Incentive Determination for Demand Response Considering Internal Rate of Return
Abstract
:1. Introduction
2. Problem Formulation
2.1. DR Strategy
2.2. Modeling Objective Function
2.3. Modeling DR Customers
2.4. Economic Analysis with NPV and IRR
2.5. Iterative MIP Optimization
3. Case Study and Results
3.1. Simulation Conditions
3.1.1. Customer’s TOU Pattern and Load Pattern
3.1.2. ESS Operating Conditions
3.1.3. ESS Installation Costs
3.2. Case Study and Simulation Result
3.2.1. Incentive Variations Based on IRR
3.2.2. Incentive Variations with Decreasing ESS Investment Costs
3.2.3. Incentive Variations Based on TOU Rates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ESS charge | DR incentive | ||
ESS discharge | In | Total DR incentive at year n | |
ESS state of charge | Time-of-use energy charge | ||
ESS state of discharge | Demand charge | ||
State of the capacity of the ESS | Binary set indicating DR execution | ||
Power consumption | Total ESS investment costs | ||
Peak power | Total PCS investment costs | ||
Customer load by time | Total battery investment costs | ||
Customer CBL by time | Rate per year before ESS installation | ||
Smax | Battery max capacity | Electric rates at year n | |
Maximum battery operating range | CFn | Cash flow at year n | |
Minimum battery operating range | N | Revenue periods | |
Initial battery capacity rate | NPV | Net present value | |
PCS capacity | IRR | Annual discount rate | |
Efficiency |
References
- McPherson, M.; Stoll, B. Demand response for variable renewable energy integration: A proposed approach and its impacts. Energy 2020, 197, 117205. [Google Scholar] [CrossRef]
- Korea Energy Economics Institute. CFI Plan Revision and Supplementary Work [Summary]; Korea Energy Economics Institute: Ulsan, Republic of Korea, 2019; p. 2030. [Google Scholar]
- Korea Power Exchange. 2023 Annual Jeju Island Power System Operation Performance; Korea Power Exchange: Naju, Republic of Korea, 2024. [Google Scholar]
- Bird, L.; Lew, D.; Milligan, M.; Carlini, E.M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Holttinen, H.; Menemenlis, N.; Orths, A.; et al. Wind and solar energy curtailment: A review of international experience. Renew. Sustain. Energy Rev. 2016, 65, 577–586. [Google Scholar] [CrossRef]
- Jeong, S.-H.; Jeong, L.-H.; Jang, J.-W.; Jeon, S.-E.; Ahn, S.-M. A Study on the Performance Assessment of Plus DR to reduce Renewable Energy Curtailment. In Proceedings of the Korean Institute of Electrical Engineers Conference, Gyeongju, Republic of Korea, 31 October–3 November 2021; pp. 727–728. [Google Scholar]
- Jeong, S.-H. Introduction to the ‘Plus DR’ for minimizing wind curtailment in Jeju Island. Korean Inst. Electr. Eng. 2022, 71, 10–16. [Google Scholar]
- Korea Power Exchange. Jeju Island Plus DR Performance; Korea Power Exchange: Naju, Republic of Korea, 2023. [Google Scholar]
- Vahid-Ghavidel, M.; Javadi, M.S.; Gough, M.; Santos, S.F.; Shafie-khah, M.; Catalão, J.P.S. Demand response programs in multi-energy systems: A review. Energies 2020, 13, 4332. [Google Scholar] [CrossRef]
- Alzahrani, A.; Hafeez, G.; Rukh, G.; Murawwat, S.; Iftikhar, F.; Ali, S.; Haider, S.I.; Khan, M.I.; Abed, A.M. Demand response for optimal power usage scheduling considering time and power flexibility of load in smart grid. IEEE Access 2023, 11, 33640–33651. [Google Scholar] [CrossRef]
- Song, M.; Amelin, M.; Shayesteh, E.; Hilber, P. Impacts of flexible demand on the reliability of power systems. In Proceedings of the IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 19–22 February 2018; Volume 2018, pp. 1–5. [Google Scholar] [CrossRef]
- Abbasi, A.; Sultan, K.; Afsar, S.; Aziz, M.A.; Khalid, H.A. Optimal demand response using battery storage systems and electric vehicles in community home energy management system-based microgrids. Energies 2023, 16, 5024. [Google Scholar] [CrossRef]
- Mai, T.; Hand, M.M.; Baldwin, S.F.; Wiser, R.H.; Brinkman, G.L.; Denholm, P.; Arent, D.J.; Porro, G.; Sandor, D.; Hostick, D.J.; et al. Renewable electricity futures for the United States. IEEE Trans. Sustain. Energy 2014, 5, 372–378. [Google Scholar] [CrossRef]
- Li, X.; Ma, R.; Gan, W.; Yan, S. Optimal dispatch for battery energy storage station in distribution network considering voltage distribution improvement and peak load shifting. J. Mod. Power Syst. Clean. Energy 2022, 10, 131–139. [Google Scholar] [CrossRef]
- Yang, N.; Xun, S.; Liang, P.; Ding, L.; Yan, J.; Xing, C. Spatial-temporal optimal pricing for charging stations: A model-driven approach based on group price response behavior of EVs. IEEE Trans. Transp. Electrif. 2024; early access. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, Y.; Li, J. Aggregator-network coordinated peer-to-peer multi-energy trading via adaptive robust stochastic optimization. IEEE Trans. Power Syst. 2024, 39, 7124–7137. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, C.; Li, F.; Bale, P.; Sun, H. Active demand response using shared energy storage for household energy management. IEEE Trans. Smart Grid 2013, 4, 1888–1897. [Google Scholar] [CrossRef]
- Bitaraf, H.; Rahman, S. Reducing curtailed wind energy through energy storage and demand response. IEEE Trans. Sustain. Energy 2018, 9, 228–236. [Google Scholar] [CrossRef]
- Wongdet, P.; Boonraksa, T.; Boonraksa, P.; Pinthurat, W.; Marungsri, B.; Hredzak, B. Optimal capacity and cost analysis of battery energy storage system in standalone microgrid considering battery lifetime. Batteries 2023, 9, 76. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, M.-K. Optimal investment strategy based on a real options approach for energy storage systems in the Korean power market. Energy Rep. 2024, 11, 5859–5873. [Google Scholar] [CrossRef]
- Haider, H.T.; See, O.H.; Elmenreich, W. A review of residential demand response of smart grid. Renew. Sustain. Energy Rev. 2016, 59, 166–178. [Google Scholar] [CrossRef]
- Honarmand, M.E.; Hosseinnezhad, V.; Hayes, B.; Shafie-Khah, M.; Siano, P. An overview of demand response: From its origins to the smart energy community. IEEE Access 2021, 9, 96851–96876. [Google Scholar] [CrossRef]
- Namerikawa, T.; Okubo, N.; Sato, R.; Okawa, Y.; Ono, M. Real-time pricing mechanism for electricity market with built-in incentive for participation. IEEE Trans. Smart Grid 2015, 6, 2714–2724. [Google Scholar] [CrossRef]
- Chai, Y.; Xiang, Y.; Liu, J.; Gu, C.; Zhang, W.; Xu, W. Incentive-based demand response model for maximizing benefits of electricity retailers. J. Mod. Power Syst. Clean. Energy 2019, 7, 1644–1650. [Google Scholar] [CrossRef]
- Ng, K.-H.; Sheble, G.B. Direct load control—A profit-based load management using linear programming. IEEE Trans. Power Syst. 1998, 13, 688–694. [Google Scholar] [CrossRef]
- Zhong, H.; Xie, L.; Xia, Q. Coupon incentive-based demand response: Theory and case study. IEEE Trans. Power Syst. 2013, 28, 1266–1276. [Google Scholar] [CrossRef]
- Ghorashi, S.M.; Rastegar, M.; Senemmar, S.; Seifi, A.R. Optimal design of reward-penalty demand response programs in smart power grids. Sustain. Cities Soc. 2020, 60, 102150. [Google Scholar] [CrossRef]
- Shi, Q.; Chen, C.-F.; Mammoli, A.; Li, F. Estimating the profile of Incentive-Based Demand Response (IBDR) by integrating technical models and social-behavioral factors. IEEE Trans. Smart Grid 2020, 11, 171–183. [Google Scholar] [CrossRef]
- Farahani, S.S.S.; Tabar, M.B.; Tourang, H.; Yousefpour, B.; Kabirian, M. Using exponential modeling for DLC demand response programs in electricity markets. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 749–753. [Google Scholar]
- Lu, R.; Hong, S.H. Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl. Energy 2019, 236, 937–949. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Y.; Lin, Z.; Zhang, Z.; Ma, Y.; Yang, L.; Chen, X.; Yu, K. Score-based incentive demand response for load aggregators considering power-score redeem behavior of residential consumers. Int. J. Electr. Power Energy Syst. 2024, 162, 110233. [Google Scholar] [CrossRef]
- Zhao, W.; Li, R.; Zhu, S. Subsidy policies and economic analysis of photovoltaic energy storage integration in China. Energies 2024, 17, 2372. [Google Scholar] [CrossRef]
- Silvestri, L.; De Santis, M. Renewable-based load shifting system for demand response to enhance energy-economic-environmental performance of industrial enterprises. Appl. Energy 2024, 358, 122562. [Google Scholar] [CrossRef]
- Astriani, Y.; Shafiullah, G.; Shahnia, F. Incentive determination of a demand response program for microgrids. Appl. Energy 2021, 292, 116624. [Google Scholar] [CrossRef]
- Chen, C.-N.; Yang, C.-T. The investability of PV systems under descending feed-in tariffs: Taiwan case. Energies 2021, 14, 2728. [Google Scholar] [CrossRef]
- Korea Electric Rate; KEPCO, Korea Electric Power Corporation: Korea. 2024. Available online: https://online.kepco.co.kr/PRM015D00 (accessed on 1 September 2024).
- Wesley, C.; Akash, K. Cost Projections for Utility-Scale Battery Storage: 2023 Update; National Renewable Energy Laboratory, Office of Energy Efficiency and Renewable Energy, National Renewable Energy Laboratory. 2023. Available online: https://www.nrel.gov/docs/fy23osti/85332.pdf (accessed on 8 September 2024).
- Singh, S.; Alharthi, M.; Anand, A.; Shukla, A.; Sharma, A.; Panchal, H. Performance evaluation and financial viability analysis of grid associated 10 MWP solar photovoltaic power plant at UP India. Sci. Rep. 2022, 12, 22380. [Google Scholar] [CrossRef]
- Simpraga, M. Renewable Energy Returns—Where Next for Investors? Renewable Energy Returns, February 2023. Legal & General Investment Management. Available online: https://www.lgim.com/landg-assets/lgim/real-assets/_files/ra-renewable-energy-returns.pdf (accessed on 28 October 2024).
- You, P.; Li, S.; Li, C.; Zhang, C.; Zhou, H.; Wang, H.; Zhao, H.; Zhao, Y. Price-based demand response: A three-stage monthly time-of-use tariff optimization model. Energies 2023, 16, 7858. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
Battery Spec | 200 kWh | |
PCS Spec | 44 kW | |
Operating zones | 10%, 90% | |
Initial capacity rate | 10% | |
η | Efficiency | 90% |
Symbol | Parameter | Value |
---|---|---|
Cost per kWh | 0.46 M KRW | |
Cost per kW | 0.47 M KRW | |
Total Cost | 117 M KRW |
Separation | Without ESS (Traditional) | After ESS Installation |
---|---|---|
Electricity bill (M KRW) | 300.9 | 294.5 |
Peak (kW) | 463.872 | 424.248 |
Amount of energy consumed (MWh) | 1966.9 | 1984.3 |
DR participation through ESS (MWh) | - | 27.0 |
Total ESS cost (M KRW) | - | 115.4 |
Class | Demand Charge (KRW/kW) | Energy Charge (KRW/kWh) | ||||
---|---|---|---|---|---|---|
Period | Month | |||||
6–8 | 3–5 9–10 | 11–2 | ||||
A | 1 | 7220 | Off-peak | 92.8 | 92.8 | 99.8 |
Mid-peak | 145.7 | 115.3 | 145.9 | |||
Peak-load | 227.8 | 146.0 | 203.4 | |||
2 | 8320 | Off-peak | 87.3 | 87.3 | 94.3 | |
Mid-peak | 140.2 | 109.8 | 140.4 | |||
Peak-load | 222.3 | 140.5 | 197.9 | |||
3 | 9810 | Off-peak | 86.4 | 86.4 | 93.7 | |
Mid-peak | 139.6 | 108.5 | 139.8 | |||
Peak-load | 209.9 | 132.2 | 186.7 | |||
B | 1 | 6630 | Off-peak | 95.9 | 95.9 | 102.9 |
Mid-peak | 151.1 | 119 | 149.3 | |||
Peak-load | 179.3 | 128.8 | 166.3 | |||
2 | 7380 | Off-peak | 92.1 | 92.1 | 99.1 | |
Mid-peak | 147.3 | 115.2 | 145.5 | |||
Peak-load | 175.5 | 125 | 162.5 | |||
3 | 8190 | Off-peak | 90.4 | 90.4 | 97.5 | |
Mid-peak | 145.6 | 113.6 | 143.8 | |||
Peak-load | 173.9 | 123.3 | 160.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, G.; Yoon, A.; Kim, S. Incentive Determination for Demand Response Considering Internal Rate of Return. Energies 2024, 17, 5660. https://doi.org/10.3390/en17225660
Bae G, Yoon A, Kim S. Incentive Determination for Demand Response Considering Internal Rate of Return. Energies. 2024; 17(22):5660. https://doi.org/10.3390/en17225660
Chicago/Turabian StyleBae, Gyuhyeon, Ahyun Yoon, and Sungsoo Kim. 2024. "Incentive Determination for Demand Response Considering Internal Rate of Return" Energies 17, no. 22: 5660. https://doi.org/10.3390/en17225660
APA StyleBae, G., Yoon, A., & Kim, S. (2024). Incentive Determination for Demand Response Considering Internal Rate of Return. Energies, 17(22), 5660. https://doi.org/10.3390/en17225660