (AMR) Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DM | diabetes mellitus; |
T1D | type 1 diabetes; |
T2D | type 2 diabetes; |
UTI | urinary tract infection; |
ASB | asymptomatic bacteriuria; |
HbA1c | glycated hemoglobin; |
DKA | diabetic ketoacidosis; |
CKD | chronic kidney disease; |
eGFR | estimated glomerular filtration rate; |
AST | antimicrobial susceptibility testing; |
MIC | minimum inhibitory concentration; |
AMR | antimicrobial resistance; |
MRSA | methicillin-resistant S. aureus; |
ESBLs | extended-spectrum beta-lactamases; |
CRO | Carbapenem-resistant organisms; |
MDR | multidrug-resistant bacteria; |
XDR | extensively drug-resistant bacteria; |
OR | odds ratio; |
ROCs | receiver-operating characteristics; |
AUC | area under the ROC curve; |
CI | confidence interval; |
BMI | body mass index; |
BUN | blood urea nitrogen; |
uACR | urine albumin–creatinine ratio; |
GNB | Gram-negative bacilli; |
GPC | Gram-positive cocci. |
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; pp. 1–150. Available online: https://diabetesatlas.org (accessed on 2 September 2024).
- American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Boyko, E.J.; Lipsky, B.A. Infection and diabetes. In Diabetes in America, 2nd ed.; Harris, M.I., Cowie, C.C., Stern, M.P., Boyko, E.J., Reiber, G.E., Bennet, P.H., Eds.; National Institutes of Health: Bethesda, MD, USA, 1995; pp. 485–499. ISBN 978-016-049-237-6. [Google Scholar]
- Shah, B.R.; Hux, J.E. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care 2003, 26, 510–513. [Google Scholar] [CrossRef]
- Albai, O.; Braha, A.; Timar, B.; Sima, A.; Deaconu, L.; Timar, R. Assessment of the negative factors for the clinical outcome in patients with SARS-CoV-2 infection and type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2024, 17, 271–282. [Google Scholar] [CrossRef]
- Rus, M.; Licker, M.; Musuroi, C.; Muntean, D.; Vulpie, S.; Magiar, O.; Sorescu, T.; Musuroi, S.I.; Voinescu, A.; Baditoiu, L.M. Association of Proteus mirabilis and Providencia stuartii infections with diabetes. Medicina 2022, 58, 271. [Google Scholar] [CrossRef]
- Kumar, P.A. Urinary tract infection in diabetics. In Microbiology of Urinary Tract Infections—Microbial Agents and Predisposing Factors; Behzadi, P., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Nitzan, O.; Elias, M.; Chazan, B.; Saliba, W. Urinary tract infections in patients with type 2 diabetes mellitus: Review of prevalence, diagnosis, and management. Diabetes Metab. Syndr. Obes. 2015, 8, 129–136. [Google Scholar] [CrossRef]
- Confederat, L.-G.; Condurache, M.-I.; Alexa, R.-E.; Dragostin, O.-M. Particularities of urinary tract infections in diabetic patients: A concise review. Medicina 2023, 59, 1747. [Google Scholar] [CrossRef]
- Stapleton, A. Urinary tract infections in patients with diabetes. Am. J. Med. 2002, 113, 80–84. [Google Scholar] [CrossRef]
- Patterson, J.E.; Andriole, V.T. Bacterial urinary tract infections in diabetes. Infect. Dis. Clin. N. Am. 1997, 11, 735–750. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Petca, R.C.; Mareș, C.; Petca, A.; Negoiță, S.; Popescu, R.I.; Boț, M.; Barabás, E.; Chibelean, C.B. Spectrum and antibiotic resistance of uropathogens in Romanian females. Antibiotics 2020, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Petca, A.; Mareș, C.; Petca, R.-C.; Popescu, R.-I.; Negoiță, S.; Dănău, R.-A.; Chibelean, C.B.; Jinga, V. Urinary tract infections in a romanian population: Antimicrobial resistance of uropathogens—A multiregional study. Farmacia 2023, 71, 165–173. [Google Scholar] [CrossRef]
- Zaha, D.C.; Jurca, C.M.; Daina, L.G.; Vesa, C.M.; Popa, A.R.; Jurca, A.D.; Muresan, M.; Micle, O. Prevalence of urinary tract infection and antimicrobial susceptibility among diabetic patients. Farmacia 2020, 68, 250–255. [Google Scholar] [CrossRef]
- Czaja, C.A.; Rutledge, B.N.; Cleary, P.A.; Chan, K.; Stapleton, A.E.; Stamm, W.E.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Urinary tract infections in women with type 1 diabetes mellitus: Survey of female participants in the Epidemiology of Diabetes Interventions and Complications Study Cohort. J. Urol. 2009, 181, 1129–1135. [Google Scholar] [CrossRef]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New creatinine- and cystatin C- based equations to estimate GFR without race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 13.0. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 25 September 2024).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Bonadio, M.; Meini, M.; Gigli, C.; Longo, B.; Vigna, A. Urinary tract infection in diabetic patients. Urol. Int. 1999, 63, 215–219. [Google Scholar] [CrossRef]
- Carrondo, M.C.; Moita, J.J. Potentially preventable urinary tract infection in patients with type 2 diabetes—A hospital-based study. Obes. Med. 2020, 17, 100190. [Google Scholar] [CrossRef]
- Yu, S.; Fu, A.Z.; Qiu, Y.; Engel, S.S.; Shankar, R.; Brodovicz, K.G.; Rajpathak, S.; Radican, L. Disease burden of urinary tract infections among type 2 diabetes mellitus patients in the U.S. J. Diabetes Complicat. 2014, 28, 621–626. [Google Scholar] [CrossRef]
- He, K.; Hu, Y.; Shi, J.C.; Zhu, Y.Q.; Mao, X.M. Prevalence, risk factors and microorganisms of urinary tract infections in patients with type 2 diabetes mellitus: A retrospective study in China. Ther. Clin. Risk Manag. 2018, 14, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Sewify, M.; Nair, S.; Warsame, S.; Murad, M.; Alhubail, A.; Behbehani, K.; Al-Refaei, F.; Tiss, A. Prevalence of urinary tract infection and antimicrobial susceptibility among diabetic patients with controlled and uncontrolled glycemia in Kuwait. J. Diabetes Res. 2016, 2016, 6573215. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.E.; Abdelkarim, S.; Zenida, M.; Baiti, M.A.H.; Alhazmi, A.A.Y.; Alfaifi, B.A.H.; Majrabi, R.Q.M.; Khormi, N.Q.M.; Hakami, A.A.A.; Alqaari, R.A.M.; et al. Prevalence and associated risk factors of urinary tract infection among diabetic patients: A cross-sectional study. Healthcare 2023, 11, 861. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Karami, M.M.; Bokaee, S.; Chaleshgar, M.; Shohaimi, S.; Akbari, H.; Mohammadi, M. The prevalence of urinary tract infections in type 2 diabetic patients: A systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 20. [Google Scholar] [CrossRef]
- Deltourbe, L.; Lacerda Mariano, L.; Hreha, T.N.; Hunstad, D.A.; Ingersoll, M.A. The impact of biological sex on diseases of the urinary tract. Mucosal Immunol. 2022, 15, 857–866. [Google Scholar] [CrossRef]
- Matthiopoulou, G.; Ioannou, P.; Mathioudaki, A.; Papadakis, J.A.; Daraki, V.N.; Pappas, A.; Souris, S.; Maraki, S.; Stathopoulou, C.; Kofteridis, D.P. Asymptomatic bacteriuria in patients with type 2 diabetes mellitus. Infect. Dis. Rep. 2023, 15, 43–54. [Google Scholar] [CrossRef]
- Chiţă, T.; Timar, B.; Muntean, D.; Bădiţoiu, L.; Horhat, F.; Hogea, E.; Moldovan, R.; Timar, R.; Licker, M. Urinary tract infections in Romanian patients with diabetes: Prevalence, etiology, and risk factors. Ther. Clin. Risk Manag. 2016, 13, 1–7. [Google Scholar] [CrossRef]
- Bonadio, M.; Boldrini, E.; Forotti, G.; Matteucci, E.; Vigna, A.; Mori, S.; Giampietro, O. Asymptomatic bacteriuria in women with diabetes: Influence of metabolic control. Clin. Infect. Dis. 2004, 38, e41–e45. [Google Scholar] [CrossRef]
- Licker, M.; Sorescu, T.; Rus, M.; Cirlea, N.; Horhat, F.; Jurescu, C.; Botoca, M.; Cumpanas, A.; Timar, R.; Muntean, D. Extensively drug-resistant Myroides odoratimimus—A case series of urinary tract infections in immunocompromised patients. Infect. Drug Resist. 2018, 11, 743–749. [Google Scholar] [CrossRef]
- Endicott-Yazdani, T.R.; Dhiman, N.; Benavides, R.; Spak, C.W. Myroides odoratimimus bacteremia in a diabetic patient. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2015; Volume 28, pp. 342–343. [Google Scholar] [CrossRef]
- Sahu, C.; Chaudhary, R.; Bhartiya, C.; Patel, S.S.; Bhatnagar, N. A retrospective study on UTI by Myroides species: An emerging drug resistant nosocomial pathogen. Indian J. Crit. Care Med. 2024, 28, 399–403. [Google Scholar] [CrossRef]
- Miftode, I.L.; Pasare, M.A.; Miftode, R.S.; Nastase, E.; Plesca, C.E.; Lunca, C.; Miftode, E.G.; Timpau, A.S.; Iancu, L.S.; Dorneanu, O.S. What doesn’t kill them makes them stronger: The impact of the resistance patterns of urinary enterobacterales isolates in patients from a tertiary hospital in Eastern Europe. Antibiotics 2022, 11, 548. [Google Scholar] [CrossRef]
- Kadri, S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin. Infect. Dis. 2018, 23, 67. [Google Scholar] [CrossRef]
Variable | Patients (n = 241) |
---|---|
Gender b | |
Female | 184 (76.3%) |
Male | 57 (23.7%) |
Geographic area b | |
Urban | 134 (55.6%) |
Rural | 107 (44.4%) |
Smoking b | 73 (30.3%) |
Alcohol consumption b | 34 (14.1%) |
Age a (years) | 69 [65; 75] |
Diabetes type b (years) | |
T1D | 16 (6.6%) |
T2D | 225 (93.4%) |
Diabetes duration a (years) | 13 [4; 20] |
BMI a (kg/m2) | 30 [25.6; 34.6] |
Waist circumference a (cm) | 101 [90; 114] |
Random plasma glucose level at admission a (mg/dL) | 204 [145; 305] |
HbA1c a (%) | 8.17 [6.9; 9.1] |
BUN a (mg/dL) | 43 [33.7; 58] |
Serum creatinine a (mg/dL) | 0.9 [0.7; 1.1] |
eGFR a (mL/min/1.73 m2) | 75 [51; 95] |
uACR a (mg/g) | 25 [14; 76] |
Uric acid a (mg/dL) | 5.6 [4.5; 6.9] |
Diabetes complications b | |
DKA | 53 (22%) |
Retinopathy | 80 (33.2) |
CKD | 94 (39%) |
Polyneuropathy | 225 (93.4%) |
Coronary artery disease | 119 (49.4%) |
Cerebrovascular disease | 55 (22.8%) |
Peripheral artery disease | 30 (12.4%) |
Comorbidities b | |
Hypertension | 213 (88.4%) |
Dyslipidemia | 186 (77.2%) |
Heart failure | 99 (41.1%) |
Variable a | UTI-T1D Patients (n = 16) | UTI-T2D Patients (n = 225) | p * | ||
---|---|---|---|---|---|
Median | Average Rank | Median | Average Rank | ||
Age (years) | 45.5000 | 43.0000 | 70.0000 | 126.5467 | <0.0001 |
Duration of DM (years) | 4.0000 | 83.6562 | 13.0000 | 123.1317 | 0.0278 |
HbA1c (%) | 10.7000 | 176.6250 | 8.0000 | 117.0444 | 0.0010 |
Random plasma glucose level at admission (mg/dL) | 426.5000 | 169.8750 | 200.0000 | 117.5244 | 0.0037 |
Waist circumference (cm) | 85.0000 | 61.6250 | 101.0000 | 125.2222 | 0.0004 |
BMI (kg/m2) | 22.5000 | 56.7187 | 30.8000 | 125.5711 | 0.0001 |
Serum creatinine (mg/dL) | 0.8000 | 100.5625 | 0.9000 | 122.4533 | 0.2220 |
BUN (mg/dL) | 40.5000 | 108.6875 | 44.0000 | 121.8756 | 0.4646 |
Uric acid (mg/dL) | 5.9000 | 116.2813 | 5.6000 | 121.3356 | 0.7793 |
eGFR (mL/min/1.73 m2) | 106.5000 | 173.6875 | 74.0000 | 117.2533 | 0.0018 |
uACR (mg/g) | 15.5000 | 112.1563 | 26.0000 | 121.6289 | 0.5994 |
Variable b | UTI-T1D Patients (n = 16) | UTI-T2D Patients (n = 225) | p * | ||
---|---|---|---|---|---|
No | % | No | % | ||
DKA | 11 | 68.8 | 42 | 18.7 | <0.0001 |
Retinopathy | 3 | 18.8 | 77 | 34.2 | 0.2051 |
CKD | 2 | 12.5 | 92 | 40.9 | 0.0248 |
Polyneuropathy | 11 | 68.7 | 214 | 95.1 | 0.0001 |
Coronary artery disease | 2 | 12.5 | 117 | 52 | 0.0023 |
Cerebrovascular disease | 2 | 12.5 | 53 | 23.6 | 0.3096 |
Peripheral artery disease | 2 | 12.5 | 28 | 12.4 | 0.9948 |
Hypertension | 4 | 25 | 209 | 92.9 | <0.0001 |
Dyslipidemia | 9 | 56.3 | 177 | 78.7 | 0.0394 |
Heart failure | 2 | 12.5 | 97 | 43.1 | 0.0164 |
UTI Pathogens | UTI-T1D Patients | UTI-T2D Patients | p * |
---|---|---|---|
No (%) | No (%) | ||
Gram-negative bacilli | |||
E. coli | 3 (18.8%) | 133 (59.1%) | 0.0017 |
Proteus mirabilis | 1 (6.2%) | 7 (3.1%) | 0.49 |
Klebsiella pneumoniae | 2 (12.5%) | 29 (12.9%) | 0.96 |
Enterobacter spp. | 0 (0%) | 3 (1.3%) | 0.642 |
Citrobacter freundii/farmeri | 0 (0%) | 1 (0.4%) | 0.789 |
Klebsiella oxytoca | 0 (0%) | 1 (0.4%) | 0.789 |
Morganella morgagni | 0 (0%) | 2 (0.9%) | 0.705 |
Serratia marcescens | 0 (0%) | 1 (0.4%) | 0.789 |
Pseudomonas spp. | 1 (6.2%) | 2 (0.9%) | 0.062 |
Myroides sp. | 0 (0%) | 1 (0.4%) | 0.789 |
Gram-positive cocci | |||
Staphylococcus saprophyticus | 0 (0%) | 1 (0.4%) | 0.789 |
Staphylococcus aureus | 1 (6.2%) | 2 (0.9%) | 0.062 |
Enterococcus spp. | 1 (6.2%) | 22 (9.8%) | 0.643 |
Streptococcus agalactiae | 2 (12.5%) | 12 (5.3%) | 0.237 |
Yeasts | |||
Candida spp. | 5 (31.2%) | 8 (3.6%) | <0.0001 |
AMR Pattern | MDR | XDR | ESBL | CRO | R-SXT | R-AG | R-FQ | R-TE | R-CS | MRSA | MRSCN |
---|---|---|---|---|---|---|---|---|---|---|---|
No | 55 | 4 | 28 | 4 | 54 | 11 | 25 | 10 | 1 | 1 | 1 |
% | 22.8 | 1.6 | 11.6 | 1.6 | 22.4 | 4.5 | 10.3 | 4.1 | 0.4 | 0.4 | 0.4 |
Variable | Median | AverageRank | Median | AverageRank | p * |
---|---|---|---|---|---|
MDR Pathogens (n = 55) | Non-MDR Pathogens (n = 186) | ||||
HbA1c (%) | 8.0000 | 112.3091 | 8.2000 | 123.5699 | 0.2925 |
eGFR (mL/min/1.73 m2) | 68.0000 | 104.7364 | 77.0000 | 125.8091 | 0.0489 |
ESBL pathogens (n =28) | Non-ESBL pathogens (n = 213) | ||||
HbA1c (%) | 8.0800 | 98.4464 | 8.1700 | 123.9648 | 0.0686 |
eGFR (mL/min/1.73 m2) | 53.0000 | 73.4821 | 79.0000 | 127.2465 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorescu, T.; Licker, M.; Timar, R.; Musuroi, C.; Muntean, D.; Voinescu, A.; Vulcanescu, D.D.; Cosnita, A.; Musuroi, S.-I.; Timar, B. Characteristics of Urinary Tract Infections in Patients with Diabetes from Timișoara, Romania: Prevalence, Etiology, and Antimicrobial Resistance of Uropathogens. Medicina 2024, 60, 1870. https://doi.org/10.3390/medicina60111870
Sorescu T, Licker M, Timar R, Musuroi C, Muntean D, Voinescu A, Vulcanescu DD, Cosnita A, Musuroi S-I, Timar B. Characteristics of Urinary Tract Infections in Patients with Diabetes from Timișoara, Romania: Prevalence, Etiology, and Antimicrobial Resistance of Uropathogens. Medicina. 2024; 60(11):1870. https://doi.org/10.3390/medicina60111870
Chicago/Turabian StyleSorescu, Teodora, Monica Licker, Romulus Timar, Corina Musuroi, Delia Muntean, Adela Voinescu, Dan Dumitru Vulcanescu, Andrei Cosnita, Silvia-Ioana Musuroi, and Bogdan Timar. 2024. "Characteristics of Urinary Tract Infections in Patients with Diabetes from Timișoara, Romania: Prevalence, Etiology, and Antimicrobial Resistance of Uropathogens" Medicina 60, no. 11: 1870. https://doi.org/10.3390/medicina60111870