Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry
Abstract
:1. Introduction
1.1. Polymer Composites Used in Aviation
1.2. Tribological Properties
2. Measurements Methodology
2.1. Material Tested
2.2. The Test Stand for Tribological Tests
2.3. The Resonance Frequency Estimation by the Analytical Approach
2.4. The Test Stand for Dynamical Behavior
3. Results
3.1. Selected Tribological Properties
3.2. Base Resonance Zone
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kosicka, E.; Gola, A.; Pawlak, J. Application-based support of machine maintenance. IFAC-PapersOnLine 2019, 52, 131–135. [Google Scholar] [CrossRef]
- Greškovič, F.; Dulebová, L.; Duleba, B.; Krzyżak, A. Criteria of maintenance for assessing the suitability of aluminum alloys for the production of interchangeable parts injection mold. Eksploat. Niezawodn. 2013, 15, 434–440. [Google Scholar]
- Nikoniuk, D.; Bednarska, K.; Sienkiewicz, M.; Krzesiński, G.; Olszyna, M.; Dähne, L.; Woliński, T.R.; Lesiak, P. Polymer fibers covered by soft multilayered films for sensing applications in composite materials. Sensors 2019, 19, 4052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczmaszewski, J.; Zagórski, I. Methodological problems of temperature measurement in the cutting area during milling magnesium alloys. Manag. Prod. Eng. Rev. 2013, 4, 26–33. [Google Scholar] [CrossRef]
- Szczepaniak, R.; Rolecki, K.; Krzyzak, A. The influence of the powder additive upon selected mechanical properties of a composite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 634, 012007. [Google Scholar] [CrossRef]
- Sławski, S.; Szymiczek, M.; Domin, J. Influence of the reinforcement on the destruction image of the composites panels after applying impact load. AIP Conf. Proc. 2019, 2077, 020050. [Google Scholar] [CrossRef]
- Krzyżak, A.; Prażmo, J.; Kucharczyk, W. Effect of natural ageing on the physical properties of polypropylene composites. Adv. Mater. Res. 2014, 1001, 141–148. [Google Scholar] [CrossRef]
- Komorek, A.; Przybylek, P.; Brzozowski, D. The influence of UV radiation upon the properties of fibre reinforced polymers. Solid State Phenom. 2015, 223, 27–34. [Google Scholar] [CrossRef]
- Komorek, A.; Przybyłek, P.; Kucharczyk, W. Effect of sea water and natural ageing on residual strength of epoxy laminates, reinforced with glass and carbon woven fabrics. Adv. Mater. Sci. Eng. 2016, 2016, 3754912. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Guo, Y.S.; Guo, W. Investigation on chaotic motion in hysteretic nonlinear suspension system with multi-frequency excitations. Mech. Res. Commun. 2004, 31, 229–236. [Google Scholar] [CrossRef]
- Wang, W.; Cao, J.; Bowen, C.R.; Litak, G. Multiple solutions of asymmetric potential bistable energy harvesters: Numerical simulation and experimental validation. Eur. Phys. J. B 2018, 92, 254. [Google Scholar] [CrossRef]
- Harris, P.; Bowen, C.R.; Kim, H.A.; Litak, G. Dynamics of a vibrational energy harvester with a bistable beam: Voltage response identification by multiscale entropy and “0–1” test. Eur. Phys. J. Plus 2016, 136, 109. [Google Scholar] [CrossRef] [Green Version]
- Lucintel, Composites Market Report: Trends, Forecast and Competitive Analysis. January 2019. Available online: https://www.lucintel.com/composites-industry.aspx# (accessed on 12 February 2019).
- Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Daliri, A.; Zhang, J.; Wang, C.H. Hybrid polymer composites for high strain rate applications. In Lightweight Composite Structures in Transport; Woodhead Publishing: Sawston, UK, 2016; pp. 121–163. [Google Scholar] [CrossRef]
- Toensmeier, P.A. Advanced composites soar to new heights in Boeing 787. Plast. Eng. 2005, 61, 8–10. [Google Scholar]
- Marsh, G. Boeing’s 787: Trials, tribulations, and restoring the dream. Reinf. Plast. 2009, 53, 16–21. [Google Scholar] [CrossRef]
- Merkisz, J.; Bajerlein, M. Materiały kompozytowe stosowane we współczesnych statkach powietrznych. Logistyka 2011, 6, 2829–2837. [Google Scholar]
- Materials Used in the Boeing 787 Dreamliner Skin Structure. Available online: https://www.enterpriseproducts.com/images/area/inline_image_20180524124144.png (accessed on 12 February 2019).
- Noistering, J.F. Carbon Fibre Composites as Stay Cables for Bridges. Appl. Compos. Mater. 2000, 7, 139–150. [Google Scholar] [CrossRef]
- Kobets, L.P.; Deev, I.S. Carbon Fibres: Structure and Mechanical Properties. Compos. Sci. Technol. 1998, 57, 1571–1580. [Google Scholar] [CrossRef]
- Shama Rao, N.; Simha, T.G.A.; Rao, K.P.; Ravi Kumar, G.V.V. Carbon Composites are becoming Competitive and Cost Effective. Exter. Doc. 2015. [Google Scholar]
- Krzyżak, A.; Mucha, M.; Pindych, D.; Racinowski, D. Analysis of abrasive wear of selected aircraft materials in various abrasion conditions. J. KONES 2018, 25, 2217–2222. [Google Scholar]
- Policandriotes, T.; Filip, P. Effects of selected nanoadditives on the friction and wear performance of carbon–carbon aircraft brake composites. Wear 2011, 271, 2280–2289. [Google Scholar] [CrossRef]
- Koutsomichalis, A.; Vaxevanidis, N.; Petropoulos, G.; Xatzaki, E.; Mourlas, A.; Antoniou, S. Tribological Coatings for Aerospace Applications and the Case of WC-Co Plasma Spray Coatings. Tribol. Ind. 2009, 31, 37–42. [Google Scholar]
- Paszeczko, M.; Kindrachuk, M. Tribologia; Politechnika Lubelska: Lublin, Poland, 2017. [Google Scholar]
- Cely Illera, L.; Cely Nino, J.; Cely Illera, C.V. Effects of corundum in the development of structural, mechanical and tribological properties of raw materials for the manufacture of structural products. Cerâmica 2018, 64, 352–358. [Google Scholar] [CrossRef]
- Rathod, V.T.; Kumar, J.S.; Jain, A. Polymer and Ceramic Nanocomposites for Aerospace Applications. Appl. Nanosci. 2017, 7, 519–548. [Google Scholar] [CrossRef]
- ISO. PN-EN ISO 4287. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters; ISO: Geneva, Switzerland, 1999. [Google Scholar]
- Błaszczyk, J. Analiza numeryczna drgań własnych samolotu z niesymetrycznym płatem nośnym. Biul. Wojsk. Akad. Technol. 2011, 60, 271–288. [Google Scholar]
- Olejnik, A.; Rogólski, R.; Szcześniak, M. Pomiary drgań izolowanych fragmentów konstrukcji płatowcowych z zastosowaniem analizatora modalnego LMS SCADAS Lab. Prob. Mech. 2017, 8, 127–144. [Google Scholar]
- Markiewicz, B.; Ziemiański, L. Analiza dynamiczna kompozytowych konstrukcji cienkościennych. Czasopismo Inżynierii Lądowej Środowiska i Architektury 2017, 64, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Friswell, M.I.; Ali, S.F.; Bilgen, O.; Adhikari, S.; Lees, A.W.; Litak, G. Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 2012, 23, 1505–1521. [Google Scholar] [CrossRef]
- Borowiec, M. Energy harvesting of cantilever beam system with linear and nonlinear piezoelectric model. Eur. Phys. J. Spec. Top. 2015, 224, 2771–2785. [Google Scholar] [CrossRef] [Green Version]
- Borowiec, M.; Syta, A.; Litak, G. Energy Harvesting Optimizing with a Magnetostrictive Cantilever Beam System. Int. J. Struct. Stab. Dyn. 2019, 19, 1941002. [Google Scholar] [CrossRef]
- Borowiec, M.; Bocheński, M.; Gawryluk, J.; Augustyniak, M. Analysis of the Macro Fiber Composite Characteristics for Energy Harvesting Efficiency. In Dynamical Systems: Theoretical and Experimental Analysis. Springer Proceedings in Mathematics & Statistics, 2nd ed.; Awrejcewicz, J., Ed.; Springer: Łódź, Poland, 2015; Volume 182, pp. 27–37. [Google Scholar] [CrossRef]
- Stamos, M.; Nicoleau, C.; Toral, R.; Tudor, J.; Harris, N.R.; Niewiadomski, M.; Beeby, S.P. Screen-printed piezoelectric generator for helicopter health and usage monitoring systems. In Proceedings of the 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008), Sendai, Japan, 9–12 November 2008. [Google Scholar]
Symbol and Value | Description |
---|---|
ρ = 2489 kg/m3 | mass density of the beam |
E = 42.40 GPa | Young modulus of the material |
L = 200 mm | length of the beam |
b = 10 mm | width of the beam |
h = 2.4 mm | thickness of the beam |
A = 24 mm2 | cross section of the beam |
I = 22.5 mm4 | area moment of inertia |
N1 = 0.05 m | constant no1 depends on ψ(x) |
N4 = 5.80 m−1 | constant no4 depends on ψ(x) |
N6 = 386.25 m−3 | constant no6 depends on ψ(x) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyzak, A.; Kosicka, E.; Borowiec, M.; Szczepaniak, R. Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry. Materials 2020, 13, 1364. https://doi.org/10.3390/ma13061364
Krzyzak A, Kosicka E, Borowiec M, Szczepaniak R. Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry. Materials. 2020; 13(6):1364. https://doi.org/10.3390/ma13061364
Chicago/Turabian StyleKrzyzak, Aneta, Ewelina Kosicka, Marek Borowiec, and Robert Szczepaniak. 2020. "Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry" Materials 13, no. 6: 1364. https://doi.org/10.3390/ma13061364
APA StyleKrzyzak, A., Kosicka, E., Borowiec, M., & Szczepaniak, R. (2020). Selected Tribological Properties and Vibrations in the Base Resonance Zone of the Polymer Composite Used in the Aviation Industry. Materials, 13(6), 1364. https://doi.org/10.3390/ma13061364