Genomic Selection for Growth and Wood Traits in Castanopsis hystrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Phenotypic Trait Determination and Descriptive Statistics
2.3. Genotyping and Quality Control
2.4. Statistical Models for Genomic Prediction
2.4.1. GBLUP Model
2.4.2. Bayesian Models
2.5. The Effect of Different SNP Numbers on Genomic Prediction Accuracy
2.6. Genomic Prediction Accuracy Assessment
2.7. Heritability Estimate
2.8. Early Selection of Superior Progeny Individuals in the Candidate Population
3. Results
3.1. Descriptive Statistics of Growth and Wood Traits of C. hystrix
3.2. Statistics of Genotyping Data
3.3. Effect of Varying the Number of SNPs on the Estimates of Heritability
3.4. Effect of Varying Number of SNPs on the GS Prediction Accuracy
3.5. Effect of Varying Statistics Models on the GS Prediction Accuracy
3.6. Early Selection of Superior Progeny Individuals in the Candidate Population
4. Discussion
4.1. Effect of Trait Heritability on GS Prediction Ability
4.2. Effect of Varying Number of SNPs on the GS Prediction Accuracy
4.3. Effect of Varying Statistics Models on the GS Prediction Accuracy
4.4. The Efficiency of GS Early Selection
4.5. The Limitations of Our Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meuwissen, T.; Hayes, B.; Goddard, M. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Isik, F.; Holland, J.; Maltecca, C. Genetic Data Analysis for Plant and Animal Breeding; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- VanRaden, P. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Beyene, Y.; Semagn, K.; Mugo, S.; Tarekegne, A.; Babu, R.; Meisel, B.; Sehabiague, P.; Makumbi, D.; Magorokosho, C.; Oikeh, S. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci. 2015, 55, 154–163. [Google Scholar] [CrossRef]
- Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redoña, E.; Atlin, G.; Jannink, J.; McCouch, S. Genomic selection and association mapping in rice (Oryza sativa): Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 2015, 11, e1004982. [Google Scholar]
- Resende, M.; Resende, M.; Sansaloni, C.; Petroli, C.; Missiaggia, A.; Aguiar, A.; Abad, J.; Takahashi, E.; Rosado, A.; Faria, D.; et al. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012, 194, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Duran, R.; Isik, F.; Zapata-Valenzuela, J.; Balocchi, C.; Valenzuela, S. Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genet. Genomes 2017, 13, 74. [Google Scholar] [CrossRef]
- Rambolarimanana, T.; Ramamonjisoa, L.; Verhaegen, D.; Tsy, J.; Jacquin, L.; Cao-Hamadou, T.; Makouanzi, G.; Bouvet, J. Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Tree Genet. Genomes 2018, 14, 17. [Google Scholar] [CrossRef]
- Suontama, M.; Klápště, J.; Telfer, E.; Graham, N.; Stovold, T.; Low, C.; McKinley, R.; Dungey, H. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity 2019, 122, 370–379. [Google Scholar] [CrossRef]
- Resende, M.; Muñoz, P.; Resende, M.; Garrick, D.; Fernando, R.; Davis, J.; Jokela, E.; Martin, T.; Peter, G.; Kirst, M. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics 2012, 190, 1503–1510. [Google Scholar] [CrossRef]
- Isik, F.; Bartholomé, J.; Farjat, A.; Chancerel, E.; Raffin, A.; Sanchez, L.; Plomion, C.; Bouffier, L. Genomic selection in maritime pine. Plant Sci. 2016, 242, 108–119. [Google Scholar] [CrossRef]
- Beaulieu, J.; Doerksen, T.; Clément, S.; MacKay, J.; Bousquet, J. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 2014, 113, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Baison, J.; Pan, J.; Karlsson, B.; Andersson, B.; Westin, J.; García-Gil, M.; Wu, H. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genom. 2018, 19, 946. [Google Scholar] [CrossRef]
- Thistlethwaite, F.; Ratcliffe, B.; Klápště, J.; Porth, I.; Chen, C.; Stoehr, M.; El-Kassaby, Y. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genom. 2017, 18, 930. [Google Scholar] [CrossRef] [PubMed]
- Kwong, Q.; Ong, A.; The, C.; Chew, F.; Tammi, M.; Mayes, S.; Kulaveerasingam, H.; Yeoh, S.; Harikrishna, J.; Appleton, D. Genomic selection in commercial perennial crops: Applicability and improvement in oil palm (Elaeis guineensis Jacq.). Sci. Rep. 2017, 7, 2872. [Google Scholar] [CrossRef]
- Cros, D.; Mbo-Nkoulou, L.; Bell, J.; Oum, J.; Masson, A.; Soumahoro, M.; Tran, D.; Achour, Z.; Guen, V.; Clement-Demange, A. Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Ind. Crop. Prod. 2019, 138, 111464. [Google Scholar] [CrossRef]
- O’Connor, K.; Hayes, B.; Hardner, C.; Alam, M.; Henry, R.; Topp, B. Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population. BMC Genom. 2021, 22, 370. [Google Scholar] [CrossRef]
- Isik, F. Genomic Prediction of Complex Traits in Perennial Plants: A Case for Forest Trees. Methods Mol Biol. 2022, 2467, 493–520. [Google Scholar] [PubMed]
- Xu, F.; Liao, H.; Yang, X.; Pan, W.; Yang, H. The climatic regionalization of the distributional region of Castanopsis hystrix. For. Environ. Sci. 2017, 33, 21–28, (In Chinese with English abstract). [Google Scholar]
- Li, N.; Yang, Y.; Xu, F.; Chen, X.; Li, Z.; Wei, R.; Pan, W.; Zhang, W. Phenotypic variation study and comprehensive selection of elite clonal populations of Castanopsis hystrix. J. Cent. South Univ. For. Technol. 2023, 43, 73–84, (In Chinese with English abstract). [Google Scholar]
- Zhu, J.; Jiang, Y.; Pan, W. Study on the selection criteria of Castanopsis hystrix superior tree in Guangxi. Guangxi For. Sci. 2002, 3, 109–113, (In Chinese with English abstract). [Google Scholar]
- Yang, H.; Liao, H.; Yang, X.; Zhang, W.; Pan, W. Genetic variation analysis of growth and form traits of Castanopsis hystrix in the second generation seed orchard. J. South China Agric. Univ. 2017, 38, 81–85, (In Chinese with English abstract). [Google Scholar]
- Liu, G.; Tian, Z.; Jia, H.; Shen, W.; Li, Z.; Tang, L.; Zhao, H.; Xu, J. Genetic parameter estimates for the growth and morphological traits of Castanopsis hystrix families and the genotype× environment interaction effects. Forests 2023, 14, 1619. [Google Scholar] [CrossRef]
- Wang, M.; Tu, Z.; Qiu, X.; Zhu, J.; Jiang, Y.; Ye, Z. Genetic diversity of Castanopsis hystrix by RAPD analysis. J. Xiamen Univ. 2006, 4, 570–574, (In Chinese with English abstract). [Google Scholar]
- Li, N.; Yang, Y.; Xu, F.; Chen, X.; Wei, R.; Li, Z.; Pan, W.; Zhang, W. Genetic diversity and population structure analysis of Castanopsis hystrix and construction of a core collection using phenotypic traits and molecular markers. Genes 2022, 13, 2383. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yang, H.; Ivkovic, M.; Gapare, W.; Matheson, C.; Wu, H. Effect of genotype by spacing interaction on radiata pine wood density. Aust. For. 2014, 77, 203–211. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.; Banks, E.; DePristo, M.; Handsaker, R.; Lunter, G.; Marth, G.; Sherry, S.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Bartholome, J.; Van Heerwaarden, J.; Isik, F.; Boury, C.; Vidal, M.; Plomion, C.; Bouffier, L. Performance of genomic prediction within and across generations in maritime pine. BMC Genom. 2016, 17, 604. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.N.; Wei, R.; Tan, Z.; Zhang, W.; Lin, Y. AFEchidna is a R package for genetic evaluation of plant and animal breeding datasets. For. Environ. Sci. 2022, 38, 50–56, (In Chinese with English abstract). [Google Scholar]
- Pérez-Enciso, M.; Rincón, J.; Legarra, A. Sequence- vs. chip-assisted genomic selection: Accurate biological information is advised. Genet. Sel. Evol. 2015, 47, 43. [Google Scholar] [CrossRef] [PubMed]
- Legarra, A.; Robert-Granié, C.; Manfredi, E.; Elsen, J. Performance of genomic selection in mice. Genetics 2008, 180, 611–618. [Google Scholar] [CrossRef]
- Ding, C.; Huang, Q.; Zhang, B.; Chu, Y.; Zhang, W.; Su, X. Evaluation of important traits of different clones of north-typed Populus deltoides. For. Res. 2016, 29, 331–339, (In Chinese with English abstract). [Google Scholar]
- Estopa, R.; Paludeto, J.; Müller, B.; Oliveira, R.; Azevedo, C.; Resende, M.; Tambarussi, E.; Grattapaglia, D. Genomic prediction of growth and wood quality traits in Eucalyptus benthamii using different genomic models and variable SNP genotyping density. New For. 2023, 54, 343–362. [Google Scholar] [CrossRef]
- Lenz, P.R.; Beaulieu, J.; Mansfield, S.D.; Clément, S.; Desponts, M.; Bousquet, J. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genom. 2017, 18, 335. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Chen, C.; Yang, X.; Bie, H.; Wang, L. Genomic selection for fruit weight and soluble solid contents in peach. Sci. Agric. Sin. 2023, 56, 951–963, (In Chinese with English abstract). [Google Scholar]
- Nsibi, M.; Gouble, B.; Bureau, S.; Flutre, T.; Sauvage, C.; Audergon, J.; Regnard, J. Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. G3 2020, 10, 4513–4529. [Google Scholar] [CrossRef] [PubMed]
- Perez, P.; de Los Campos, C. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de Los Campos, G.; Burgueño, J.; González-Camacho, J.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Sci. Silvae Sin. 2019, 55, 142–151, (In Chinese with English abstract). [Google Scholar]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.; Olsen, M.; Wang, G.; Zhang, A. Enhancing genetic gain through genomic selection: From livestock to plants. Plant Commun. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Hickey, J.; Chiurugwi, T.; Mackay, I.; Powell, W. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 2017, 49, 1297–1303. [Google Scholar] [CrossRef]
- Mphahlele, M.M.; Isik, F.; Mostert-O’Neill, M.M.; Reynolds, S.M.; Hodge, G.R.; Myburg, A.A. Expected benefits of genomic selection for growth and wood quality traits in Eucalyptus grandis. Tree Genet. Genomes 2020, 16, 49. [Google Scholar] [CrossRef]
- Paludeto, J.G.Z.; Grattapaglia, D.; Estopa, R.A.; Tambarussi, E.V. Genomic relationship-based genetic parameters and prospects of genomic selection for growth and wood quality traits in Eucalyptus benthamii. Tree Genet. Genomes 2021, 17, 38. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Klingberg, A.; Hallingbäck, H.R.; Wu, H.X. Preselection of QTL markers enhances accuracy of genomic selection in Norway spruce. BMC Genom. 2023, 24, 147. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.; Doerksen, T.K.; MacKay, J.; Rainville, A.; Bousquet, J. Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genom. 2014, 15, 1048. [Google Scholar] [CrossRef]
Chromosome NO | Chr1 | Chr2 | Chr3 | Chr4 | Chr5 | Chr6 | Chr7 | Chr8 | Chr9 | Chr10 | Chr11 | Chr12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chromosome size (Mb) | 109.75 | 106.04 | 103.31 | 87.42 | 77.66 | 68.54 | 66.29 | 64.51 | 63.76 | 61.94 | 56.79 | 50.54 |
SNP number | 83,426 | 89,409 | 97,191 | 72,637 | 65,273 | 52,119 | 59,774 | 56,819 | 60,835 | 53,556 | 54,151 | 45,687 |
Density(per Mb) | 760.13 | 843.17 | 940.81 | 830.86 | 840.45 | 760.41 | 901.77 | 880.78 | 954.18 | 864.57 | 953.56 | 903.95 |
ID | GEBVH | GEBVDBH | GEBVWD | GEBVFL | GEBVLWR | Rank | Family NO | |
---|---|---|---|---|---|---|---|---|
4388 | 10.320 | 16.096 | 0.532 | 1141.030 | 59.876 | 2.213 | 1 | F8 |
4438 | 9.863 | 17.014 | 0.530 | 1122.925 | 58.798 | 2.207 | 2 | F5 |
4407 | 10.105 | 16.480 | 0.545 | 1099.743 | 58.360 | 2.205 | 3 | F5 |
4468 | 10.055 | 16.618 | 0.528 | 1108.143 | 59.491 | 2.205 | 4 | F5 |
4044 | 9.930 | 16.331 | 0.536 | 1139.370 | 58.493 | 2.204 | 5 | F4 |
4335 | 9.625 | 16.599 | 0.530 | 1139.671 | 59.802 | 2.203 | 6 | F11 |
4410 | 10.032 | 16.349 | 0.534 | 1102.054 | 58.874 | 2.200 | 7 | F5 |
4160 | 9.567 | 16.727 | 0.520 | 1157.510 | 58.784 | 2.199 | 8 | F11 |
4212 | 9.629 | 16.454 | 0.521 | 1134.130 | 60.471 | 2.199 | 9 | F6 |
4461 | 10.129 | 16.352 | 0.530 | 1107.883 | 57.795 | 2.197 | 10 | F29 |
4052 | 9.736 | 17.009 | 0.516 | 1119.941 | 58.657 | 2.197 | 11 | F12 |
4014 | 9.653 | 16.191 | 0.525 | 1134.845 | 60.074 | 2.196 | 12 | F6 |
4332 | 9.617 | 16.262 | 0.526 | 1118.131 | 60.458 | 2.195 | 13 | F11 |
4389 | 9.946 | 16.592 | 0.526 | 1120.556 | 57.268 | 2.195 | 14 | F8 |
4007 | 9.699 | 16.221 | 0.523 | 1134.877 | 59.434 | 2.195 | 15 | F6 |
Mean.s | 9.860 | 16.486 | 0.528 | 1125.387 | 59.109 | - | - | - |
Mean.p | 9.375 | 15.633 | 0.520 | 1115.206 | 57.006 | - | - | - |
∆G(%) | 2.671 | 2.625 | 0.375 | 0.319 | 1.217 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wei, R.; Lin, Y. Genomic Selection for Growth and Wood Traits in Castanopsis hystrix. Forests 2024, 15, 1342. https://doi.org/10.3390/f15081342
Zhang W, Wei R, Lin Y. Genomic Selection for Growth and Wood Traits in Castanopsis hystrix. Forests. 2024; 15(8):1342. https://doi.org/10.3390/f15081342
Chicago/Turabian StyleZhang, Weihua, Ruiyan Wei, and Yuanzhen Lin. 2024. "Genomic Selection for Growth and Wood Traits in Castanopsis hystrix" Forests 15, no. 8: 1342. https://doi.org/10.3390/f15081342