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Abstract: The classification of Software-Defined Networking (SDN) traffic is an essential tool for
network management, network monitoring, traffic engineering, dynamic resource allocation planning,
and applying Quality of Service (QoS) policies. The programmability nature of SDN, the holistic view
of the network through SDN controllers, and the capability for dynamic adjustable and reconfigurable
controllersare fertile ground for the development of new techniques for traffic classification. Although
there are enough research works that have studied traffic classification methods in SDN environments,
they have several shortcomings and gaps that need to be further investigated. In this study, we
investigated traffic classification methods in SDN using publicly available SDN traffic trace datasets.
We apply a series of classifiers, such as MLP (BFGS), FC2 (RBF), FC2 (MLP), Decision Tree, SVM, and
GENCLASS, and evaluate their performance in terms of accuracy, detection rate, and precision. Of
the methods used, GenClass appears to be more accurate in separating the categories of the problem
than the rest, and this is reflected in both precision and recall. The key element of the GenClass
method is that it can generate classification rules programmatically and detect the hidden associations
that exist between the problem features and the desired classes. However, Genetic Programming-
based techniques require significantly higher execution time compared to other machine learning
techniques. This is most evident in the feature construction method where at each generation of
the genetic algorithm, a set of learning models is required to be trained to evaluate the generated
artificial features.

Keywords: software-defined networking; genetic algorithms; optimization; neural networks;
genetic programming

1. Introduction

SDN constitutes a new pathway to implement networks, to address technical issues
(routing, traffic engineering, load balance, security, etc.), and provide automation and pro-
gramming capabilities to the whole network. SDN promises a new era for next-generation
networks that dictates a top–down approach to network design. The flexibility and ease of
management of networks introduced by SDN are due to (a) the separation of the control
plane from the data forwarding plane; (b) the integration of control, management, and
configuration; (c) the hallmarks openness and interoperability of SDN architecture that
promise vendor-neutral network implementations. A vital element of the SDN framework
is the OpenFlow protocol, which is used as the standard protocol to describe the commu-
nication between the two distinct planes: the control plane and the data plane [1]. The
evolution of these networks introduces the P4 (Protocol-Independent Packet Processors) as
a new forwarding model, that flexibly implements the programmer’s decisions about how
the packets and data flows will be processed.

However, the traffic on contemporary networks is growing exponentially, and the
introduction of simple rules (OpenFlow or P4) is not enough to optimally manage data
traffic. One solution is to embed intelligence into physical or virtual network devices to
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facilitate data traffic management [2]. More specifically, it requires the implementation of
methods for automated categorization of data traffic according to its features, or network
traffic classification.

The term Network Traffic Classification refers to the process of identifying and associ-
ating traffic flows or data packets with the causal source (e.g., application, protocol, network
services) or distinguishing them into categories based on the size of flows or priorities
related to the needs of each application. Classification aims at allocating packets or flows
into different and distinct categories based on an automated matching process [3,4].

Network traffic classification of data is widely used to more effectively manage com-
puter networks, monitor their operations, estimate the Quality of Service, make network
design decisions, predict future traffic patterns, provide dynamic access control, and im-
prove service quality. It has a significant role in the efficient execution of basic network
functions such as routing, traffic prediction, resource allocation, traffic engineering, load
balancing, effective management functions, malicious flow identification, network traffic
forecasting, and flow control [3–9]. The adoption of an appropriate classification strategy by
ISPs allows them to implement efficient charging models for their customers in proportion
to the resources and categories of applications they wish to use. Yet, this makes it easier for
ISPs to support the Quality of Services and lawful intercept capabilities [10,11].

According to Xie et al. [6], traffic classification contributes to better network manage-
ment and more efficient resource allocation in the following cases: (a) in discriminating
elephant flow for implementing the best scheduling policy in data centers; (b) in matching
flows with their applications (application-aware traffic classification) for optimal network
management; and (c) in determining the QoS levels of traffic flows to optimize resource
allocation policies.

Consequently, traffic classification is a highly important task for SDN. The accurate
identification and classification of network traffic is essential to ensuring efficiency, stability,
security, seamless operation, and optimal network management. Effective monitoring
and management of network data traffic requires the use of efficient and highly accurate
classification techniques in an effort to improve network performance. These requirements
are necessitated by (a) the huge volume of web traffic; and (b) the large number of new
emerging applications that claim a significant share of traffic.

Due to the high degree of scaling, traditional classification techniques fail [2]. A widely
accepted solution to this problem is the consolidation of Software-Defined Networking
(SDN) and machine learning. However, as pointed out in [4], the existing ML-based network
traffic classifiers have to face various challenges, such as the randomization and masquerade
in port numbers, the data encryption, the collection of data input, and the potential bias in
the dataset. Another problem arises from the increasing data dimensionality and the large
number of features. The determination of appropriate features (e.g., using K-PCA) or the
extraction of features that may be used for classification are costly and hinder the traffic
classification task.

In this work, we consider GenClass [12], a low-cost mechanism classification technique
in terms of memory usage and evaluation time. Since this method does not involve the
training of any model but only the evolution of partition rules, it can be considered a fast
method. Moreover, it can use only a small part of the original features of the problem in
the classification rules, speeding up the overall process. It is not dependent on the number
of features, and it is capable of revealing the hidden patterns of datasets. Furthermore,
GenClass has shown impressive results in solving classification problems. Thus, we propose
the use of GenClass for network traffic classification in SDN environments and evaluate
its performance in the case of classification traffic flows into their original application
categories. We expect the results to meet the requirements for more precise and effective
administration of the network.
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Using a public dataset of flows from a real SDN network, we conduct experimental
measurements and evaluate the ability of the method to classify traffic from six different
applications. More specifically, the contribution of this work is summarized as follows:

• We consider the classification of the network traffic generated by an SDN system, and
propose the development of a classifier using the GenClass tool.

• We conducted simulated experiments and evaluated the accuracy and average classifi-
cation error of the proposed model.

• We provide an experimental comparison between our proposed classifier and the
other well-known supervised ML methods and demonstrate the outperformance of
GenClass as opposed to others. The GenClass method has managed to identify the
hidden associations between the feature of the used dataset and the required classes
of the problem. In addition, this method can use from the initial set of features only
those that contribute significantly to the decision-making to find the desired category.

• We provide future directions to incorporate the Grammatical Evolution-based algo-
rithms, such as GenClass, in the online process for incoming network traffic classifica-
tion in real time.

The remainder of this paper is organized as follows: in Section 2 the proposed method
and the used methods are fully described, in Section 3 the experimental results are listed,
and finally, in Section 4, some conclusions are presented.

2. Material and Methods
2.1. Theoretical Framework
2.1.1. Operation of Software-Defined Networking

In recent years, SDN has attracted the interest of the research community and industry
due to its potential for evolution, the development of new ideas, and the innovation of the
network. The SDN architecture includes three distinct layers: (a) the data layer; (b) the
control layer; and (c) the application implementation layer for network programming. This
architecture provides many new possibilities and opportunities for future networks. A
typical SDN architecture is depicted in Figure 1. The data layer includes the underlying
network equipment (called switches [13]) and has as its main task the distributed forward-
ing of packets. The hardware independence and programmability of the data plane enable
the switches to perform the desired but complex packet-switching functions. However,
the control plane, a logically centralized and rich entity called controller, defines how the
data must be handled. The controller usually has a wide set of modules, interacts with a
collection of network applications, and has a global view of the network. The controller
regulates the whole operation of the network. Thus, it makes decisions on the configuration
of data traffic, defines the way of transmitting data, and allows real-time control of existing
devices. The communication between the controller and application layer is achieved using
the Northbound Interfaces and the communication between the controller and the network
devices is realized through the Southbound APIs and the use of the OpenFlow protocol.

The fundamental requirement for achieving communication is that both the network
devices and the controller must be compatible with the OpenFlow protocol [14]. OpenFlow
is not used to handle network traffic.It specifies how the switches should behave and handle
network traffic in accordance with controller instructions and describes the forwarding
behavior of the data plane in a proactive or reactive manner [13]. Alternative P4 language
can be used “to program the data plane” [15].
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Figure 1. The typical architecture of SDN.

2.1.2. Network Traffic Classification

The wide variety of network applications introduces a large amount of data into
present-day networks. Thus, traffic classification is considered essential for efficient net-
work management, the implementation of appropriate QoS, and security mechanisms.
However, effective network traffic classification is a difficult task. To distinguish packet-
s/flows into categories, some common characteristics of packets or flows related to port,
payload, correlation, behavior, and statistics are considered. All the required information
is collected either from packet headers, from the packets’ payload, or from the OpenFlow
switches’ statistics [16]. A brief description of each technique follows.

Port-based: This technique has been used successfully in the past by exploiting the port
numbers provided by the Internet-Assigned Numbers Authority (IANA) for specific ap-
plications and protocols. Of course, these techniques are nowadays considered obsolete
and inaccurate as most applications communicate via ephemeral (dynamic) ports or over
HTTP/HTTPS (e.g., peer-to-peer apps) [17].
Deep Packet Inspection (DPI): The DPI method maps the content of packets (payload) to
a signature, or specific patterns based on the application from which they originate. A
DPI classifier examines the payload portion and matches it with a set of stored patterns to
classify applications. It is based on four degrees of verification related to signature, syntax,
protocol, and semantics. It was demonstrated that it achieves high levels of accuracy,
completeness, and convergence. The main problems with the method are the inability to
scale, the high cost, the increased complexity, the inability to apply to encrypted traffic,
and emerging privacy issues. There is also a requirement to continuously update stored
signatures or templates to include new application templates [18].
Statistical-based classification: Unlike other approaches, statistical-based classification relies
on statistical features extracted from packets or traffic flows of network data in combination
with machine learning methods. The extracted features, such as packet duration, packet
length, time between consecutive arrivals, flow duration time, and flow idle time, are
considered unique for each traffic type and are used as inputs to the ML models that decide
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the classification. This classification approach achieves high accuracy but requires a lot of
time to process the data. In general, the performance of these techniques depends largely
on the quality of the collected features [10].
Behavioral classification: In this approach, the point of observation is the end-host, and
using appropriate tools, the entire traffic received by it is examined to detect the type of
application or protocol running on the target endpoint [19]. This method is also based on
the collection of statistics from traffic. The information, such as the distribution of packet
sizes, the time between successive packet arrivals, etc., is used to identify the application
generating the data. This technique does not need to examine the payload or the encrypted
data, but it requires a large number of samples to achieve high accuracy.

2.1.3. ML-Based Traffic Classification Methods in SDN and Related Works

A widely accepted solution for SDN traffic classification is the use of machine learning
(ML) techniques, which exploit extracted statistical data and distinguish data flows into
several categories. For the categorization of flows, mainly their statistical data are utilized
and, based on these data, the different flows are distinguished into several classes or groups.

The development of ML algorithms for SDN network traffic classification is imple-
mented (a) at the control layer using a classifier module and (b) at the data layer using P4
language [20]. In the first case, the SDN controller collects information and, in cooperation
with the application layer, exploits it to implement forwarding or access policies. The
process is completed in three steps [10]: (1) the data are sent to the controller by OpenFlow
Protocol; (2) the controller extracts the desired features, which feed the classifier; (3) the
classifier performs the task of classification. In the second case, the classification is con-
ducted at the data level, and the P4 programming language is used to add ML mechanisms
to the switches to categorize the flows, making it more effective and allowing it to identify
flows as soon as possible.

The majority of research approaches that deal with network traffic classification chal-
lenges in SDN leverage data collected by the OpenFlow protocol and extract the appropriate
features to feed the input of classification process. These features include (a) observables
such as packet size, interval arrival time, source and destination IP/MAC/Port, flow dura-
tion, and byte count; (b) defined and calculated features such as mean and variance of traffic
characteristics; (c) scalars, such as minimum and maximum values. Then, on selected or on
the set of features supervised, semi-supervised, or unsupervised, reinforcement learning [6]
classification methods are applied to classify the data traffic flows in terms of (a) traffic
protocols (e.g., http, smtp, ssh, p2p, dns); (b) application type (e.g., DDoS, FTP, and video
streaming, Youtube, video, Facebook, Linkedin, Skype); (c) flow size (e.g., elephants or
mice); (d) QoS classes (e.g., interactive apps and bulky data transfer).

The accuracy and quality of classification results depend on the training datasets.
However, obtaining standardized and high-quality data that capture the actual traffic of a
network is very difficult [6]. Researchers exploit publicly available datasets, generate datasets
of the desired traffic through simulations, or collect data from real networks themselves.

The traffic classification in SDN has been extensively studied [10,21]. Among the
most important issues explored and solutions proposed, we distinguish the following
main categories: application identification, security issues, QoS categories, and network
management, including traffic management and resource management. For example, a
plethora of researchers have tried to classify SDN network traffic according to the type of
application aimed at improving network efficacy and efficiency.

Ashour et al. [22] used a real-time dataset to assess how efficient ML models (Random
Forest (RF), K-Nearest Neighbor (k-NN), Support Vector Machine (SVM), Logistic Regres-
sion (LR), Decision Tree (DT), and Naive Bayes (NB)) perform traffic classification in six
common internet protocols and services. The DT algorithm is experimentally proven to be
the most efficient model, outperforming the others with an accuracy of 99.8%.

Nunez-Agurto et al. [23] also applied deep learning methods to classify network traffic
into five categories (file transfer, instant messaging, multimedia, VoIP, and attacks). Using
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two publicly available datasets, namely InSDN and VPN-nonVPN, they applied four RNN
algorithms to classify traffic, seeking to enhance QoS and security in SDN. Although the
proposed model is distinguished for its efficiency, it suffers from training difficulties and
high computational costs. A similar objective was also pursued by Raikar et al. [2], namely,
classifying traffic according to its type (HTTP, mail, and streaming). Using three common
machine learning algorithms, SVM, NB, and the nearest centroid, they achieved an accuracy
of over 90%.

The advanced characteristics of SDN, namely the overall network view, programmabil-
ity, and functionality splitting of the data and control plane, have piqued the interest of the
research community in implementing new QoS provisioning concepts. Pradhan et al. [24]
proposed a hybrid classifier implemented by a neural network combined with a parti-
cle swarm optimization algorithm (NN-PSO) to improve QoS in an underwater sensor
network. Using a publicly available dataset and implementing three different classifiers
(Feed-Forward Neural Network (FNN), LR, and NB), they achieve enhanced accuracy.

Furthermore, SDN architecture promises ease and flexibility in network management,
and researchers are applying traffic taxonomy to contribute to this direction. Vulpe and
Dobrin [25] developed and implemented a traffic classification model to classify data traffic
for management purposes. The model can be run in real time, is implemented on the
controller side, and uses six classical classification algorithms to categorize packets.

The drawbacks of this approach include the limitations of non-typical traffic detection,
the number of features used, and the role of data normalization in the performance of
the classification model. Recognizing the problems of port-based and DPI techniques,
Geremew and Ding [26] have proposed a deep learning-based solution for the dynamic
discovery of elephant flows. This classification enables optimal and efficient resource
allocation and ensures optimal QoS in the SDN system. The flows are distinguished into
two categories by applying DNN, CNN, LSTM, and deep autoencoder algorithms. For
the experimental evaluation, the measurable characteristics (such as flow size and packet
size) were collected from three distinct datasets. The range of the flow detection rate is
98.17% to 98.78%. The method is computationally demanding, but it is quite resilient and
can be implemented on the controller side. In [9], the authors attempt to optimize traffic
engineering by adding a traffic classification module to the RYU controller.

Despite the benefits of SDN technology and the ability to manage from a single
central point, it is still vulnerable to attacks, tampering, and disasters. According to
Spyrou et al. [27], implementing a traffic classification technique can help detect DDoS
attacks on an SDN network. Thus, they propose the use of GenClass, a tool based on
classification rules generated by the Grammatical Evolution method. The authors demon-
strate experimentally that the results of GenClass are better than other similar classification
methods. Table 1 summarizes the related work. For every study, we state information
about the network problem examined by the authors, the ML model and ML algorithm
that were used, the type of traffic that they tried to classify, the used dataset, the feauters
that were chosen as input to the classifier, the target performance metrics, the used SDN
controller (if any), the network topology (if any), and the metric accuracy. The metric
accuracy represents the best result of all the investigated ML algorithms.

As shown in Table 1, there are a large number of efforts in the scientific literature to
study traffic classification in the SDN emerging paradigm. Most of them utilize supervised
ML classical algorithms such as SVM, k-MN, DT, LR, etc., while others adopt more recent
approaches such as GenClass. Only a few of the researchers implement measurements
using SDN controllers and particular topologies. The most commonly used metrics are
accuracy, precision, recall, and F1-score. It is worth noting that accuracy can be improved,
and this is achieved in our work by using the GenClass tool.
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Table 1. A summary of research works and their findings.

Authors and
Year Challenge ML Model ML Algorithms Type of Traffic Dataset Features Metrics Controller Topology Accuracy

Ganesan
et al. [28], 2021 QoS issues Supervised

learning

RF, KNN,
NN-MLP, NB,
LR, SVM

Voice, video, IoT
(IoT traffic types),
HTTP

UNSW
dataset
(publicly
available)

Statistical features (port
numbers, IP src, IP dst,
DNS, NTP, packet
size, etc.)

TP, FP, FN,
TN, accuracy,
precision, recall,
F1-score

Tree and
branch
topology

99%

Wassie
et al. [26], 2023

Network
management

Deep
Learning

DNN, CNN,
LSTM, and deep
autoencoder

Real-time apps NIMS, SDN
datasets

Low size, total packet
size, protocol, app type,
flow duration, and more
(23 features)

Accuracy, loss
metrics, run time RYU 99.12%

Lin et al. [9],
2023

Network
management

Supervised
learning RF

Chat, email, file
transfer, streaming,
P2P, VoIP, HTTP

ISCX-VPN-
NonVPN-
2016

Average packet
inter-arrival time,
distribution of packet
sizes or extracted features

F-score,
throughput,
confusion matrix

RYU Simple
diamond

Ashour
et al. [22], 2024

Application
identification

Supervised
learning

KNN, LR, RF,
DT, NB, and
SVM

WWW, DNS, FTP,
ICMP, P2P,
and VOIP

SDN-traffic,
Kaggle

Quantity of packets, avg.
transmission time,
number of instantly
transmitted packets

Accuracy, F1-score,
recall, precision,
and training time

Straight-
forward
topology

99.8%

Nunez-Agurto,
et al. [23], 2024

Application
identification
and security
issues

Deep
Learning

LSTM, BiLSTM,
GRU, and
BiGRU

Multimedia, VoIP,
Instant message,
File transfer, Attack

InSDN and
ISCX-
VPNNoVPN

12 features Accuracy, precision,
recall, and F1-Score 99.65%

Perera et al. [21],
2020

Network
management

Unsupervised
and
supervised
ML

RF, KNN, DT,
SVM Four types of traffic Publicly

available

MAC addresses and ports,
flow duration, flow byte
count, flow packet count,
and average packet size

Accuracy RYU Simple 96.37%

Pradhan
et al. [24], 2022 QoS issues

Semi-
supervised
machine
learning

Feed-forward
NN, NB, and LR

HTTP, video
streaming, FTP, P2P,
instant messaging

ANT and
Kaggle dataset

Packet size, packet
inter-arrival time

Confusion matrix,
precision, recall,
and F-Measure

Raikar et al. [2],
2020

Application
identification

Supervised
learning

SVM, NB,
nearest centroid

HTTP, mail,
streaming

Own collected
data

srcip, srcport, dstip,
dstport, proto, total
fpackets, total fvolume,
total bpackets

Accuracy, precision,
recall, F-score,
training error,
training and testing
time

POX Simple,
linear, tree 96.79%
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Table 1. Cont.

Authors and
Year Challenge ML Model ML Algorithms Type of Traffic Dataset Features Metrics Controller Topology Accuracy

Spyrou
et al. [27], 2023 Security issues Supervised

learning

NB, KNNs, RF
as opposed to
GenClass

Dataset of normal
and malicious traffic

DDoS SDN
dataset

23 features extracted from
switches Average class error

Vulpe et al. [25],
2023

Network
management
(traffic
monitoring)

Supervised
learning

LR, KNN, NB,
SVM, DT, ANN

Ping, DNS, Telnet,
and voice (real time)

Own collected
data

Delta packets, delta bytes,
packet statistics, instant
bytes per second, average
bytes per second, time

Accuracy, precision,
recall, F1-score RYU mininet

topologies 97.94%

Our work Application
identification

Supervised
learning

MLP (BFGS),
FC2 (RBF), FC2
(MLP),
GENCLASS

DNS, WWW, FTP,
P2P, ICMP, VOIP SDN-dataset Flow features Average

classification error 99.42%
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2.2. Proposed Approach

The current section describes the used dataset as well as the used machine learning
methods. The methods used here were also utilized in the paper of Mpouziotas et al. [29].

2.2.1. The Dataset

The used dataset, that is ’SDN-traffic’, was obtained from the Kaggle platform. This
dataset was created by gathering data of an SDN architecture and made available by [22].
It includes traffic data for an SDN network. It consists of 4234 records and 65 features
stored in a CSV file describing the data traffic of six different network applications, namely
DNS, WWW, FTP, P2P, ICMP, and VoIP. The features included the flow ID, the source and
destination IP address, the source and destination port, the transport layer protocol, and
other traffic characteristics collected by OpenFlow counters. The detailed list of the features
has been visualized in Table 2. This particular dataset was selected due to its real nature,
diversity, and richness, which enables it to effectively identify various traffic behaviors.

Table 2. A subset of features included in the SDN-traffic dataset.

Features Description Features

forward_pl Package size in bytes reverse_pl
forward_piat Packet arrival interval in seconds reverse_piat
forward_pps Packets per second reverse_pps
forward_bps Bytes per second reverse_bps

forward_pl_mean Average packet size in bytes reverse_pl_mean
forward_piat_mean Average packet arrival interval in seconds reverse_piat_mean
forward_pps_mean Average number of packets per second reverse_pps_mean
forward_bps_mean Average number of bytes per second reverse_bps_mean

forward_pl_var Variance of packet size in bytes reverse_pl_var
forward_piat_var Variance of packet arrival interval in seconds reverse_piat_var
forward_pps_var Variance of the number of packets per second reverse_pps_var
forward_bps_var Variance of the number of bytes per second reverse_bps_var

forward_pl_q1 1st quartile of packet size in bytes reverse_pl_q1
forward_pl_q3 3rd quartile of packet size in bytes reverse_pl_q3

forward_piat_q1 1st quartile of the packet arrival interval in seconds reverse_piat_q1
forward_piat_q3 3rd quartile of the packet arrival interval in seconds reverse_piat_q3
forward_pl_max Maximum packet size in bytes reverse_pl_max
forward_pl_min Minimum packet size in bytes reverse_pl_min

forward_piat_max Maximum packet arrival interval in seconds reverse_piat_max
forward_piat_min Minimum packet arrival interval in seconds reverse_piat_min
forward_pps_max Maximum number of packets per second reverse_pps_max
forward_pps_min Maximum number of packets per second reverse_pps_min
forward_bps_max Maximum number of bytes per second reverse_bps_max
forward_bps_min Minimum number of bytes per second reverse_bps_min
forward_duration Duration reverse_duration

forward_size_packets Size of packets reverse_size_packets
forward_size_bytes Size of bytes reverse_size_bytes

Application type Category

The distribution of used applications included in the dataset has been listed in Table 3.
From Table 3, it became apparent that WWW is carrying the majority of data traffic, while
FTP and DNS protocols convey the lowest portion of traffic. By classifying network traffic
into categories per application type, we aim to enhance network performance. The SDN
controller, being aware of the running applications (or protocols) and their requirements,
can make informed decisions about network, resource, and data traffic management.
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Table 3. The distribution of the various application types.

Application Number of Flows Proportion

WWW 2441 57.65%
P2P 710 16.77%

ICMP 409 9.66%
VOIP 256 6.05%
FTP 217 5.53%
DNS 184 4.35%

2.2.2. Machine Learning Methods

A series of machine learning methods were used as classifiers for the provided dataset:

1. GENCLASS: GenClass is a promising classification tool based on genetic program-
ming. It utilizes the Grammatical Evolution method [30] to generate classification
rules for a Backus–Naur Form. Its experimental evaluation on a number of different
datasets demonstrates its superiority in the majority of cases. This technique was ini-
tially presented in the work of Tsoulos [12]. Furthermore, a software that implements
this method was also published recently [31]. A short description of this method can
be found in Section 2.3.

2. MLP: A combination of a standard neural network [32,33] and Broyden–Fletcher–
Goldfarb–Shanno (BFGS), i.e., an iterative optimization algorithm [34]. BFGS is used
to optimize the parameters of the MLP model and is characterized by generality and
ease of implementation.

3. SVM: a Support Vector Machine method [35,36] was used as a machine learning model
in the conducted experiments.

4. TREE: the well-known method of Decision Trees [37,38] was also used as a classifica-
tion method.

5. FC2 (RBF): Represents the method of feature construction with the assistance of
Grammatical Evolution, initially presented in the work of Gavrilis et al. [39]. In this
approach, NF = 2 artificial features were created using Grammatical Evolution and
subsequently evaluated using the Radial Basis Function (RBF) network [40,41]. The
creation of new artificial features from the existing ones on the one hand aims to
reduce the dimension of the problem and help to optimize the generalization ability
of machine learning models and on the other hand to find hidden correlations that
may exist between the existing features which would lead to more efficient training
machine learning models.

6. FC2 (MLP): Represents the application of feature construction technique to create two
artificial features for the provided dataset. These features were evaluated using a
neural network. A brief description of the feature construction method can be found
in Section 2.4.

In this work, two techniques based on Grammatical Evolution were selected for com-
parative study: the construction of artificial features and the construction of classification
rules. The first technique aims to reduce, in principle, the number of features required to
successfully classify the data but also to discover hidden associations between existing
features that could not be discovered otherwise. The second technique, which from the
experimental results appeared to be more reliable, creates classification rules from the
existing characteristics on the one hand and on the other hand can be used as a selector of
those characteristics that contribute more to the correct classification of the patterns.

2.3. The GenClass Method

The main steps of the used method are provided below.



Future Internet 2024, 16, 338 11 of 17

1. Initialization Step:

(a) Set the parameters of the method: Nc for number of chromosomes, Ng for maxi-
mum number of allowed generations, ps for the selection rate, and pm ≤ 1 for the
mutation rate.

(b) Obtain the train set TR = {xi, yi}, i = 1. . . M of the used dataset.
(c) Set k = 0, the iteration number.

2. Fitness Calculation Step:

(a) For i = 1 . . . Nc do

i. Create a classification program Ci using the Grammatical Evolution proce-
dure and the grammar defined in [12].

ii. Calculate the fitness value fi of chromosome i as

fi =
M

∑
j=1

(
Ci
(

xj
)
̸= yj

)
(1)

(b) EndFor.

3. Genetic Operations Step:

(a) Selection procedure. All chromosomes are sorted according to their fitness values
calculated before and the first (1 − ps) × NC of chromosomes with the lowest
fitness values are transferred intact to the next generation. The remaining chro-
mosomes are substituted by offsprings produced during the crossover procedure.

(b) Crossover procedure. In order to produce new offsprings, the tournament selec-
tion is used to select a pair of (z, w) chromosomes from the current population.
This set of selected chromosomes will produce two new offsprings z̃ and w̃ using
one-point crossover.

(c) Perform the mutation procedure. During this procedure, a random number
r, r ∈ [0, 1] is drawn for each element of every chromosome. If r ≤ pm, then the
corresponding element is altered randomly.

4. Termination Check Step:

(a) Set k = k + 1;
(b) If k ≥ Ng , terminate; or else, go to the Fitness Calculation Step.

2.4. The Feature Construction Method

In this procedure, a series of artificial features can be created from the original ones
using Grammatical Evolution. The main steps of this method are as follows:

1. Initialization Step:

(a) Set the parameters of the method: Nc for number of chromosomes, Ng for
maximum number of allowed generations, ps for the selection rate, pm ≤ 1 for the
mutation rate, and N f the number of desired features that should be constructed.

(b) Obtain the train set TR = {xi, yi}, i = 1. . . M of the used dataset.
(c) Set k = 0 as the generation number.

2. Fitness Calculation Step:

(a) For i = 1 . . . Nc do

i. Create Nf artificial features from the original ones using Grammatical Evolution.
ii. Create the dataset TRi from the original one, TR, using the new features.
iii. Train an RBF network ri(x, w) on the TRi dataset. This network is preferred

over other neural networks because of its very fast training method.
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iv. Calculate the corresponding fitness value fi as

fi =
M

∑
j=1

(
ri(xj, w)− yj

)2 (2)

(b) Select EndFor

3. Genetic Operations Step: use the same genetic operators as in GenClass method
provided in Section 2.3.

4. Termination Check Step:

(a) Set k = k + 1;
(b) If iter ≥ Ng, terminate; or else return to the Fitness Calculation Step.

3. Results

The used software was coded in ANSI-C++ with the assistance of the freely available
GenClass version 1.0 software to create classification programs. The software is available
from the relevant url https://github.com/itsoulos/GenClass/ (accessed on 23 July 2024).
Furthermore, the software QFc version 1.0 is used to create artificial features with the
assistance of Grammatical Evolution. The software [42] is available freely https://github.
com/itsoulos/QFc/ (accessed on 23 July 2024). All experiments were conducted on an
AMD Ryzen 5950X with 128 GB of RAM, running Debian Linux. To validate the results,
ten-fold cross-validation was used. In this technique, the original dataset was divided into
ten partitions. Nine of the partitions created were used for training and the remainder
for testing, and this process was repeated ten times. The final classification error was the
average test error for the test partitions. All the experiments were executed 30 times, using
different seed for the random generator each time and the average classification error is
reported. The simulation parameters for the used optimization techniques are listed in
Table 4. The values of these parameters have been used in the past in a number of research
publications and represent a compromise between the reliability of the techniques and the
speed of their execution.

Table 4. The values used for the parameters in the conducted experiments.

Parameter Meaning Value

Nc Number of chromosomes/particles 500

Ng Maximum number of allowed generations 200

N f Number of produced artificial features 2

H Number of weights for neural network 10

ps Selection rate 0.90

pm Mutation rate 0.05

The experimental results are outlined in Table 5. The rows in this table have the
following meaning:

1. The row MLP stands for a neural network [32,33] with H hidden nodes that was
trained with the application of the BFGS optimization method [34].

2. The row SVM stands for the application of Support Vector Machine on the proposed
dataset. The LibSVM implementation [43] was used in the conducted experiments.

3. The row TREE refers to the application of Decision Trees to the objective problem
using the freely available software https://github.com/ikeofilic1/dtrees (accessed on
28 August 2024).

4. The row FC2 (RBF) denotes the application of the feature construction technique. The
method was used to construct NF artificial features and these features were evaluated
using an RBF network with H weights.

https://github.com/itsoulos/GenClass/
https://github.com/itsoulos/QFc/
https://github.com/itsoulos/QFc/
https://github.com/ikeofilic1/dtrees
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5. The row FC2 (MLP) represents the application of the feature-construction technique
to create NF artificial features. The produced features are evaluated using a neural
network with H hidden nodes.

6. The row GENCLASS denotes the usage of the GenClass method to produce classifica-
tion rules.

Table 5. Experimental results using a variety of machine learning methods.

Method Classification Error

MLP 16.33%

SVM 20.38%

TREE 7.64%

FC2(RBF) 13.67%

FC2(MLP) 9.35%

GENCLASS 0.58%

As was observed from the results described in Table 5, the GenClass method results
in a very low average classification error, which is 0.58%, in contrast to other applied
methods where the error is much higher and ranges from 7.64% to 20.38%. As mentioned
above, the training of the model was conducted through cross-validation, which, according
to Belkadi et al. [44], leads to a decrease in the correct classification rate. However, this
assumption for the GenClass case is not confirmed.

Furthermore, precision and recall were recorded for all machine learning methods
and the results are depicted in Table 6. Furthermore, in this case, the superiority of the
GenClass technique is obvious over the rest of the machine learning methods.

Table 6. Precision and recall for the used methods. The metric precision is the proportion of all
classifications that were correct and the metric recall represents the proportion of all actual positive
patterns that were classified correctly as positives.

Method Precision Recall

MLP 0.37 0.68

SVM 0.51 0.53

TREE 0.51 0.93

FC2(RBF) 0.62 0.69

FC2(MLP) 0.85 0.92

GENCLASS 0.96 0.95

The results are very encouraging, and thanks to the innovation of SDN, the GenClass
tool could be integrated into the control plane of an SDN system. This decision was made
because at the control plane (a) it becomes easier to collect statistical information about the
network traffic and (b) it facilitates the integration of GenClass into the controller which
adapts the packet routing decisions improving the network performance. However, the
time of techniques based on Grammatical Evolution is significantly longer compared to
the rest of the techniques, as shown in the graph of Figure 2. Feature construction using
Grammatical Evolution is the method that requires the most significant execution time,
since at each generation of the genetic algorithm, a series of neural networks are trained to
evaluate the generated artificial features. For every generation of the feature construction
technique, a series of neural networks should be trained on the modified training set
created using the candidate artificial features. This step is necessary in order to evaluate
the candidate features and the fitness of each chromosome will be the training error of
the neural network trained on the modified training set. On the other hand, the GenClass
method appears to have a significantly increased execution time than the training of an
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artificial neural network, but since it does not include any parametric model training, the
execution time required is significantly shorter than in the case of feature construction.The
GenClass method simply creates classification rules that do not need any training and the
fitness of the corresponding chromosome will be the classification error of the classification
rule created by Grammatical Evolution.

Figure 2. A schematic representation of the execution time for each machine learning method. The
vertical axis represents average execution time for each method measured in seconds.

According to Anastaspoulos et al. [31], the runtime can be reduced by using parallel
processing techniques, such as MPI [45] or OPENMP [46]. Therefore, multi-threaded con-
trollers such as Floodlight, Beacon, Maestro, OpenMul, ODL, and ONOS [47] are potential
candidates for the integration of ML classification models.

4. Conclusions

This work focuses on traffic classification in an SDN environment. Traffic classification
is an essential tool for network management, Quality of Service (QoS), security, network
optimization, and cost reduction. Thus, we strive to find an efficient solution for SDN traffic
classification. The separation of the control plane and the data plane in SDN facilitates the
integration of classification tools either in the control plane or the data plane. We propose
the use of the GenClass tool, for which, using the SDN-traffic.csv dataset, we find very high
accuracy in traffic data classification in the application classification.

In reality, networks are more complex, and data traffic patterns are influenced by
user sharing, scale, the advent of new protocols, application intelligence, and network
stability [10]. The performance of the proposed classifier creates new opportunities for
handling such situations and motivates further investigation. For example, for future work,
we will explore the integration of GenClass into a controller and its real-time operation.
Moreover, we will investigate the applicability of this classifier in the infrastructure layer of
SDN using the P4 language.

As it is clear from past studies and as pointed out by several researchers, a key problem
is the collection of the data to be used as inputs to the traffic classification models. The
collection of data requires systematic monitoring of the network. Such a process can be
costly, introduce overhead, and also determine the quality and accuracy of the results. An
emerging approach for network monitoring [48,49] that is applicable to SDN networks
and provides solutions to the above problems is network tomography [50]. Given the
increasing scale and complexity of modern networks, the use of network tomography to
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obtain flow characteristics presents significant advantages such as low overhead, directness,
and improvement of network traffic. Thus, future work could be a thorough investigation of
the coexistence of network tomography and network traffic classification in SDN systems.

Moreover, we will investigate the applicability of this classifier in the infrastructure
layer of SDN using the P4 language.
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