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Abstract: Providing accurate electric load forecasting results plays a crucial role in daily energy
management of the power supply system. Due to superior forecasting performance, the hybridizing
support vector regression (SVR) model with evolutionary algorithms has received attention and
deserves to continue being explored widely. The cuckoo search (CS) algorithm has the potential to
contribute more satisfactory electric load forecasting results. However, the original CS algorithm
suffers from its inherent drawbacks, such as parameters that require accurate setting, loss of
population diversity, and easy trapping in local optima (i.e., premature convergence). Therefore,
proposing some critical improvement mechanisms and employing an improved CS algorithm to
determine suitable parameter combinations for an SVR model is essential. This paper proposes the
SVR with chaotic cuckoo search (SVRCCS) model based on using a tent chaotic mapping function
to enrich the cuckoo search space and diversify the population to avoid trapping in local optima.
In addition, to deal with the cyclic nature of electric loads, a seasonal mechanism is combined
with the SVRCCS model, namely giving a seasonal SVR with chaotic cuckoo search (SSVRCCS)
model, to produce more accurate forecasting performances. The numerical results, tested by
using the datasets from the National Electricity Market (NEM, Queensland, Australia) and the
New York Independent System Operator (NYISO, NY, USA), show that the proposed SSVRCCS
model outperforms other alternative models.

Keywords: support vector regression; tent chaotic mapping function; cuckoo search algorithm;
seasonal mechanism; load forecasting

1. Introduction

Accurate electric load forecasting is important to facilitate the decision-making process for
power unit commitment, economic load dispatch, power system operation and security, contingency
scheduling, and so on [1,2]. As indicated in existing papers, a 1% electric load forecasting error increase
would lead to a £10 million additional operational cost [3], on the contrary, decreasing forecasting
errors by 1% would produce appreciable operation benefits [2]. Therefore, looking for more accurate
forecasting models or applying novel intelligent algorithms to achieve satisfactory load forecasting
results, to optimize the decisions of electricity supplies and load plans, to improve the efficiency of
the power system operations, eventually, reduces the system risks to within a controllable range.
However, due to lots of factors, such as energy policy, urban population, socio-economical activities,
weather conditions, holidays, and so on [4], the electric load data display seasonality, non-linearity,
and a chaotic nature, which complicates electric load forecasting work [5].
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Lots of electric load forecasting models have been proposed to continue improving forecasting
performances. These forecasting models can be of two types, the first one is based on the statistical
methodology, and the other one involves applications of artificial intelligence technology. The statistical
models, which include the ARIMA models [6,7], regression models [8,9], exponential smoothing
models [10], Kalman filtering models [11,12], Bayesian estimation models [13,14], and so on use
historical data to find out the linear relationships among time periods. However, due to their theoretical
definitions, these statistical models can only deal well with linear relationships among electric loads
and the other factors mentioned above. Therefore, these models could only produce unsatisfactory
forecasting performances [15].

Due to its superior nonlinear processing capability, artificial intelligence technology methods
such as artificial neural networks (ANNs) [16,17], expert system models [18,19], and fuzzy inference
systems [20,21] have been widely applied to improve the performance of electric load forecasting.
To overcome the inherent shortcomings of these artificial intelligent models, hybrid models
(hybridizing two artificial intelligent models with each other) and combined models (combining
two models with each other) have been the research hotspots recently. For example, hybridized or
combined with each other models [22] and with evolutionary algorithms [23]. However, these artificial
intelligence models (including hybrid or combined models) also have shortcomings themselves, such
as being time consuming, difficult to determine structural parameters, and trapping into local minima.
Readers may refer to [24] for more discussions regarding load forecasting.

With outstanding nonlinear processing capability, composed of high dimensional mapping
ability and kernel computing technology, the support vector regression (SVR) model [25–27] has
already produced superior abundant application results in many fields. The application experience
demonstrates that an SVR model with well-computed parameters by any evolutionary algorithm
could provide significant satisfactory forecasting performance, and overcome the shortcomings
of evolutionary algorithms to compute appropriate parameters. For applications in electric load
forecasting, Hong and his successors [28,29] have used two types of chaotic mapping functions
(i.e., logistic function and cat mapping function) to keep the diversity of population during the search
process to avoid trapping into local optima, to significantly improve the forecasting accuracy level.

The cuckoo search (CS) algorithm [30] is a novel meta-heuristic optimization algorithm inspired
by the brood reproductive strategy of cuckoo birds via an interesting brood parasitic mechanism,
i.e., mimicking the pattern and color of the host’s eggs, throwing the eggs out or not, or building a new
nest, etc. In [31], the authors demonstrate that, by applying various test functions, it is superior to
other algorithms, such as genetic algorithm (GA), differential evolution (DE), simulated annealing
(SA) algorithm, and particle swarm optimization (PSO) algorithm in searching for a global optimum.
Nowadays, the CS algorithm is widely applied in engineering applications, such as unit maintenance
scheduling [32], data clustering optimization [33], medical image recognition [34], manufacturing
engineering optimization [35], and software cost estimation [36], etc. However, as mentioned in [37],
the original CS algorithm has some inherent limitations, such as its initialization settings of the
host nest location, Lévy flight parameter, and boundary handling problem. In addition, because
it is a population-based optimization algorithm, the original CS algorithm also suffers from slow
convergence rate in the later searching period, homogeneous searching behaviors (low diversity of
population), and a premature convergence tendency [33,38,39].

Due to its easy implementation and ability to enrich the cuckoo search space and diversify the
population to avoid trapping into local optima, this paper would like to apply a chaotic mapping
function to overcome the core shortcomings of the original CS algorithm, to produce more accurate
electric load forecasting results. Thus, a tent chaotic mapping function, demonstrating a range of
dynamical behavior ranging from predictable to chaos, is hybridized with a CS algorithm to determine
three parameters of an SVR model. A new electric load forecasting model, obtained by hybridizing
a tent chaotic mapping function and CS algorithm with an SVR model, namely the SVR with chaotic
cuckoo search (SVRCCS) model, is thus proposed. In the meanwhile, as mentioned in existing
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papers [5,28,29], electric load data, particularly short term load data, illustrate an obvious cyclic
tendency, thus, the seasonal mechanism proposed in the authors’ previous papers [5,28,29] would
be further improved and combined with the SVRCCS model. Finally, the proposed seasonal SVR
with CCS, namely the SVR with chaotic cuckoo search (SSVRCCS) model, is employed to improve
the forecasting accuracy level by sufficiently capturing the non-linear and cyclic tendency of electric
load changes. Furthermore, the forecasting results of the SSVRCCS model are used to compare them
with other alternative models, such as the SARIMA, GRNN, SVRCCS, and SVRCS models, to test the
forecasting accuracy improvements achieved. The principal contribution of this paper is in continuing
to hybridize the SVR model with a tent chaotic computing mechanism, CS algorithm, and eventually,
combine a seasonal mechanism, to widely explore the electric load forecasting model to produce higher
accuracy performances.

The remainder of this article is organized as follows: the basic formulation of an SVR model,
the proposed CCS algorithm, seasonal mechanism, and the modeling details of the proposed SSVRCCS
model are described in Section 2. A numerical example and forecasting accuracy comparisons among
the proposed model and other alternative models are presented in Section 3. Finally, conclusions are
given in Section 4.

2. The Proposed SVR with Chaotic Cuckoo Search (SSVRCCS) Model

2.1. Support Vector Regression (SVR) Model

The modeling details of an SVR model are presented briefly as follows. The training data set,
{(xi, yi)}N

i=1, is mapped into a high dimensional feature space by a non-linear mapping function,
ϕ(x). Then, in the high dimensional feature space, the SVR function, f, is theoretically used to formulate
the nonlinear relationships between the input training data (xi) and the output data (yi). This can be
shown as Equation (1):

f (x) = wT ϕ(x) + b (1)

where f (x) represents the forecasted values; the weight, w, and the coefficient, b, are computed along
with minimizing the empirical risk, as shown in Equation (2):

R( f ) = C
1
N

N

∑
i=1

Θε(yi, f (xi)) +
1
2

wTw (2)

Θε(y, f (x)) =
{

0, i f | f (x)− y| ≤ ε

| f (x)− y| − ε, otherwise
(3)

where Θε(y, f (x)) is so-called ε-insensitive loss function, as shown in Equation (3). It is used to
determine the optimal hyperplane to separate the training data into two subsets with maximal distance,
i.e., minimizing the training errors between these two separated training data subsets and Θε(y, f (x)),
respectively. C is a parameter to penalize the training errors. The second term, 1

2 wTw, is then used to
represent the maximal distance between mentioned two separated data subsets, meanwhile, it also
determines the steepness and the flatness of f (x).

Then, the SVR modeling problem could be demonstrated as minimizing the total training errors.
It is a quadratic programming problem with two slack variables, ξ and ξ∗, to measure the distance
between the training data values and the edge values of ε-tube. Training errors under ε are denoted as
ξ∗, whereas training errors above ε are denoted as ξ, as shown in Equation (4):

Min
w,ξ,ξ∗

R(w, ξ, ξ∗) =
1
2
‖w‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (4)

with the constraints:
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yi − f (xi) ≤ ε + ξ∗i ,
−yi − f (xi) ≤ ε + ξi,

ξ∗i ≥ 0
ξi ≥ 0

i = 1, 2, . . . , N

The solution of Equation (4) is optimized by using Lagrange multipliers, β∗i , and βi, the weight
vector, w, in Equation (1) is computed as Equation (5):

w∗ =
N

∑
i=1

(β∗i − βi)ϕ(xi) (5)

Eventually, the SVR forecasting function is calculated as Equation (6):

f (x) =
N

∑
i=1

(β∗i − βi)K
(
xi, xj

)
+ b (6)

where K
(
xi, xj

)
is the so-called kernel function, and its value could be computed by the inner product

of ϕ(xi) and ϕ
(
xj
)
, i.e., K

(
xi, xj

)
= ϕ(xi)× ϕ

(
xj
)
. The are several kinds of kernel function, such as

Gaussian function (Equation (7)) and the polynomial kernel function. Due to its superior ability to
map nonlinear data into high dimensional space, a Gaussian function is used in this paper:

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
(7)

Therefore, determining the three parameters, σ, C, and ε of an SVR model would play the critical
role to achieve more accurate forecasting performances [5,28,29]. The parameter ε decides the number
of support vectors. If ε is large enough, it implies few support vectors with low forecasting accuracy;
if ε has a value that is too small, it would increase the forecasting accuracy but be too complex to adopt.
Parameter C, as mentioned, penalizes the training errors. If C is large enough, it would increase the
forecasting accuracy but suffer from being difficult to adopt; if C has a too small value, the model
would suffer from large training errors. Parameter σ represents the relationships among data and the
correlations among support vectors. If σ is large enough, the correlations among support vectors are
strong and we can obtain accurate forecasting results, but if the value of σ is small, the correlations
among support vectors are weak, and adoption is difficult.

However, structural methods to determine the SVR parameters are lacking. Hong and his
colleagues have pointed out the advanced exploration way by hybridizing chaotic mapping functions
with evolutionary algorithms to overcome the embedded premature convergence problem, to select
suitable parameter combination, to achieve highly accurate forecasting performances. To continue
this valuable exploration, the chaotic cuckoo search algorithm, the CCS algorithm, is proposed to be
hybridized with an SVR model to determine an appropriate parameter combination.

2.2. Chaotic Cuckoo Search (CCS) Algorithm

2.2.1. Tent Chaotic Mapping Function

The chaotic mapping function is an optimization technique to map the original data series to
show sensitive dependence on the initial conditions and infinite different periodic responses (chaotic
ergodicity), to maintain the diversity of population in the whole optimization procedures, to enrich
the search behavior, and to avoid premature convergence. The most popular chaotic mapping function
is the logistic function, however, based on the analysis on the chaotic characteristics of the different
mapping functions, a tent chaotic mapping function [39] demonstrates a range of dynamical behavior



Energies 2018, 11, 1009 5 of 21

ranging from predictable to chaos, i.e., with good ergodic uniformity [40]. This paper thus applies
the tent chaotic mapping function to be hybridized with the CS algorithm to determine the three
parameters of an SVR model.

The tent chaotic mapping function is shown as Equation (8):

xn+1 =

{
2xn x ∈ [0, 0.5]

2(1− xn) x ∈ (0.5, 1]
(8)

where xn is the iterative value of the variable x in the nth step, and n is the number of iteration steps.

2.2.2. Cuckoo Search (CS) Algorithm

The CS algorithm is a novel meta-heuristic optimization algorithm, inspired by cuckoo birds’
obligate brood parasitic behavior of laying their eggs in the nests of other host birds. Meanwhile,
by applying Lévy flight behaviors, the search speed is much faster than that of the normal random
walk. Therefore, cuckoo birds can reduce the number of iterations and thus speed up the local
search efficiency. For CS algorithm implementation, each egg in a nest represents a potential solution.
The cuckoo birds could choose, by Lévy flight behaviors, recently-spawned nests to lay their eggs in
the host nests to ensure their eggs could hatch first due to the natural phenomenon that cuckoo eggs
usually hatch before the host birds’ eggs. It takes times for the host birds to discover that the eggs
in their nests do not belong to them, based on the probability, pa. When these “stranger” eggs are
discovered, they either throw out those eggs or abandon the whole nest to build a new nest in a new
location. The cuckoo birds would continuously lay new eggs (solutions), and they would choose the
nest, by Lévy flight behaviors, around the current best solutions.

The CS algorithm contains three famous idealized rules [31]: (1) each cuckoo lays one egg at
a time in a randomly selected host; (2) high-quality eggs and their host nests would survive to the next
generation; (3) the number of available host nests is fixed, and the host bird detects the “stranger” egg
with a probability pa ∈ [0, 1]. In this case, the host bird can either throw away the egg or abandon the
nest, and build a completely new nest. The last rule can be approximated by a fraction (pa) of the n
host nests that are replaced by new nests (with new random solutions). The value of pa is often set
as 0.25 [37].

The CS algorithm could maintain the balance between two kinds of search (random walks),
the local search and the global search, by a switching parameter, pa. The switching parameter pa

determines the cuckoo birds to abandon a fraction of the worst nests and build new ones for discovering
new and more promising regions in the search space. These two random walks are defined by
Equations (9) and (10), respectively:

xt+1
i = xt

i + αs⊗ H(pa − δ)⊗
(

xt
j − xt

k

)
s (9)

xt+1
i = xt

i + αL(s, λ) (10)

where xt
j and xt

k are current positions randomly selected; α is the positive Lévy flight step size
scaling factor; s is the step size; H(·) is the Heavy-side function; δ is a random number from uniform
distribution; ⊗ represents the entry-wise product of two vectors; L(s, λ) is the Lévy distribution and is
used to define the step size of random walk, it is defined as Equation (11):

L(s, λ) =
λΓ(λ) sin(πλ/2)

π

1
s1+λ

(11)

where λ is the standard deviation of step size; the gamma function, Γ(λ), is defined as
Γ(λ) =

∫ ∞
0 tλ−1e−tdt, and represents an extension of factorial function, if λ is a positive integer,

then, Γ(λ) = (λ− 1)!. Lévy flight distribution enables a series of straight jumps chosen from any flight
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movements, it is also capable to find out the global optimum, i.e., it could ensure that the system will
not be trapped in a local optimum [41].

2.2.3. Implementation Steps of CCS Algorithm

The procedure of the hybrid CCS algorithm with an SVR model is illustrated as followings.
The relevant flowchart is shown in Figure 1.
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Figure 1. Chaotic cuckoo search algorithm flowchart.

Step 1: Initialization.

The locations of random n nests for the three parameters of an SVR model as

x(i)k,j =
[

x(i)k,1, x(i)k,2, . . . , x(i)k,n

]T
, k = C, σ, ε; i represents the iteration number; j represents the number of
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nests. Let i = 0, and normalize the parameters as chaotic variables, cx(i)k,j , within the interval [0, 1] by
Equation (12):

cx(i)k,j =
x(i)k,j −Mink

Maxk −Mink
(12)

where Mink and Maxk are the minima and the maxima of the three parameters, respectively.

Step 2: Chaotic Mapping and Transferring.

Apply the tent chaotic mapping function, defined as Equation (8), to obtain the next iteration of
chaotic variables, cx(i+1)

k,j , as shown in Equation (13):

cx(i+1)
k,j =

{ 2cx(i)k,j cx(i)k,j ∈ [0, 0.5]

2
(

1− cx(i)k,j

)
cx(i)k,j ∈ (0.5, 1]

(13)

Then, transform cx(i+1)
k,j to obtain three parameters for the next iteration, x(i+1)

k,j , by the following
Equation (14):

x(i+1)
k,j = Mink + cx(i+1)

k,j (Maxk −Mink) (14)

Step 3: Fitness Evaluation.

Evaluate the fitness value with x(i+1)
k,j for all nests to find out the best nest position, x(i+1)

k,best , in terms
of smaller forecasting accuracy index value. In this paper, the forecasting error is calculated as the
fitness value by the mean absolute percentage error (MAPE), as shown in Equation (15):

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ai − fi
ai

∣∣∣∣× 100% (15)

where N is the total number of data; ai is the actual electric load value at point i; fi is the forecasted
electric load value at point i.

Step 4: Cuckoo Global Search.

Implement a cuckoo global search, i.e., Equation (10), by using the best nest position, x(i+1)
k,best , and

update other nest positions by Lévy flight distribution (Equation (11)) to obtain a new set of nest
positions, then, compute the fitness value.

Step 5: Determine New Nest Position.

Compare the fitness value of the new nest positions with the fitness value of the previous
iteration, and update the nest position with a better one. Then determine the new nest position as

x(t)k,j =
[

x(t)k,1, x(t)k,2, . . . , x(t)k,n

]T
.

Step 6: Cuckoo Local Search.

If pa is lower than to a random number r, then turn to discover the nests in x(t)k,j with lower
probability instead of the higher one. Then, compute the fitting value of the new nests and
continue updating the nest position x(t)k,j with smaller MAPE value by comparing it with the previous
fitness value.

Step 7: Determine The Best Nest Position.

Compare the fitness value of the new nest position, x(t)k,j , in Step 6, with the fitness value of the

best nest position, x(i+1)
k,best . If the fitness value of x(t)k,j is lower than the one of x(i+1)

k,best , then, update x(t)k,j as

the best nest position, x(t)k,best.
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Step 8: Stop Criteria.

If the number of search iterations are greater than a given maximum search iterations, then, the best
nest position, x(t)k,best, among the current population is determined as parameters (C, σ, ε) of an SVR
model; otherwise, go back to Step 2 and continue searching the next iteration.

2.3. Seasonal Mechanism

As indicated in existing papers [5,28,29] the short term electric load data often display cyclic
tendencies due to the cyclic nature of economic activities (production, transportation, operation, etc.)
or the seasonal climate in Nature (air conditioners and heaters in summer and winter, respectively).
It is useful to increase the forecasting accuracy by calculating these seasonal effects (or seasonal indexes)
to adjust the seasonal biases. Several researchers have proposed seasonal adjustment approaches to
determine the seasonal effects, such as Koc and Altinay [42], Goh and Law [43], and Wang et al. [44],
who all apply regression models to decompose the seasonal component. Martens et al. [45] apply
a flexible Fourier transform to estimate the daily variation of the stock exchange, and compute
a seasonal estimator. Deo et al. [46] composed two Fourier transforms in a cyclic period to further
identify the seasonal estimator. Comparing these seasonal adjustment models, Deo’s model extends
Martens’s model for application to general cycle-length data, particularly for hour-based or other
shorter cycle-length data. Considering that this paper deals with half-hour based short term electric
load data, this paper would like to employ the seasonal mechanism proposed by Hong and his
colleagues in [5,28,29]. That is, firstly apply the ARIMA model to identify the seasonal length of the
target time series data set; secondly, calculate these seasonal indexes to adjust cyclic effects to receive
more satisfied forecasting performances, as shown in Equation (16):

Seasonratioq = ln
(

aq

fq

)2
= 2

(
ln aq − ln fq

)
(16)

where q = j, l + j, 2l + j, . . . , (m − 1)l + j with m seasonal (cyclic) periods and l seasonal length in
each period. Thirdly, the seasonal index (SI) for each seasonal point j in each period is calculated as
Equation (17):

SIj = exp

(
1
m

(m−1)l+j

∑
q=j

Seasonratioq

)
/2 (17)

where j = 1,2, . . . l. The seasonal mechanism is demonstrated in Figure 2.
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3. Numerical Examples of the Proposed SSVRCCS Model

3.1. Data Set of Numerical Examples

To demonstrate the superiorities of the tent chaotic mapping function and seasonal mechanism of
the proposed SSVRCCS model, this paper uses the half-hour electric load data from the Queensland
regional market of the National Electricity Market (NEM, Queensland, Australia) [47], named Example
1, and the New York Independent System Operator (NYISO, New York, NY, USA) [48], named Example
2. The employed electric load data contains a total of 768 half-hour electric load values in Example 1,
i.e., from 00:30 01 October 2017 to 00:00 17 October 2017. Based on Schalkoff’s [49] recommendation
that the ratio of validation data set to training data set should be approximately one to four, therefore,
the electric load data set is divided into three sub-sets. The training set has 432 half-hour electric
load values (i.e., from 00:30 01 October 2017 to 00:00 09 October 2017). The validation set contains
144 half-hour electric load values (i.e., from 00:30 09 October 2017 to 00:00 13 October 2017). The testing
set has 192 half-hour electric load values (i.e., from 00:30 13 October 2017 to 00:00 17 October 2017).
Similarly, in Example 2, the used electric load data also contains a total of 768 hourly electric load
values, i.e., from 00:00 01 January 2018 to 23:00 1 February 2018. The electric load data set is also
divided into three sub-sets. The training set has 432 hourly electric load values (i.e., from 00:00 01
January 2018 2017 to 23:00 18 January 2018). The validation set has 144 hourly electric load values
(i.e., from 00:00 19 January 2018 to 23:00 24 January 2018). The testing set has 192 hourly electric load
values (i.e., from 00:00 25 January 2018 to 23:00 1 February 2018). To be based on the same comparison
conditions, all compared models thus have the same data division sets.

During the modeling processes, in the training stage, the rolling-based procedure, proposed by
Hong [28], is also applied to assist CCS algorithm to implement well searching for an appropriate
parameter combination (σ, C, ε) of an SVR model. Specifically, the CCS algorithm minimizes the
empirical risk, as shown in Equation (4), to obtain the potential parameter combination by employing
the first n electric load data in the training set; then, it receives the first forecasted electric load by
the SVR model with these potential parameter combination, i.e., the (n + 1)th forecasting electric
load. For the second round, the next n electric load data, from 2nd to (n + 1)th electric load values,
are then used by the SVR model to obtain new potential parameter combination, then, similarly,
the (n + 2)th forecasting electric load is receive. This procedure would never be stopped till the
totally 432 forecasting electric load are computed. The training error and the validation error are also
calculated in each iteration.

Only with the smallest validation and testing errors, a potential parameter combination could
be finalized as the determined parameter combination of an SVR model. Then, the never used
testing data set would be employed to demonstrate the forecasting performances, i.e., eventually,
the 192 half-hour/hourly electric load would be forecasted by the proposed SSVRCCS model.

3.2. The SVR with Chaotic Cuckoo Search (SSVRCCS) Electric Load Forecasting Model

3.2.1. Embedded Parameter Settings of the CCS Algorithm

The embedded parameters of CCS algorithm for modeling are set as follows: the number of host
nests is set to be 50; the maximum number of iterations is set as 500; the initial probability parameter
pa is set as 0.25. During the parameter optimizing process of an SVR model, the searching feasible
ranges of the three parameters are set as following, σ ∈ [0.01, 5], ε ∈ [0.01, 1], and C ∈ [0.01, 60,000].
In addition, considering that the iteration time would affect the performance of each model, the given
optimization time for each model with an evolutionary algorithm is set at the same inasmuch
as possible.
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3.2.2. Forecasting Accuracy Indexes

Three forecasting accuracy evaluation indexes are used to compare the forecasting performances
for each model: (1) the MAPE mentioned in Equation (5); (2) the root mean square error (RMSE); and
(3) the mean absolute error (MAE). The latter two indexes could be calculated by Equations (18) and
(19), respectively:

RMSE =

√
∑N

i=1(ai − fi)
2

N
s (18)

MAE =
1
N

N

∑
i=1
|ai − fi| (19)

where N is the total number of data; ai is the actual electric load value at point i; fi is the forecasted
electric load value at point i.

3.2.3. Forecasting Accuracy Significance Tests

To demonstrate the significant superiority of the proposed SSVRCCS model in terms of forecasting
accuracy, some famous statistical tests are implemented. Based on Diebold and Mariano’s [50] and
Derrac et al. [51] research suggestions, the Wilcoxon signed-rank test [52] and Friedman test [53] are
simultaneously applied in this paper.

The Wilcoxon signed-rank test is used to compare the significant differences in terms of central
tendency between two data set with the same size. Let di represent the i-th pair difference of the
i-th forecasting errors from any two forecasting models, the differences are ranked according to their
absolute values. Let r+ represent the sum of ranks that the first model larger than the second one;
r− represent the sum of ranks that the second model larger than the first one. In case of dj = 0,
then, exclude the j-th pair and reduce sample size. The statistic W of the Wilcoxon signed-rank test is
shown as Equation (20):

W = min
{

r+, r−
}

(20)

If W meets the criterion of the Wilcoxon distribution under N degrees of freedom, then, the null
hypothesis of equal performance of these two compared models cannot be accepted. It also implies
that the proposed model is significantly superior to the other model. Of course, if the comparison
size is larger than the critical size, the sampling distribution of W would approximate to the normal
distribution instead of Wilcoxon distribution, and the associated p-value would also be provided.

On the other hand, due to the non-parametric statistical test in the ANOVA analysis procedure,
the Friedman test is devoted to compare the significant differences among two or more models.
The statistic F of the Friedman test is shown as Equation (21):

F =
12N

k(k + 1)

[
k

∑
j=1

R2
j −

k(k + 1)2

4

]
(21)

where N is the total number of forecasting results; k is the number of compared models; Rj is the average
rank sum obtained in each forecasting value for each compared model as shown in Equation (22),

Rj =
1
N

N

∑
i=1

rj
i (22)

where rj
i is the rank sum from 1 (the smallest forecasting error) to k (the worst forecasting error) for ith

forecasting result, for jth compared model.
Similarly, if the associated p-value of F meets the criterion of not acceptance, the null hypothesis,

equal performance among all compared models, could also not be held.
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3.2.4. Forecasting Results and Analysis for Example 1

To compare the improved forecasting performance of the tent chaotic mapping function,
a SVR with the original CS algorithm (without the tent chaotic mapping function), namely the SVRCS
model, will also be taken into comparison. Therefore, according to the rolling-based procedure
mentioned above, by using the training data set from Example 1 (mentioned in Section 3.1) to conduct
the training work, and the parameters for SVRCS and SVRCCS models are eventually determined.
These trained models are further used to forecast the electric load. Then, the forecasting results and the
suitable parameters of SVRCS and SVRCCS models are listed in Table 1. It is clearly indicated that the
proposed SVRCCS model has achieved smaller forecasting performances in terms of the forecasting
accuracy indexes, MAPE, RMSE, and MAE.

Table 1. Three parameters of SVRCS and SVR with chaotic cuckoo search (SVRCCS) models for
Example 1.

Evolutionary Algorithms
Parameters

MAPE of Testing (%) RMSE of Testing MAE of Testing
σ C ε

SVRCS 1.4744 17,877.54 0.3231 2.63 217.19 151.72
SVRCCS 0.5254 5,885.65 0.7358 1.51 126.92 87.94

As shown in Figure 3, the employed electric load data demonstrates seasonal/cyclic changing
tendency in Example 1. In addition, the data recording frequency is on a half-hour basis, therefore,
to comprehensively reveal the electric load changing tendency, the seasonal length is set as 48.
Therefore, there are 48 seasonal indexes for the proposed SVRCCS and SVRCS models. The seasonal
indexes for each half-hour are computed based on the 576 forecasting values of the SVRCCS and
SVRCS models in the training (432 forecasting values) and validation (144 forecasting values) processes.
The 48 seasonal indexes for the SVRCCS and SVRCS models are listed in Table 2, respectively.

Table 2. The 48 seasonal indexes for SVRCCS and SVRCS models for Example 1.

Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI)

SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS

00:00 0.9615 0.9201 06:00 1.0360 1.0536 12:00 1.0025 1.0076 18:00 1.0071 1.0176
00:30 0.9881 0.9241 06:30 1.0518 1.0729 12:30 0.9960 1.0032 18:30 1.0034 1.0109
01:00 0.9893 0.9401 07:00 1.0671 1.0924 13:00 0.9935 0.9992 19:00 0.9694 0.9767
01:30 0.9922 0.9729 07:30 1.0394 1.0810 13:30 0.9975 1.0022 19:30 0.9913 0.9875
02:00 0.9919 0.9955 08:00 1.0088 1.0575 14:00 1.0026 1.0083 20:00 0.9820 0.9812
02:30 0.9948 0.9980 08:30 1.0076 1.0322 14:30 1.0015 1.0088 20:30 0.9789 0.9700
03:00 0.9950 0.9998 09:00 1.0004 1.0148 15:00 1.0000 1.0070 21:00 0.9830 0.9641
03:30 0.9915 0.9961 09:30 0.9903 0.9982 15:30 1.0022 1.0089 21:30 0.9780 0.9547
04:00 1.0082 1.0129 10:00 1.0031 1.0067 16:00 1.0033 1.0115 22:00 0.9906 0.9622
04:30 1.0075 1.0176 10:30 0.9912 0.9981 16:30 1.0097 1.0173 22:30 0.9932 0.9778
05:00 1.0124 1.0245 11:00 0.9928 0.9973 17:00 1.0098 1.0188 23:00 0.9659 0.9645
05:30 1.0139 1.0253 11:30 0.9967 1.0025 17:30 1.0053 1.0164 23:00 0.9601 0.9348

The forecasting comparison curves of six models, including the SARIMA(9,1,8)×(4,1,4),
GRNN (σ = 0.04), SSVRCCS, SSVRCS, SVRCCS, and SVRCS models mentioned above and actual
values are shown in Figure 4. It illustrates that the proposed SSVRCCS model is closer to the actual
electric load values than other compared models. To further illustrate the tendency capturing capability
of the proposed SSVRCCS model during the electric peak loads, Figures 5–8 are enlargements from four
peaks in Figure 4 to clearly demonstrate how closer the SSVRCCS model matches to the actual electric
load values than other alternative models. For example, for each peak, the red real line (SSVRCCS
model) always follows closely with the black real line (actual electric load), whether climbing up the
peak or climbing down the hill.
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Table 3 illustrates the forecasting accuracy indexes for the proposed SSVRCCS model and other
alternative compared models. It is clearly to see that the MAPE, RMSE, and MAE of the proposed
SSVRCCS model are 0.70%, 56.90, and 40.79, respectively, which are superior to the other five alternative
models. It also implies that the proposed SSVRCCS model contributes great improvements in terms of
load forecasting accuracy.

Table 3. Forecasting accuracy indexes of the compared models for Example 1.

Forecasting Accuracy Indexes SARIMA(9,1,8)×(4,1,4) GRNN(œ = 0.04) SSVRCCS SSVRCS SVRCCS SVRCS

MAPE (%) 3.62 1.53 0.70 0.99 1.51 2.63
RMSE 280.05 114.30 56.90 80.42 126.92 217.19
MAE 217.67 88.63 40.79 57.69 87.94 151.72

Finally, to ensure the significant contribution in terms of forecasting accuracy improvement for
the proposed SSVRCCS model, the Wilcoxon signed-rank test and the Friedman test are conducted.
Where Wilcoxon signed-rank test is implemented under two significance levels, α = 0.025 and α = 0.05,
by two-tail test; the Friedman test is then implemented under only one significance level, α = 0.05.
The test results in Table 4 show that the proposed SSVRCCS model almost reaches a significance level
in terms of forecasting performance than other alternative compared models.

Table 4. Results of Wilcoxon signed-rank test and Friedman test for Example 1.

Compared Models
Wilcoxon Signed-Rank Test Friedman Test

α = 0.025;
W = 9264 p-Value α = 0.05;

W = 9264 p-Value α = 0.05;

SSVRCCS vs.
SARIMA(9,1,8)×(4,1,4)

842 a 0.00000 ** 842 a 0.00000 **
H0 : e1 = e2 = e3 = e4 = e5 = e6

F = 23.49107
p = 0.000272 (Reject H0)

SSVRCCS vs. GRNN(σ = 0.04) 3025 a 0.00000 ** 3025 a 0.00000 **
SSVRCCS vs. SSVRCS 2159 a 0.00000 ** 2159 a 0.00000 **
SSVRCCS vs. SVRCCS 3539 a 0.00000 ** 3539 a 0.00000 **
SSVRCCS vs. SVRCS 4288 a 0.00000 ** 4288 a 0.00000 **

a Denotes that the SSVRCCS model significantly outperforms the other alternative compared models; * represents
that the test indicates not to accept the null hypothesis under α = 0.05. ** represents that the test indicates not to
accept the null hypothesis under α = 0.025.

3.2.5. Forecasting Results and Analysis for Example 2

Similar to Example 1, SVRCS and SVRCCS models are also trained based on the rolling-based
procedure by using the training data set from Example 2 (mentioned in Section 3.1). The forecasting
results and the suitable parameters of SVRCS and SVRCCS models are shown in Table 5. It is also
obviously that the proposed SVRCCS model has achieved a smaller forecasting performance in terms
of forecasting accuracy indexes, MAPE, RMSE, and MAE.

Table 5. Three parameters of SVRCS and SVRCCS models for Example 2.

Evolutionary Algorithms
Parameters

MAPE of Testing (%) RMSE of Testing MAE of Testing
σ C ε

SVRCS 0.6628 36,844.57 0.2785 3.42 886.67 631.40
SVRCCS 0.3952 42,418.21 0.7546 2.30 515.10 426.42

Figure 9 also demonstrates the seasonal/cyclic changing tendency from the used electric load data
in Example 2. Based on the hourly recording frequency, to completely address the changing tendency
of the employed data, the seasonal length is set as 24. Therefore, there are 24 seasonal indexes for the
proposed SVRCCS and SVRCS models. The seasonal indexes for each hour are computed based on the
576 forecasting values of the SVRCCS and SVRCS models in the training (432 forecasting values) and
validation (144 forecasting values) processes. The 24 seasonal indexes for the SVRCCS and SVRCS
models are listed in Table 6, respectively.



Energies 2018, 11, 1009 15 of 21

Energies 2018, 11, x 14 of 21 

 

Table 4. Results of Wilcoxon signed-rank test and Friedman test for Example 1. 

Compared Models 
Wilcoxon Signed-Rank Test Friedman Test 

α = 0.025; 
W = 9264 

p-Value 
α = 0.05; 
W = 9264 

p-Value α = 0.05; 

SSVRCCS vs. ܵܣܯܫܴܣ(ଽ,ଵ,଼)×(ସ,ଵ,ସ) 842 a 0.00000 ** 842 a 0.00000 ** ܪ: ݁ଵ = ݁ଶ = ݁ଷ = ݁ସ = ݁ହ = ݁ 
F = 23.49107 

p = 0.000272 (Reject ܪ) 

SSVRCCS vs. GRNN(ߪ = 0.04) 3025 a 0.00000 ** 3025 a 0.00000 ** 
SSVRCCS vs. SSVRCS 2159 a 0.00000 ** 2159 a 0.00000 ** 
SSVRCCS vs. SVRCCS 3539 a 0.00000 ** 3539 a 0.00000 ** 
SSVRCCS vs. SVRCS 4288 a 0.00000 ** 4288 a 0.00000 ** 

a Denotes that the SSVRCCS model significantly outperforms the other alternative compared models; * 
represents that the test indicates not to accept the null hypothesis under α = 0.05. ** represents that 
the test indicates not to accept the null hypothesis under α = 0.025. 

3.2.5. Forecasting Results and Analysis for Example 2 

Similar to Example 1, SVRCS and SVRCCS models are also trained based on the rolling-based 
procedure by using the training data set from Example 2 (mentioned in Section 3.1). The forecasting 
results and the suitable parameters of SVRCS and SVRCCS models are shown in Table 5. It is also 
obviously that the proposed SVRCCS model has achieved a smaller forecasting performance in terms 
of forecasting accuracy indexes, MAPE, RMSE, and MAE. 

Table 5. Three parameters of SVRCS and SVRCCS models for Example 2. 

Evolutionary Algorithms Parameters MAPE of Testing (%) RMSE of Testing MAE of Testing ࣌ C ࢿ 
SVRCS 0.6628 36,844.57 0.2785 3.42 886.67 631.40 

SVRCCS 0.3952 42,418.21 0.7546 2.30 515.10 426.42 

Figure 9 also demonstrates the seasonal/cyclic changing tendency from the used electric load 
data in Example 2. Based on the hourly recording frequency, to completely address the changing 
tendency of the employed data, the seasonal length is set as 24. Therefore, there are 24 seasonal 
indexes for the proposed SVRCCS and SVRCS models. The seasonal indexes for each hour are 
computed based on the 576 forecasting values of the SVRCCS and SVRCS models in the training (432 
forecasting values) and validation (144 forecasting values) processes. The 24 seasonal indexes for the 
SVRCCS and SVRCS models are listed in Table 6, respectively. 

 
Figure 9. The seasonal tendency of actual hourly electric load in Example 2. 

  

Figure 9. The seasonal tendency of actual hourly electric load in Example 2.

Table 6. The 24 seasonal indexes for SVRCCS and SVRCS models for Example 2.

Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI) Time
Points

Seasonal Index (SI)

SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS

00:00 0.9718 0.9317 06:00 1.0545 1.1043 12:00 0.9848 0.9911 18:00 0.9753 1.0242
01:00 0.9848 0.9670 07:00 1.0383 1.1133 13:00 0.9896 0.9959 19:00 0.9707 0.9743
02:00 0.9894 0.9960 08:00 0.9854 1.0833 14:00 0.9898 0.9960 20:00 0.9711 0.9754
03:00 0.9937 1.0001 09:00 0.9913 1.0259 15:00 0.9994 1.0058 21:00 0.9610 0.9674
04:00 1.0076 1.0140 10:00 0.9860 0.9951 16:00 1.0144 1.0208 22:00 0.9519 0.9435
05:00 1.0343 1.0407 11:00 0.9841 0.9903 17:00 1.0252 1.0441 23:00 0.9567 0.9245

The forecasting comparison curves of six models in Example 2, including SARIMA(9,1,10)×(4,1,4),
GRNN (σ = 0.07), SSVRCCS, SSVRCS, SVRCCS, and SVRCS models and actual values are shown
as in Figure 10. It indicates that the proposed SSVRCCS model is closer to the actual electric load
values than the other compared models. Similarly, the enlarged figures, Figures 11–14, from eight
peaks in Figure 10 are provided to demonstrate the tendency capturing capability of the proposed
SSVRCCS model and how closer the SSVRCCS model matches the actual electric load values than
other alternative models. It is clear that for each peak, the red real line (SSVRCCS model) always
follows closely with the black real line (actual electric load), whether climbing up the peak or climbing
down the hill.
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For comparison with other alternative models, Table 7 demonstrates the forecasting accuracy
indexes for each compared model. Obviously, the proposed SSVRCCS model almost achieves the
smallest index values in terms of the MAPE (0.46%), RMSE (126.10), and MAE (80.85), respectively.
It is superior to the other five compared models. Once again, it indicates that the proposed SSVRCCS
model could produce more accurate forecasting performances.

Table 7. Forecasting accuracy indexes of compared models for Example 2.

Forecasting Accuracy Indexes SARIMA(9,1,10)×(4,1,4) GRNN(œ = 0.07) SSVRCCS SSVRCS SVRCCS SVRCS

MAPE (%) 5.16 3.19 0.46 0.86 2.30 3.42
RMSE 1233.09 753.97 126.10 262.02 515.10 886.67
MAE 956.14 577.48 80.85 152.02 426.42 631.40

Finally, two statistical tests are also conducted to ensure the significant contribution in terms of
forecasting accuracy improvement for the proposed SSVRCCS model. The test results are illustrated in
Table 8 that the proposed SSVRCCS model almost reaches significance level in terms of forecasting
performance than other alternative compared models.
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Table 8. Results of Wilcoxon signed-rank test and Friedman test for Example 2.

Compared Models

Wilcoxon Signed-Rank Test Friedman Test

α = 0.025;
W = 9264 p-Value α = 0.05;

W = 9264 p-Value α = 0.05;

SSVRCCS vs.
SARIMA(9,1,10)×(4,1,4)

152 a 0.00000 ** 152 a 0.00000 **
H0 : e1 = e2 = e3 = e4 = e5 = e6

F = 149.8006
p = 0.0000 (Reject H0)

SSVRCCS vs. GRNN(σ = 0.07) 396 a 0.00000 ** 396 a 0.00000 **
SSVRCCS vs. SSVRCS 482 a 0.00000 ** 482 a 0.00000 **
SSVRCCS vs. SVRCCS 745 a 0.00000 ** 745 a 0.00000 **
SSVRCCS vs. SVRCS 5207 a 0.00000 ** 5207 a 0.00000 **

a Denotes that the SSVRCCS model significantly outperforms the other alternative compared models; * represents
that the test indicates not to accept the null hypothesis under α = 0.05. ** represents that the test indicates not to
accept the null hypothesis under α = 0.025.

3.2.6. Discussions

To learn about the effects of the tent chaotic mapping function in both Examples 1 and 2, comparing
the forecasting performances (the values of MAPE, RMSE, and MAE in Tables 3 and 7) between SVRCS
and SVRCCS models, the forecasting accuracy of SVRCCS model is superior to that of SVRCS model.
It reveals that the CCS algorithm could determine more appropriate parameter combinations for an
SVR model by introducing the tent chaotic mapping function to enrich the cuckoo search space and
the diversity of the population when the CS algorithm is going to be trapped in the local optima.
In Example 1, as shown in Table 1, the parameter searching of an SVR model by CCS algorithm could
be moved to a much better solution, (σ, C, ε) = (0.5254, 5885.65, 0.7358) with forecasting accuracy,
(MAPE, RMSE, MAE) = (1.51%, 126.92, 87.94) from the local solution, (σ, C, ε) = (1.4744, 17877.54,
0.3231) with forecasting accuracy, (MAPE, RMSE, MAE) = (2.63%, 217.19, 151.72). It almost improves
1.12% (=2.63% − 1.51%) forecasting accuracy in terms of MAPE by employing Tent chaotic mapping
function. The same in Example 2, as shown in Table 5, the CCS algorithm also helps to improve
the result by 1.12% (=3.42% − 2.30%). These two examples both reveal the great contributions from
the tent chaotic mapping function. In future research, it would be worth applying another chaotic
mapping function to help to avoid trapping into local optima.

Furthermore, the seasonal mechanism can successfully help to deal with the seasonal/cyclic
tendency changes of the electric load data to improve the forecasting accuracy, by determining
seasonal length and calculating associate seasonal indexes (per half-hour for Example 1, and
per hour for Example 2) from training and validation stages for each seasonal point. In this paper,
authors hybridize the seasonal mechanism with SVRCS and SVRCCS models, namely SSVRCS and
SSVRCCS models, respectively, by using their associate seasonal indexes, as shown in Tables 2 and 6,
respectively. Based on these seasonal indexes, the forecasting results (in terms of MAPE) of the
SVRCS and SVRCCS models for Example 1 are further revised from 2.63% and 1.51%, respectively,
to achieve more acceptable forecasting accuracy, 0.99% and 0.70%, respectively. They almost improve
1.64% (=2.63% − 0.99%) and 0.81% (=1.51% − 0.70%) forecasting accuracy by applying seasonal
mechanism. The same in Example 2, as shown in Table 7, the seasonal mechanism also improves
2.56% (=3.42% − 0.86%) and 1.84% (=2.30% − 0.46%) for SVRCS and SVRCCS models, respectively.
In the meanwhile, based on Wilcoxon signed-rank test and Friedman test, as shown in Tables 4 and 8 for
Examples 1 and 2, respectively, the SSVRCCS models also achieve statistical significance among other
alternative models. Based on above discussions, this seasonal mechanism is also a considerable
contribution, and it is worth the time cost to deal with the seasonal/cyclic information during
modeling processes.

Therefore, it could be remarked that by hybridizing novel intelligent technologies, such as chaotic
mapping functions, advanced searching mechanism, seasonal mechanism, and so on, to overcome some
inherent drawbacks of the existing evolutionary algorithms could significantly improve forecasting
accuracy. This kind of research paradigm also inspires some interesting future research.
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4. Conclusions

This paper proposes a novel SVR-based hybrid electric load forecasting model, by hybridizing
the seasonal mechanism, the tent chaotic mapping function, and the CS algorithm with an SVR model,
namely the SSVRCCS model. The experimental results indicate that the proposed SSVRCCS model
significantly outperforms other alternative compared forecasting models. This paper continues to
overcome some inherent shortcomings of the CS algorithm, by actions such as enriching the search
space and the diversity of the population by using the tent chaotic mapping function to avoid premature
convergence problems and applying seasonal mechanism to provide useful adjustments caused from
seasonal/cyclic effects of the employed data set. Eventually, the proposed SSVRCCS model achieves
significant accurate forecasting performances.

This paper concludes some important findings. Firstly, by applying appropriate chaotic mapping
functions it could help empower the search variables to possess ergodicity characteristics, to enrich
the searching space, then, determine well appropriate parameter combinations of an SVR model,
to eventually improve the forecasting accuracy. Therefore, any novel hybridizations of existed
evolutionary algorithms with other optimization methods or mechanisms which could consider
those actions mentioned above during modeling process are all deserving to take a trial to achieve
more interesting results. Secondly, only hybridizing different single evolutionary algorithm with
an SVR model could contribute minor forecasting accuracy improvements. It is more worthwhile
to hybridize different novel intelligent technologies with single evolutionary algorithms to achieve
more high forecasting accurate levels. This could be an interesting future research tendency in the
SVR-based electric load forecasting field.
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