A Review on Waste to Energy Processes Using Microwave Pyrolysis
Abstract
:1. Introduction
2. Current Pyrolysis Techniques for Waste to Energy Application
3. Microwave Pyrolysis
3.1. Principles behind Microwave Pyrolysis
3.1.1. Introduction to Microwave Heating
3.1.2. Microwave Heating Mechanisms
- Dipole reorientation (polarization)—substances containing polar compounds are mainly heated via this mechanism when they are subjected to microwave radiation. When subjected to a microwave field, the electrons around the nuclei (electronic polarization) or the atomic nuclei themselves (atomic polarization) are displaced from their equilibrium position, forming induced dipoles. In some materials (e.g., water) permanent dipoles exist due to the asymmetric charge distribution in the molecule. The induced or permanent dipoles tend to reorient under the influence of the changing or alternating electric field. The chemicals bonds of induced or permanently polarized molecules are realigned in the fluctuating field. This realignment occurs trillions of times each second [35] and results in friction between the rotating molecules, and thus causes heat to be generated within the whole volume of material.
- Interfacial or Maxwell-Wagner polarization—this polarization arises from a charge build-up in the contact areas or interfaces between different components in heterogeneous systems. The polarization is created due to the difference in conductivities and dielectric constants of the substances at the interfaces. The accumulation of space charge leads to field distortions and dielectric loss that contribute to the heating effects.
- Conduction mechanism—when an electrically-conductive material is subjected to electromagnetic radiation, electric currents are produced where the charged particles or carriers (electrons, ions, etc.) in the material move through the material under the influence of the externally applied electromagnetic field forming conducting paths. As these electric currents flow within the structure of the materials, which in most cases have a relatively high electrical resistivity, the material is heated because the power generated by the forced flow of electrons is dissipated as heat.
3.1.3. Microwave Heating of Carbon Materials and its Application in Pyrolysis Processes
3.2. Microwave-Heated Pyrolysis Compared to Conventionally-Heated Pyrolysis
A Case Study Comparison between Microwave-Heated and Conventional Electric-Heated Pyrolysis of Waste Oil
Type of waste oil pyrolysis | Char | Pyrolysis-gases | Pyrolysis-oil | |
Microwave heating with particulate-carbon [65] | 7 | 8 | 85 | |
Electric heating (only waste oil) [10,19,27] | 3–13 | 28–60 | 34–80 | |
Electric heating with coal [66] | 35–50 | 19–40 | 21–39 | |
Electric heating with scrap tires [5] | 16–21 | 9–10 | 67–72 | |
Electric heating with catalyst (zeolite,alumina) [67] | N.Ra | N.R. | 36–42 | |
Carbon components in pyrolysis-oil | C5-C18 | >C18 | ||
Microwave heating with particulate-carbon [65] | 87 wt% | 7 wt% (C19-C30) | ||
Electric heating by jacketed electric heater [22] | 19 wt% | 81 wt% (C19-C35) | ||
Electric heating by electric furnace [10]b | 45 wt% | 55 wt% (C19-C29) | ||
Electric heating by electric oven [5]b | 65 wt% | 35 wt% (C19-C28) |
3.3. Energy Recovery
4. Application of Microwave Pyrolysis in Waste to Energy Processes
Research | Gases | Oil | Char |
---|---|---|---|
Waste automotive engine oil [65] | 8 | 85 | 7 |
Plastic waste [7] | 19–21 | 79–81 | 0 |
Sewage sludge [73,74] | 36–63 | 2–8 | 30–60 |
Used car tyre [75] | 10 | 50 | 40 |
4.1. Waste Automotive Engine Oil
4.2. Plastic Wastes
4.3. Biomass Wastes
4.4. Hazardous Waste Processing
4.5. Production of Synthetic Fuel
5. Conclusions
Acknowledgments
References
- Latimer, J.S.; Hoffman, E.J.; Hoffman, G.; Fasching, J.L.; Quinn, J.G. Sources of petroleum-hydrocarbons in urban runoff. Water Air Soil Pollut. 1990, 52, 1–21. [Google Scholar] [CrossRef]
- Cormier, S.A.; Lomnicki, S.; Backes, W.; Dellinger, B. Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials. Environ. Health Perspect. 2006, 114, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Rowat, S.C. Incinerator toxic emissions: A brief summary of human health effects with a note on regulatory control. Med. Hypotheses 1999, 52, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Dry, M.E. High quality diesel via the Fischer–Tropsch process—A review. J. Chem. Technol. Biotechnol. 2002, 77, 43–50. [Google Scholar] [CrossRef]
- Uçar, S.; Karagöz, S.; Yanik, J.; Saglam, M.; Yuksel, M. Copyrolysis of scrap tires with waste lubricant oil. Fuel Process. Technol. 2005, 87, 53–58. [Google Scholar] [CrossRef]
- Scheirs, J.; Kaminsky, W. Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels; Wiley: Chichester, UK, 2006; Volume 27, pp. 2–785. [Google Scholar]
- Ludlow-Palafox, C.; Chase, H.A. Microwave induced pyrolysis of plastic wastes. Ind. Eng. Chem. Res. 2001, 40, 4749–4756. [Google Scholar] [CrossRef]
- Dry, M.E. The Fischer–Tropsch process: 1950–2000. Catal. Today 2002, 71, 227–241. [Google Scholar] [CrossRef]
- Song, G.-J.; Seo, Y.-C.; Pudasainee, D.; Kim, I.-T. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil. Waste Manag. 2010, 30, 1230–1237. [Google Scholar] [CrossRef] [PubMed]
- Sinağ, A.; Gülbay, S.; Uskan, B.; Uçar, S.; Özgürler, S.B. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil. J. Hazard. Mater. 2010, 173, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Onwudili, J.A.; Insura, N.; Williams, P.T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. J. Anal. Appl. Pyrolysis 2009, 86, 293–303. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Fernández, Y.; Pis, J.J.; Nabais, J.M.V.; Carrott, P.J.M.; Carrott, M.M.L.R. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. J. Anal. Appl. Pyrolysis 2007, 79, 128–135. [Google Scholar] [CrossRef]
- Carlson, T.R.; Cheng, Y.-T.; Jae, J.; Huber, G.W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci. 2011, 4, 145–161. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Osepchuk, J.M. Microwave power applications. IEEE Trans. Microwave Theory Tech. 2002, 50, 975–985. [Google Scholar] [CrossRef]
- Marken, F.; Sur, U.K.; Coles, B.A.; Compton, R.G. Focused microwaves in electrochemical processes. Electrochim. Acta 2006, 51, 2195–2203. [Google Scholar] [CrossRef]
- Ramasamy, K.K.; T-Raissi, A. Hydrogen production from used lubricating oils. Catal. Today. 2007, 129, 365–371. [Google Scholar] [CrossRef]
- Ludlow-Palafox, C.; Chase, H.A. Microwave pyrolysis of plastic wastes. In Feedstock Recycling and Pyrolysis of Waste Plastics; Scheirs, J., Kaminsky, W., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 2006; pp. 569–594. [Google Scholar]
- Arpa, O.; Yumrutas, R.; Demirbas, A. Production of diesel-like fuel from waste engine oil by pyrolitic distillation. Appl. Energy 2010, 87, 122–127. [Google Scholar] [CrossRef]
- Fuentes, M.J.; Font, R.; Gómez-Rico, M.F.; Martín-Gullón, I. Pyrolysis and combustion of waste lubricant oil from diesel cars: Decomposition and pollutants. J. Anal. Appl. Pyrol. 2007, 79, 215–226. [Google Scholar] [CrossRef]
- Balat, M.; Demirbas, M.F. Pyrolysis of waste engine oil in the presence of wood ash. Energy Sources Part A 2009, 31, 1494–1499. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jeong, S.U.; Yoon, W.L.; Yoon, H.K.; Kim, S.H. Tar-formation kinetics and adsorption characteristics of pyrolyzed waste lubricating oil. J. Anal. Appl. Pyrolysis 2003, 70, 19–33. [Google Scholar] [CrossRef]
- Kim, S.S.; Chun, B.H.; Kim, S.H. Non-isothermal pyrolysis of waste automobile lubricating oil in a stirred batch reactor. Chem. Eng. J. 2003, 93, 225–231. [Google Scholar] [CrossRef]
- Juniper Consultancy Services Ltd. Pyrolysis and Gasification of Wastes; Juniper Consultancy Services Ltd.: London, UK, 1997. [Google Scholar]
- Williams, P.T.; Besler, S. Polycyclic aromatic hydrocarbons in waste derived pyrolytic oils. J. Anal. Appl. Pyrolysis 1994, 30, 17–33. [Google Scholar] [CrossRef]
- Domeño, C.; Nerín, C. Fate of polyaromatic hydrocarbons in the pyrolysis of industrial waste oils. J. Anal. Appl. Pyrolysis 2003, 67, 237–246. [Google Scholar] [CrossRef]
- Lázaro, M.J.; Moliner, R.; Suelves, I.; Nerín, C.; Domeño, C. Valuable products from mineral waste oils containing heavy metals. Environ. Sci. Technol. 2000, 34, 3205–3210. [Google Scholar] [CrossRef]
- Holland, K.M. Apparatus for Waste Pyrolysis. U.S. Patent 5,387,321, 7 February 1995. [Google Scholar]
- Holland, K.M. Process of Destructive Distillation of Organic Material. U.S. Patent 5,330,623, 19 July 1994. [Google Scholar]
- Bilali, L.; Benchanaa, M.; El harfi, K.; Mokhlisse, A.; Outzourhit, A. A detailed study of the microwave pyrolysis of the Moroccan (Youssoufia) rock phosphate. J. Anal. Appl. Pyrolysis 2005, 73, 1–15. [Google Scholar] [CrossRef]
- Li, H.; Liao, L.; Liu, L. Kinetic Investigation into the Non-thermal microwave effect on the ring-opening polymerization of ε-Caprolactone. Macromol. Rapid Commun. 2007, 28, 411–416. [Google Scholar] [CrossRef]
- Meredith, R. Engineers’ Handbook of Industrial Microwave Heating; The Institution of Electrical Engineers: London, UK, 1998. [Google Scholar]
- Robinson, J.; Snape, C.; Kingman, S.; Shang, H. Thermal desorption and pyrolysis of oil contaminated drill cuttings by microwave heating. J. Anal. Appl. Pyrolysis 2008, 81, 27–32. [Google Scholar] [CrossRef]
- Metaxas, A.C. Foundations of Electroheat; John Wiley and Sons Ltd.: Chichester, UK, 1996. [Google Scholar]
- Menéndez, J.A.; Arenillas, A.; Fidalgo, B.; Fernández, Y.; Zubizarreta, L.; Calvo, E.G.; Bermúdez, J.M. Microwave heating processes involving carbon materials. Fuel Process. Technol. 2010, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hayward, D.O. Applications of microwave dielectric heating in environment-related heterogeneous gas-phase catalytic systems. Inorg. Chim. Acta 2006, 359, 3421–3433. [Google Scholar] [CrossRef]
- Udalov, E.; Bolotov, V.; Tanashev, Y.; Chernousov, Y.; Parmon, V. Pyrolysis of liquid hexadecane with selective microwave heating of the catalyst. Theor. Exp. Chem. 2011, 46, 384–392. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Domínguez, A.; Fernández, Y.; Pis, J.J. Evidence of Self-Gasification during the Microwave-Induced Pyrolysis of Coffee Hulls. Energy Fuel. 2007, 21, 373–378. [Google Scholar] [CrossRef]
- Monsef-Mirzai, P.; Ravindran, M.; McWhinnie, W.R.; Burchill, P. Rapid microwave pyrolysis of coal: Methodology and examination of the residual and volatile phases. Fuel 1995, 74, 20–27. [Google Scholar] [CrossRef]
- Monsef-Mirzai, P.; Ravindran, M.; McWhinnie, W.R.; Burchil, P. The use of microwave heating for the pyrolysis of coal via inorganic receptors of microwave energy. Fuel 1992, 71, 716–717. [Google Scholar] [CrossRef]
- El harfi, K.; Mokhlisse, A.; Chanaa, M.B.; Outzourhit, A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation. Fuel 2000, 79, 733–742. [Google Scholar]
- Fernández, Y.; Arenillas, A.; Díez, M.A.; Pis, J.J.; Menéndez, J.A. Pyrolysis of glycerol over activated carbons for syngas production. J. Anal. Appl. Pyrolysis 2009, 84, 145–150. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Inguanzo, M.; Pis, J.J. Microwave-induced pyrolysis of sewage sludge. Water Res. 2002, 36, 3261–3264. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, J.A.; Menéndez, E.M.; Garcia, A.; Parra, J.B.; Pis, J.J. Thermal treatment of active carbons: A comparison between microwave and electrical heating. Int. Microwave Power Inst. 1999, 34, 137–143. [Google Scholar]
- Liu, C.C.; Walters, A.; Vannice, M. Measurement of electrical properties of a carbon black. Carbon 1995, 33, 1699–1708. [Google Scholar] [CrossRef]
- Fidalgo, B.; Arenillas, A.; MenÈndez, J.A. Influence of porosity and surface groups on the catalytic activity of carbon materials for the microwave-assisted CO2 reforming of CH4. Fuel 2010, 89, 4002–4007. [Google Scholar] [CrossRef]
- Roberts, B.A.; Strauss, C.R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res. 2005, 38, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Nuchter, M.; Ondruschka, B.; Bonrath, W.; Gum, A. Microwave assisted synthesis—A critical technology overview. Green Chem. 2004, 6, 128–141. [Google Scholar] [CrossRef]
- Strauss, C.; Rooney, D. Accounting for clean, fast and high yielding reactions under microwave conditions. Green Chem. 2010, 12, 1340–1344. [Google Scholar] [CrossRef]
- Fantini, M.; Zuliani, V.; Spotti, M.A.; Rivara, M. Microwave assisted efficient synthesis of imidazole-based privileged structures. J. Comb. Chem. 2009, 12, 181–185. [Google Scholar] [CrossRef]
- De Paolis, O.; Teixeira, L.; Török, B. Synthesis of quinolines by a solid acid-catalyzed microwave-assisted domino cyclization-aromatization approach. Tetrahedron Lett. 2009, 50, 2939–2942. [Google Scholar]
- Herrero, M.A.; Kremsner, J.M.; Kappe, C.O. Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. J. Org. Chem. 2007, 73, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Stiasni, N.; Barbieri, V.; Kappe, C.O. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling. J. Org. Chem. 2007, 72, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- De la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev. 2005, 34, 164–178. [Google Scholar]
- Schmink, J.R.; Leadbeater, N.E. Probing “microwave effects” using Raman spectroscopy. Org. Biomol. Chem. 2009, 7, 3842–3846. [Google Scholar] [CrossRef] [PubMed]
- Razzaq, T.; Kremsner, J.M.; Kappe, C.O. Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J. Org. Chem. 2008, 73, 6321–6329. [Google Scholar] [CrossRef] [PubMed]
- Bagnell, L.; Cablewski, T.; Strauss, C.R.; Trainor, R.W. Reactions of allyl phenyl ether in high-temperature water with conventional and microwave heating. J. Org. Chem. 1996, 61, 7355–7359. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A.; Lelyveld, T.P.; Mavrofidis, S.D.; Kingman, S.W.; Miles, N.J. Microwave heating applications in environmental engineering—A review. Resour. Conserv. Recycl. 2002, 34, 75–90. [Google Scholar] [CrossRef]
- Fernández, Y.; Arenillas, A.; Bermúdez, J.M.; Menéndez, J.A. Comparative study of conventional and microwave-assisted pyrolysis, steam and dry reforming of glycerol for syngas production, using a carbonaceous catalyst. J. Anal. Appl. Pyrolysis 2010, 88, 155–159. [Google Scholar] [CrossRef] [Green Version]
- Appleton, T.J.; Colder, R.I.; Kingman, S.W.; Lowndes, I.S.; Read, A.G. Microwave technology for energy-efficient processing of waste. Appl. Energy 2005, 81, 85–113. [Google Scholar] [CrossRef]
- Lei, H.; Ren, S.; Julson, J. The effects of reaction temperature and time and particle size of corn stover on microwave pyrolysis. Energy Fuel. 2009, 23, 3254–3261. [Google Scholar] [CrossRef]
- Menéndez, J.A.; Domínguez, A.; Inguanzo, M.; Pis, J.J. Microwave pyrolysis of sewage sludge: Analysis of the gas fraction. J. Anal. Appl. Pyrolysis 2004, 71, 657–667. [Google Scholar] [CrossRef]
- Committee on Microwave Processing of Materials: An Emerging Industrial Technology, National Materials Advisory Board, Commission on Engineering and Technical Systems and National Research Council (US). Microwave Processing of Materials; National Academy Press: Washington, DC, USA, 1994; Volume 473. [Google Scholar]
- Du, Z.; Li, Y.; Wang, X.; Wan, Y.; Chen, Q.; Wang, C.; Lin, X.; Liu, Y.; Chen, P.; Ruan, R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 2011, 102, 4890–4896. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Russell, A.D.; Lee, C.L.; Chase, H.A. Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil. Fuel 2012, 92, 327–339. [Google Scholar] [CrossRef]
- Lázaro, M.J.; Moliner, R.; Suelves, I.; Domeño, C.; Nerín, C. Co-pyrolysis of a mineral waste oil/coal slurry in a continuous-mode fluidized bed reactor. J. Anal. Appl. Pyrolysis 2002, 65, 239–252. [Google Scholar] [CrossRef]
- Demirbas, A. Gasoline-like fuel from waste engine oil via catalytic pyrolysis. Energy Sources Part A 2008, 30, 1433–1441. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Inguanzo, M.; Pis, J.J. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Process. Technol. 2005, 86, 1007–1020. [Google Scholar] [CrossRef]
- Huang, Y.F.; Kuan, W.H.; Lo, S.L.; Lin, C.F. Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour.Technol. 2010, 101, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, J.; Song, Z.; Liu, H.; Li, L.; Ma, C. Microwave pyrolysis of straw bale and energy balance analysis. J. Anal. Appl. Pyrolysis 2011, 92, 43–49. [Google Scholar] [CrossRef]
- Lam, S.S.; Russell, A.D.; Chase, H.A. Microwave pyrolysis, a novel process for recycling waste automotive engine oil. Energy 2010, 35, 2985–2991. [Google Scholar] [CrossRef]
- Tian, Y.; Zuo, W.; Ren, Z.; Chen, D. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresour. Technol. 2011, 102, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.; Tian, Y.; Ren, N. The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Manag. 2011, 31, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, A.; Fernández, Y.; Fidalgo, B.; Pis, J.J.; Menéndez, J.A. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 2008, 70, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Yatsun, A.; Konovalov, P.; Konovalov, N. Gaseous products of microwave pyrolysis of scrap tires. Solid Fuel Chem. 2008, 42, 187–191. [Google Scholar] [CrossRef]
- Lam, S.S.; Russell, A.D.; Chase, H.A. Pyrolysis using microwave heating: A sustainable process for recycling used car engine oil. Ind. Eng. Chem. Res. 2010, 49, 10845–10851. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Inguanzo, M.; Pís, J.J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour. Technol. 2006, 97, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Russell, A.D.; Lee, C.L.; Lam, S.K.; Chase, H.A. Production of hydrogen and light hydrocarbons as a potential gaseous fuel from microwave-heated pyrolysis of waste automotive engine oil. Int. J. Hydrog. Energy 2012, 37, 5011–5021. [Google Scholar] [CrossRef]
- Nerin, C.; Domeno, C. Determination of polyaromatic hydrocarbons and some related compounds in industrial waste oils by GPC-HPLC-UV. Analyst 1999, 124, 67–70. [Google Scholar] [CrossRef]
- Menendez, J.A.; Dominguez, A.; Inguanzo, M.; Pis, J.J. Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: Vitrification of the solid residue. J. Anal. Appl. Pyrolysis 2005, 74, 406–412. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Inguanzo, M.; Bernad, P.L.; Pis, J.J. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges. J. Chromatogr. A 2003, 1012, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Kaga, H.; Sakurai, A.; Kakuchi, T.; Takahashi, K. Rapid pyrolysis of wood block by microwave heating. J. Anal. Appl. Pyrolysis 2004, 71, 187–199. [Google Scholar] [CrossRef]
- Kim, H.C.; Kim, H.Y.; Woo, S.I. Fast pyrolysis of chlorodifluoromethane in a microwave-heated fluidized bed. J. Chem. Eng. Jpn. 1999, 32, 171–176. [Google Scholar] [CrossRef]
- Chemat, F.; Poux, M. Microwave assisted pyrolysis of urea supported on graphite under solvent-free conditions. Tetrahedron Lett. 2001, 42, 3693–3695. [Google Scholar] [CrossRef]
© 2012 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lam, S.S.; Chase, H.A. A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies 2012, 5, 4209-4232. https://doi.org/10.3390/en5104209
Lam SS, Chase HA. A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies. 2012; 5(10):4209-4232. https://doi.org/10.3390/en5104209
Chicago/Turabian StyleLam, Su Shiung, and Howard A. Chase. 2012. "A Review on Waste to Energy Processes Using Microwave Pyrolysis" Energies 5, no. 10: 4209-4232. https://doi.org/10.3390/en5104209
APA StyleLam, S. S., & Chase, H. A. (2012). A Review on Waste to Energy Processes Using Microwave Pyrolysis. Energies, 5(10), 4209-4232. https://doi.org/10.3390/en5104209